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Motivation: Dynamic Vertex Coloring

A simple graph G consisting of N vertices of three colors: red
(R), green (G), and blue (B).
The rate β of red vertices converting to green vertices is
proportional to the product of the numbers of red and green
vertices, and green vertices can be converted to the blue
vertices at an average rate γ per unit time.
In the limit of large N , this model is governed by the coupled
nonlinear differential equations:

dr

dt
= −βrg, dg

dt
= βrg − γg, db

dt
= γg,

where r(t), g(t), and b(t) are the fractions of the vertices in
each of three colors.

Libao Jin The Spread of Epidemic Disease on Networks



Epidemiological Models
Transmission on Networks

Solving SIR on Networks with Arbitrary Degree Distribution

Susceptible/Infective/Removed (SIR) Model
Susceptible/Exposed/Infective/Removed (SEIR) Model
SEIRS Model
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A closed population of N individuals with no births or deaths is
divided into three states: susceptible (S), infective (I), and
removed/recovered (R).
Infective individuals have contacts with randomly chosen
individuals of all states at an average rate β per unit time, and
recover and acquire immunity (or die) at an average rate γ per
unit time.
In the limit of large N , this model is governed by the coupled
nonlinear differential equations:

ds

dt
= −βis, di

dt
= βis− γi, dr

dt
= γi,

where s(t), i(t), and r(t) are the fractions of the population in
each of three states, and the last equation is redundant, due to
s+ i+ r = 1.
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SEIR Model

Many diseases have a latent phase during which the individual
is infected but not yet infectious. This delay between the
acquisition of infection and the infectious state can be
incorporated within the SIR model by adding a latent/exposed
population, E, and letting infected (but not yet infectious)
individuals move from S to E and from E to I.

SIR: S → I → R.
SEIR: S → E → I → R.
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SEIR Model

A closed population of N individuals with no births or deaths is
divided into four states: susceptible (S), exposed (E), infective
(I), and removed/recovered (R).
Infective individuals have contacts with randomly chosen
individuals of all states at an average rate β per unit time;
exposed individuals become infective at an average rate σ per
unit time, and recover and acquire immunity (or die) at an
average rate γ per unit time.
In the limit of large N , this model is governed by the coupled
nonlinear differential equations:

ds

dt
= −βis, de

dt
= βis− σe, di

dt
= σe− γi, dr

dt
= γi,

where s(t), e(t), i(t), and r(t) are the fractions of the
population in each of four states.
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SEIRS Model

The SIR or SEIR model assumes people carry lifelong immunity to a
disease upon recovery, but for many diseases the immunity after
infection wanes over time. In this case, the SEIRS model is used to
allow recovered individuals to return to a susceptible state.
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SEIRS Model

A closed population of N individuals with no births or deaths is
divided into four states: susceptible (S), exposed (E), infective
(I), and removed/recovered (R).
Infective individuals have contacts with randomly chosen
individuals of all states at an average rate β per unit time;
exposed individuals become infective at an average rate σ per
unit time, recover and acquire immunity (or die) at an average
rate γ per unit time, and the recovered individuals return to
the susceptible state due to loss of immunity at an average rate
ξ per unit time.
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SEIRS Model

In the limit of large N , this model is governed by the coupled
nonlinear differential equations:

ds

dt
= −βis+ ξr,

de

dt
= βis− σe,

di

dt
= σe− γi,

dr

dt
= γi− ξr,

where s(t), e(t), i(t), and r(t) are the fractions of the
population in each of four states.
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Transmission on Fully Mixed Networks

Assumptions:

The population is fully mixed, meaning that the individuals
with whom a susceptible individual has contact are chosen at
random from the whole population;
All individuals have approximately the same number of
contacts in the same time;
All contacts transmit the disease with the same probability.
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Transmission on General Networks

Replace “fully mixed” aspect with a network of connections
between individuals. Individuals have disease-causing contacts
only alone the connections in the network.
Connections vs. contacts:

Connections between pairs of individuals predispose those
individuals to disease-causing contact, but do not guarantee it.
An individuals’ connections are the set of people with whom the
individual may have contact during the time he or she is
infective — People that the individual lives with, works with,
sits next to on the bus an so forth.

Vary the number of connections each person has with others by
choosing a particular degree distribution for the network.
Allow the probability of disease-causing contact between pairs
of individuals who have a connection to vary, so that some pairs
have higher probability of disease transmission than others.
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Probability of Transmission

Consider a pair of individuals who are connected, one of whom i is
infective and the other j susceptible. Suppose that the average rate
of disease-causing contacts between them is rij , and that the
infective individual remains infective for a time τi. Then the
probability 1− Tij that the disease will not be transmitted from i to
j is

1− Tij = lim
δt→0

(1− rijδt)τi/δt

= lim
−rijδt→0

{
[1 + (−rijδt)]

1
−rijδt

}−rijτi
= e−rijτi , [ lim

x→0
(1 + x)1/x = e]

Libao Jin The Spread of Epidemic Disease on Networks



Epidemiological Models
Transmission on Networks

Solving SIR on Networks with Arbitrary Degree Distribution

Transmission on Fully Mixed Networks vs. General Networks
Transmissibility

Probability of Transmission

The probability of transmission is

Continuous case:

1− Tij = e−rijτi =⇒ Tij = 1− e−rijτi .

Discrete case: Set δt = 1, then

1− Tij = (1− rijδt)τi/δt =⇒ Tij = 1− (1− rij)τi ,

where τi is measured in time-steps.

Libao Jin The Spread of Epidemic Disease on Networks



Epidemiological Models
Transmission on Networks

Solving SIR on Networks with Arbitrary Degree Distribution

Transmission on Fully Mixed Networks vs. General Networks
Transmissibility

Priori Probability of Transmission

In general, rij and τi will vary between individuals, so that the
probability of transmission also varies. Assume that initially these
two quantities are i.i.d. random variables chosen from some
appropriate distributions P (r) and P (τ), note that rij 6= rji.
Observe that Tij is also an i.i.d. random variable, hence the a priori
probability of transmission of the disease between two individuals is
simply the average T of Tij over the distributions P (r) and P (τ).
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Priori Probability of Transmission (Continuous Case)

For the continuous time case,

T = 〈Tij〉

=
∫ ∞

0

∫ ∞
0

TijP (r, τ) dr dτ

=
∫ ∞

0

∫ ∞
0

(1− e−rτ )P (r)P (τ) dr dτ

=
∫ ∞

0

∫ ∞
0

P (r)P (τ) dr dτ −
∫ ∞

0

∫ ∞
0

P (r)P (τ)e−rτ drdτ,

= 1−
∫ ∞

0

∫ ∞
0

P (r)P (τ)e−rτ drdτ.
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Priori Probability of Transmission (Discrete Case)

For the discrete time case,

T = 〈Tij〉

=
∫ ∞

0

∞∑
τ=0

P (r, τ)[1− (1− r)τ ] dr

=
∫ ∞

0

∞∑
τ=0

P (r)P (τ) dr −
∫ ∞

0

∞∑
τ=0

P (r)P (τ)(1− r)τ dr

= 1−
∫ ∞

0

∞∑
τ=0

P (r)P (τ)(1− r)τ dr.
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Percolation Problem

We would use the bond percolation and generating function
methods to solve the percolation problem on random graphs with
arbitrary degree distributions, to find the exact solutions for the
typical size of outbreaks, presence of an epidemic, size of the
epidemic (if there is one).
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Generating Function of Degree Distribution

Assume that graphs are simply defined with certain degree
distribution by giving the properly normalized probabilities pk that
randomly chosen vertex has degree k. We define a generating
function for the degree distribution:

G0(x) =
∞∑
k=0

pkx
k.
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Properties of Generating Function

Normality: G0(1) =
∑
k

pk = 1.

Reconstruction of the distribution by repeated differentiation:

pk = 1
k!
dkG0
dxk

∣∣∣∣∣
x=0

.

Moments: The mean degree z of a vertex is given by

z = 〈k〉 =
∑
k

kpk = G′0(1).

Higher moments of the distribution can be calculated from

〈kn〉 =
∑
k

knpk =
[(
x
d

dx

)n
G0(x)

] ∣∣∣∣∣
x=1

.
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Degree Distribution of Vertices Reached by Following a
Randomly Chosen Edge {qk}

We also need a different generating function for the distribution of
the degrees of vertices reached by following a randomly chosen edge.
If we follow an edge to the vertex at one of its ends, then that
vertex is more likely to be of high degree than is a randomly chosen
vertex, since high-degree vertices have more edges attached to them
than low-degree ones.

Proposition

Given a finite simple graph G consisting of n vertices whose degree
distribution is {pk}n−1

k=0 , the probability qk that the vertex reached
by following a randomly chosen edge has degree k is proportional to
kpk, i.e., qk ∝ kpk.
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Proof of Proposition: qk ∝ kpk

Proof.
Observe that the number of vertices of degree k is npk, then each
vertex of degree k has knpk edges attached to it. Each edge must
connect two vertices, so each edge is counted twice when sum up
knpk over k, then the number of edges of G is

1
2

n−1∑
k=0

knpk = n

2

n−1∑
k=0

kpk.

Thus qk can be obtained as follows,

qk = knpk

2 · n2
∑n−1
k=0 kpk

= kpk∑n−1
k=0 kpk

= αkpk,

where α = 1/
∑n−1
k=0 kpk is a constant. The proof is complete.
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Example
Given a simple graph as shown in Figure 1.

A B C

D

E

F

Figure 1:A simple graph of 6 vertices.

We can obtain the following degree distribution of randomly chosen
vertex:

p0 = p3 = p5 = 0, p1 = 2
3 , p2 = 1

6 , p4 = 1
6 =⇒

5∑
k=0

kpk = 5
3 .
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Example

Then by the proof of Proposition 1, we have the following the
number of edges connecting vertices of degree k as follows,

k = 1 : knpk = 1× 6× p1 = 1× 6× 2
3 = 4;

k = 2 : knpk = 2× 6× p2 = 2× 6× 1
6 = 2;

k = 4 : knpk = 4× 6× p4 = 4× 6× 1
6 = 4.

It follows that the total number of edges is

1
2

5∑
k=0

knpk = 4 + 2 + 4
2 = 5.

Libao Jin The Spread of Epidemic Disease on Networks



Epidemiological Models
Transmission on Networks

Solving SIR on Networks with Arbitrary Degree Distribution

Degree Distribution & Distribution of Number of Occupied Edges
Outbreak Size Distribution
Example of Disease Spreading

Example

Then the corresponding distribution of degrees of the vertices
reached by following edges is

q1 = 4
2 · 5 = 2

5 =⇒ q1
1 · p1

= 2/5
2/3 = 3

5 ,

q2 = 2
2 · 5 = 1

5 =⇒ q2
2 · p2

= 1/5
2 · 1/6 = 3

5 ,

q4 = 4
2 · 5 = 2

5 =⇒ q4
4 · p4

= 2/5
4 · 1/6 = 3

5 .
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Calculating α

Here is another way to find the above α. By Proposition 1, assume
that {qk} is the distribution of degrees of the vertices reached by
following edges, then

qk = αkpk,

where α ∈ R is a constant. By normality of qk,

1 =
∑
k

qk =
∑
k

αkpk = α
∑
k

kpk =⇒ α = 1∑
k kpk

.
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Generating Function of Degree Distribution {qk}

It follows that the generating function for the degrees of the vertices
reached by following edges is

∑
k

qkx
k = α

∑
k

kpkx
k =

∑
k kpkx

k∑
k kpk

= x

∑
k kpkx

k−1∑
k kpk

= x
G′0(x)
G′0(1) .

In general, we will be concerned with the number of ways leaving
such a vertex excluding the edge we arrived along, which is the
degree minus 1. To allow for this, we simply divide the function
above by one power of x, thus arriving at a new generating function

G1(x) = G′0(x)
G′0(1) = 1

z
G′0(x),

where z is the average degree.
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Distribution of Number of Occupied Edges {rm}

In order to solve the percolation problem, we will also need
generating functions G0(x;T ) and G1(x;T ) for the distribution of
the number of occupied edges attached to a vertex, as a function of
the transmissibility T . The probability of a vertex having exactly m
of the k edges emerging from it occupied is given by the binomial
distribution (

k

m

)
Tm(1− T )k−m.

Then the probability of a vertex having exactly m edges emerging
from it occupied is

rm =
∞∑
k=m

pk

(
k

m

)
Tm(1− T )k−m.
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Generating Function of {rm}
Hence the probability distribution of the number m of occupied
edges attached to a vertex is generated by

G0(x;T ) =
∞∑
m=0

rmx
m

=
∞∑
m=0

∞∑
k=m

pk

(
k

m

)
Tm(1− T )k−mxm

=
∞∑
k=0

pk

k∑
m=0

(
k

m

)
(xT )m(1− T )k−m

=
∞∑
k=0

pk(1− T + xT )k

= G0(1 + (x− 1)T ).
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Generating Function of {rm}

For G0(x;T ) = G0(1 + (x− 1)T ), we have the following:.

G0(x; 1) = G0(x),
G0(1;T ) = G0(1),
G0(x; 0) = G0(1),
G′0(1;T ) = TG′0(1).

Similarly, the probability distribution of occupied edges leaving a
vertex arrived at by following a randomly chosen edge is generated
by

G1(x;T ) = G1(1 + (x− 1)T ).
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Outbreak Size Distribution
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Generating Function of Outbreak Size

We want to find the distribution Ps(T ) of the sizes s of outbreaks
of the disease on the network, which is also the distribution of sizes
of clusters of vertices connected together by occupied edges in the
corresponding percolation model. Let H0(x;T ) be the generating
function for the distribution:

H0(x;T ) =
∞∑
s=0

Ps(T )xs.
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Generating Function of Outbreak Size

By analogy, we also define H1(x;T ) to be the generating function
for the cluster of connected vertices we reach by following a
randomly chosen edge. H1 can be broken down into an additive set
of contributions as follows. The cluster reached by following an
edge may be:

1 a single vertex with no occupied edges attached to it, other
than the one alone which we passed in order to reach it;

2 a single vertex attached to any number m ≥ 1 of occupied
edges other than the one we reached it by, each leading to
another cluster whose size distribution is also generated by H1.
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Generating Function of Outbreak Size

Note that the chance that any two finite clusters that are attached
to the same vertex will have an edge connecting them together
directly goes as N−1 with the size N of the graph, and hence zero
in the limit of N →∞. In other words, there are no loops in our
clusters; their structure is entirely tree-like. We can express
H1(x;T ) in a Dyson-equation-like self-consistent form thus:

H1(x;T ) = xG1(H1(x;T );T ).

Then the size of the cluster reachable from a randomly chosen
starting vertex is distributed according to

H0(x;T ) = xG0(H1(x;T );T ).
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Outbreak Sizes and the Epidemic Transition

We can find the mean outbreak size as follows,

〈s〉 = d

dx
H0(x;T )

∣∣∣∣∣
x=1

= d

dx
[xG0(H1(x;T );T )]

∣∣∣∣∣
x=1

= G0(H1(x;T );T ) + xG′0(H1(x;T );T )H ′1(x;T )
∣∣∣∣∣
x=1

= 1 +G′0(1;T )H ′1(1;T ).

Recall that H1(1;T ) = 1, G0(1;T ) = G0(1) =
∑
k pk = 1.
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Outbreak Sizes and the Epidemic Transition
Taking derivative of H1(x;T ) = xG1(H1(x;T );T ) with respect to
x yields,

H ′1(1;T ) = d

dx
H1(x;T )

∣∣∣∣∣
x=1

= d

dx
xG1(H1(x;T );T )

∣∣∣∣∣
x=1

= G1(H1(x;T );T ) +G′1(H1(x;T );T )H ′1(x;T )
∣∣∣∣∣
x=1

= 1 +G′1(1;T )H ′1(1;T ).
That implies that

H ′1(1;T ) = 1
1−G′1(1;T ) .
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Outbreak Sizes and the Epidemic Transition

Since G′i(1;T ) = TG′i(T ), i = 0, 1,

〈s〉 = 1 + G′0(1;T )
1−G′1(1;T ) = 1 + TG′0(1)

1− TG′1(1) .

The transition takes place when T is equal to the critical
transmissibility Tc, given by

Tc = 1
G′1(1) = G′0(1)

G′′0(1) =
∑
k kpk∑

k k(k − 1)pk
= 〈k〉
〈k2〉 − 〈k〉

.

Recall that G1(x) = G′0(x)/G′0(1).
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Outbreak Sizes and the Epidemic Transition

For T > Tc, we have an epidemic, or “giant component” in the
language of percolation. Above the epidemic threshold, the
equation H1(x;T ) = xG1(H1(x;T );T ) is no longer valid because
the giant component is extensive and therefore can contain loops
which destroys the assumption on which the equation was based.

The equation is valid however if we redefine H0 to be the generating
function only for outbreaks other than epidemic outbreaks, i.e.,
isolated clusters of vertices that are not connected to the giant
component. Thus, above the epidemic transition, we have

H0(1;T ) =
∑
s

Ps = 1− S(T ),

where S(T ) is the fraction of the population affected by the
epidemic.
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Outbreak Sizes and the Epidemic Transition

We find that the size of the epidemic is

S(T ) = 1−G0(H1(1, T );T ) = 1−G0(u;T ),

where u = H1(1;T ) is the solution of the self-consistency relation

u = G1(u;T ).
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Example of Disease Spreading
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Define a Network of a Certain Degree Distribution

First, define a network of connections between individuals, which
means choosing a degree distribution. Here we will consider graphs
with the degree distribution

pk =
{

0 for k = 0,
Ck−αe−k/κ for k ≥ 1,

where C = [Liα(e−1/κ)]−1, α, and κ are constants, and

pk = k−αe−k/κ

Liα(e−1/κ)
for k ≥ 1,

where Lin(x) =
∑∞
k=1

xk

kn is the nth polylogarithm of x.
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Generating Function of Degree Distribution {pk}

Choose both P (r) and P (τ) to be uniform distributions,
0 ≤ r < rmax and 1 ≤ τ ≤ τmax. Then

G0(x) =
∞∑
k=1

pkx
k

=
∞∑
k=1

k−αe−k/κxk

Liα(e−1/κ)

= 1
Liα(e−1/κ)

∞∑
k=1

(xe−1/κ)k

kα

= Liα(xe−1/κ)
Liα(e−1/κ)

.
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Generating Function of Degree Distribution {qk}

In short,

G0(x) = Liα(xe−1/κ)
Liα(e−1/κ)

.

Then we have

G′0(x) = 1
Liα(e−1/κ)

d

dx

∞∑
k=1

(xe−1/κ)k

kα

= 1
xLiα(e−1/κ)

∞∑
k=1

(xe−1/κ)k

kα−1

= Liα−1(xe−1/κ)
xLiα(e−1/κ)

.
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Generating Function of Degree Distribution {qk}

It follows that
G′0(1) = Liα−1(e−1/κ)

Liα(e−1/κ)
.

That implies

G1(x) = G′0(x)
G′0(1) = Liα−1(xe−1/κ)

xLiα(e−1/κ)
Liα(e−1/κ)

Liα−1(e−1/κ)
= Liα−1(xe−1/κ)
xLiα−1(e−1/κ)

.
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Critical Transmissibility Tc

Moreover, taking derivative of G1(x) with respect to x yields

G′1(x) = 1
Liα−1(e−1/κ)

d

dx

Liα−1(xe−1/κ)
x

= 1
Liα−1(e−1/κ)

xLi′α−1(xe−1/κ)− Liα−1(xe−1/κ)
x2

= Liα−2(xe−1/κ)− Liα−1(xe−1/κ)
x2 Liα−1(e−1/κ)

.
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Critical Transmissibility Tc

Thus the epidemic transition occurs at

Tc = 1
G′1(1)

= x2 Liα−1(e−1/κ)
Liα−2(xe−1/κ)− Liα−1(xe−1/κ)

∣∣∣
x=1

= Liα−1(e−1/κ)
Liα−2(e−1/κ)− Liα−1(e−1/κ)

.
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Mean Outbreak Size

Below this value of T there are only small (non-epidemic) outbreaks,
which have mean outbreak size

〈s〉 = 1 + TG′0(1)
1− TG′1(1)

= 1 +
T Liα−1(e−1/κ)

Liα(e−1/κ)

1− T Liα−2(e−1/κ)−Liα−1(e−1/κ)
Liα−1(e−1/κ)

= 1 + T [Liα−1(e−1/κ)]2

Liα(e−1/κ)[(T + 1) Liα−1(e−1/κ)− T Liα−2(e−1/κ)]
.
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Fraction S of Population Affected by the Epidemics

Above it, we are in the region in which epidemics can occur, and the
affect a fraction S of the population in the limit of large graph size
by solving the following numerically,

S(T ) = 1−G0(u;T ),

u = G1(u;T ).
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Validity of the Model: Exact Solution vs. Simulation

Figure 2:Exact Solution (solid line) vs. Simulation (points)
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Questions?
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Thank you!
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