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Vector Norm

Let x = [x1, x2, . . . , xn]T ∈ Rn.

norm(x, 1): ‖x‖1 =
n∑
i=1
|xi|.

norm(x, 2): ‖x‖2 =
(

n∑
i=1

x2
i

)1/2

= (x · x)1/2.

norm(x, inf): ‖x‖∞ = max
i=1,...,n

{|xi|}.
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Matrix Norm
Let x = [x1, x2, . . . , xn]T ∈ Rn and A ∈ Rm×n.

norm(A, 1): ‖A‖1 = max
∀x∈Rn

x 6=0

‖Ax‖1
‖x‖1

= max
1≤j≤n

m∑
i=1
|aij |.

norm(A, 2):
‖A‖2 = max

∀x∈Rn

x 6=0

‖Ax‖2
‖x‖2

= σmax(A) =
√
λmax(ATA),

σmax(A)/λmax(A) means the largest singular value/eigenvalue
of matrix A.

norm(A, inf): ‖A‖∞ = max
∀x∈Rn

x 6=0

‖Ax‖∞
‖x‖∞

= max
i=1,...,m

n∑
j=1
|aij |.

norm(A, 'fro'): ‖A‖F =

 n∑
i=1

n∑
j=1

a2
ij

1/2

, Frobenius norm.
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Condition Number

The condition number of nonsingular matrix A relative to the norm
‖ · ‖ is

κ(A) = ‖A‖ · ‖A−1‖.

If the condition number is high, then the matrix is said to be
ill-conditioned.
If κ(A) =∞, then the matrix A is singular, i.e., the matrix is
not invertible.
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cond: condition number with respect to inversion

cond(A, 1): 1-norm condition number of A.
cond(A, 2): 2-norm condition number of A, i.e.,
κ2(A) = ‖A‖2‖A−1‖2 = σmax(A)

σmin(A) .
cond(A, inf): Infinity-norm condition number of A.
cond(A, 'fro'): Frobenius-norm condition number of A.
cond(A): same as cond(A, 2).
Example
A = magic(5);
condA1 = cond(A, 2)
condA2 = norm(A, 2) * norm(inv(A), 2)
condA3 = max(sqrt(eig(A'*A))) * max(sqrt(eig(inv(A'*A))))
condA4 = max(sqrt(eig(A'*A))) / min(sqrt(eig(A'*A)))
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Ill-Conditioned Matrix: Hilbert Matrix

A Hilbert matrix is a square matrix with elements defined by

Hij = 1
i+ j − 1 .

For example, a 3× 3 Hilbert matrix is

H3×3 =

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 .
Note that this matrix is symmetric and positive definite.
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hilb: Hilbert matrix and invhilb: inverse Hilbert matrix

hilb(n): the n-by-n matrix with elements 1/(i+j-1), which
is a famous example of a ill-conditioned matrix.
invhilb(n): the inverse of the n-by-n Hilbert matrix. The
result is exact for n less than about 15.
Example:
H = hilb(10);
invH1 = inv(H);
invH2 = invhilb(10);
norm(invH1 - invH2)
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Ill-Conditioned Linear System

A linear system Ax = b is said to be ill-conditioned if A is a
ill-conditioned matrix. The typical numerical methods for solving
linear systems such as Jacobi method, Gauss-Seidel method would
become unreliable. Example: Hx = b =⇒ x = H−1b.

n = 10;
H = hilb(n);
invH = invhilb(n);
b = rand(n, 1);
x = invH * b;
x1 = inv(H) * b;
x2 = H \ b;
norm(x - x1)
norm(x - x2)
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Finite Precision Arithmetic
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Finite Precision Arithmetic

Computers can only store values up to a certain level of accuracy.
Past this level, the computer will round values, thus causes the
round-off error. What this means is that arithmetic does not work
exactly as we expect. Namely, arithmetic is no longer commutative,
associative, or distributive. The lab exercises will demonstrate some
of the issues that arise.
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IEEE 754

https://babbage.cs.qc.cuny.edu/IEEE-754/
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