MATH 3341 — Spring 2021

Lab 05: Formatting Output and LATEX

If you haven't downloaded and unzipped Math.3341.zip. Download and unzip it under H: (H Drive if you are working on the Remote Lab). Change the current working directory by typing cd H:\Math.3341\Math.3341.Lab.05 in the Command Window, and type edit lab_05_script in the Command Window to edit lab_05_script.m.

1 Formatting Numerical Values

- (a) Define a variable x, of which the value is e^{π} .
- (b) Define a cell array formatOptions, of which the entries are listed as follows:
 - (1) rat
 - (2) longeng
 - (3) longg
 - (4) longe
 - (5) long
 - (6) shorteng
 - (7) shortg
 - (8) shorte
 - (9) short
- (c) Use a for-loop to output x in the above formats (do NOT change the order).

2 FORMATTING DATA USING fprintf

(a) Define ${\sf x}$ to be column vector ranging from 0 to 2π with 25 entries, and define ${\sf y1}$, ${\sf y2}$, ${\sf y3}$ as follows

$$y_1 = \sin(x/2), \quad y_2 = \sin(x), \quad y_3 = \sin(2x).$$

- (b) Concatenate column vectors x, y1, y2, y3, and store the new 2-D array to data.
- (c) Print out the heading in the Command Window using fprintf, where the heading of the output is x, sin(x/2), sin(x), sin(2x), whose widths are 9. The heading should be left-justified.
- (d) Then use a for-loop to loop over each row of data: use fprintf to print out the numerical values, which have width 9 with 6 decimal places, in the Command Window. All numerical values should be left-justified.

3 Formatting Data for LAT_EX

This part we will format data (defined above) for LATEX.

- (a) Set the output filename to sin.tex, and the permission to w (write mode) in fopen and store the file handle to the variable fileHandle.
- (b) Use fprintf to print out the setup for table and tabular environments. The output should be as follows

```
1  \begin{table}[!hbtp]
2  \centering
3  \caption{Sine functions}
4  \label{tab:sin}
5  \begin{tabular}{lcrr}
6  \toprule
7  \midrule
8  \bottomrule
9  \end{tabular}
10  \end{table}
```

(c) Print out the heading of the data, whose column width is 11 between \toprule and \midrule. The expected output is as follows:

(d) Print out the numerical values of each row in data between \midrule and \bottomrule using a for-loop. Each number has width 9 and 6 decimal places. Also each number should be enclosed by a pair of \$ and seperated by &. The expected output for one of the rows should be as follows

```
1 $ 0.000000$ & $ 0.000000$ & $ 0.000000$ & $ 0.000000$ \\
```

(e) Print the content of sin.tex by calling type('sin.tex').

4 PLOTTING MULTIPLE FUNCTIONS USING FOR-LOOP

- (a) Define a cell array styles. The elements are plotting styles, i.e.,
 - (1) solid line with circle as the marker;
 - (2) dashdot line with diamond as the marker;
 - (3) dashed line with triangle (up) as the marker.
- (b) Define another cell array y, of which the entries are y1, y2, and y3.
- (c) Then use a for-loop to plot each entries of y versus x with in the same figure window the above styles (in the same order).
- (d) Set legend, labels, grid, and title. Change the range of x-axis to $[0, 2\pi]$, and that of y-axis to [-1, 1]. Set the following properties as you did in last lab. The expected result is shown in Figure 1.
 - XTick to [0, pi / 2, pi, 3 * pi / 2, 2 * pi];

```
XTickLabel to {'0', '$\pi/2$', '$\pi$', '$3 \pi/2$', '$2\pi$'};
GridLineStyle to '--';
Box to 'on';
BoxStyle to 'full'.
```

(e) Then save the plot using the following lines of commands:

Type diary('lab_05_output.txt') in the Command Window, run the script file lab_05_script.m, and type diary off in the Command Window. Upload lab_05_output.txt, sin.tex, and lab_05_script.m to the folder src on Overleaf.

On Overleaf, open body.tex under the folder LaTeX. In the last section of the report, you will reproduce Section 5 using LATeX. You may find the following helpful:

- You may use environments such as align, figure, and table.
- You may use \includegraphics[width=amount unit]{/path/to/figure.pdf} to specify the width of a figure. In our case, the width of the figure is 0.75\textwidth.
- For special characters, you may look them up in IATEX.Mathematics.Symbols.pdf.
- You may use \input{/path/to/sin.tex} to include the table you got from MATLAB.

Recompile and submit the PDF file generated by Overleaf to WyoCourses.

5 Basics of LaTeX

5.1 Sine functions

For given $x \in [0, 2\pi]$ with step size $\pi/12$, we can obtain the evaluations of (5.1), (5.2), (5.3) at x (see Table ??), and the corresponding plot (see Figure 1).

$$y_1 = \sin(x/2) \tag{5.1}$$

$$y_2 = \sin(x) \tag{5.2}$$

$$y_3 = \sin(2x) \tag{5.3}$$

Table 1: Sine functions

x	$\sin(x/2)$	$\sin(x)$	$\sin(2x)$
0.000000	0.000000	0.000000	0.000000
0.261799	0.130526	0.258819	0.500000
0.523599	0.258819	0.500000	0.866025
0.785398	0.382683	0.707107	1.000000
1.047198	0.500000	0.866025	0.866025
1.308997	0.608761	0.965926	0.500000
1.570796	0.707107	1.000000	0.000000
1.832596	0.793353	0.965926	-0.500000
2.094395	0.866025	0.866025	-0.866025
2.356194	0.923880	0.707107	-1.000000
2.617994	0.965926	0.500000	-0.866025
2.879793	0.991445	0.258819	-0.500000
3.141593	1.000000	0.000000	-0.000000
3.403392	0.991445	-0.258819	0.500000
3.665191	0.965926	-0.500000	0.866025
3.926991	0.923880	-0.707107	1.000000
4.188790	0.866025	-0.866025	0.866025
4.450590	0.793353	-0.965926	0.500000
4.712389	0.707107	-1.000000	0.000000
4.974188	0.608761	-0.965926	-0.500000
5.235988	0.500000	-0.866025	-0.866025
5.497787	0.382683	-0.707107	-1.000000
5.759587	0.258819	-0.500000	-0.866025
6.021386	0.130526	-0.258819	-0.500000
6.283185	0.000000	-0.000000	-0.000000

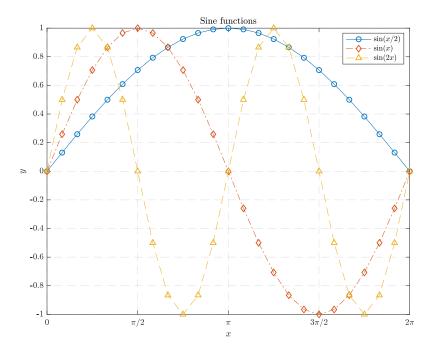


Figure 1: Sine functions