MATH 3341 — Spring 2020 Lab 05: Formatting Output and IAT_EX

Download Math.3341.Lab.05.zip, unzip it by following the Windows Instructions on WyoCourses. Change the current working directory of MATLAB to the unzipped folder, and type edit lab_05_script in the Command Window.

1 FORMATTING NUMERICAL VALUES

- (a) Define a variable x, of which the value is e^{π} .
- (b) Define a cell array format_types, of which the entries are listed as follows:
 - (1) rat
 - (2) longeng
 - (3) longg
 - (4) longe
 - (5) long
 - (6) shorteng
 - (7) shortg
 - (8) shorte
 - (9) short
- (c) Use a for-loop to output x in the above formats (do not change the order).

2 FORMATTING DATA USING fprintf

(a) Define **x** to be column vector ranging from 0 to 2π with 25 entries, and define **y1**, **y2**, **y3** as follows

$$y_1 = \sin(x/2), \quad y_2 = \sin(x), \quad y_3 = \sin(2x).$$

- (b) Concatenate column vectors x, y1, y2, y3, and store the new 2-D array to data. Store the size of data to data_size.
- (c) Print out the heading using fprintf, where the heading of the output is x, sin(x/2), sin(x), sin(2x), whose widths are 9. The heading should be right-justified.
- (d) Then use a for-loop to print out the numerical values of data, which have width 9 with 6 decimal digits. All numerical values should be right-justified.

3 Formatting Data for LAT_EX

This part we will format data (defined above) for IAT_EX .

- (a) Set the output filename to sin.tex, and the file open mode to w (write) in fopen and store the file handle to the variable file_handle.
- (b) Use <code>fprintf</code> to print out the setup for <code>table</code> and <code>tabular</code> environments. The output should be as follows

```
\begin{table}[!hbtp]
1
2
  \centering
3
   \caption{Sine functions}
  \label{tab:sin}
4
   \begin{tabular}{lcrr}
5
6
  \toprule
7
   \midrule
8
   \bottomrule
9
   \end{tabular}
```

10 \end{table}

1

(c) Print out the heading of the data, whose column width is 11 between **\toprule** and **\midrule**. The expected output is as follows:

```
$x$ & $\sin(x/2)$ & $\sin(x)$ & $\sin(2x)$ \\
```

(d) Print out the numerical values of data between \midrule and \bottomrule using a for-loop. Each number has width 9 and 6 decimal digits. Also each number should be enclosed by a pair of \$ and seperated by &. The expected output for one of the rows should be as follows

1 \$ 0.000000\$ & \$ 0.000000\$ & \$ 0.000000\$ \times \$ 0.000000\$ \times

(e) Print the content of sin.tex by calling type('sin.tex').

4 PLOTTING MULTIPLE FUNCTIONS USING FOR-LOOP

- (a) Define a cell array styles. The elements are plotting styles, i.e.,
 - (1) solid line with circle as the marker;
 - (2) dashdot line with diamond as the marker;
 - (3) dashed line with triangle (up) as the marker.
- (b) Define another cell array y, of which the entries are y1, y2, and y3.
- (c) Then use a for-loop to plot each entries of y versus x with in the same figure window the above styles (in the same order).
- (d) Set legend, labels, grid, and title. Change the range of x-axis to [0, 2π], and that of y-axis to [-1,1]. Set the following properties as you did in last lab. The expected result is shown in Figure 1.
 - XTick to [0, pi / 2, pi, 3 * pi / 2, 2 * pi];

- XTickLabel to {'0', '\$\pi/2\$', '\$\pi\$', '\$3 \pi/2\$', '\$2\pi\$'};
- GridLineStyle to '--';
- Box to 'on';
- BoxStyle to 'full'.

(e) Then save the plot using the following lines of commands:

```
1 name = 'lab_05_plot';
2 fig = figure(1); % Set figure i as current figure window
3 set(fig, 'PaperPositionMode', 'auto'); % Set paper position mode to 'auto'
4 pos = get(fig, 'PaperPosition'); % Get figure window paper position
5 set(fig, 'PaperSize', [pos(3) pos(4)]); % Set figure paper size
6 print(fig, '-dpdf', name); % Save figure
```

Type diary('lab_05_output.txt') in the Command Window, run the script file lab_05_script.m, and type diary off in the Command Window. Upload lab_05_output.txt, sin.tex, and lab_05_script.m to the folder src on Overleaf.

On Overleaf, open body.tex under the folder LaTeX. In the last section of the report, you will reproduce Section 5 using IATEX. You may find the following helpful:

- You may use environments such as align, itemize, enumerate, lstlisting, figure, and table.
- You may use \includegraphics[width=amount unit]{/path/to/figure.pdf} to specify the width of a figure. In our case, the width of the figure is 0.75\textwidth.
- For special characters, you may look them up in IATEX.Mathematics.Symbols.pdf.
- You may use \input{/path/to/sin.tex} to include the table you got from MATLAB.

Recompile and submit the PDF file generated by Overleaf to WyoCourses.

5 Basics of IAT_EX

5.1 Sine functions

For given $x \in [0, 2\pi]$ with step size $\pi/12$, we can obtain the evaluations of (1), (2), (3) at x (see Table 1), and the corresponding plot (see Figure 1).

$$y_1 = \sin(x/2) \tag{1}$$

$$y_2 = \sin(x) \tag{2}$$

$$y_3 = \sin(2x) \tag{3}$$

x	$\sin(x/2)$	$\sin(x)$	$\sin(2x)$
0.000000	0.000000	0.000000	0.000000
0.261799	0.130526	0.258819	0.500000
0.523599	0.258819	0.500000	0.866025
0.785398	0.382683	0.707107	1.000000
1.047198	0.500000	0.866025	0.866025
1.308997	0.608761	0.965926	0.500000
1.570796	0.707107	1.000000	0.000000
1.832596	0.793353	0.965926	-0.500000
2.094395	0.866025	0.866025	-0.866025
2.356194	0.923880	0.707107	-1.000000
2.617994	0.965926	0.500000	-0.866025
2.879793	0.991445	0.258819	-0.500000
3.141593	1.000000	0.000000	-0.000000
3.403392	0.991445	-0.258819	0.500000
3.665191	0.965926	-0.500000	0.866025
3.926991	0.923880	-0.707107	1.000000
4.188790	0.866025	-0.866025	0.866025
4.450590	0.793353	-0.965926	0.500000
4.712389	0.707107	-1.000000	0.000000
4.974188	0.608761	-0.965926	-0.500000
5.235988	0.500000	-0.866025	-0.866025
5.497787	0.382683	-0.707107	-1.000000
5.759587	0.258819	-0.500000	-0.866025
6.021386	0.130526	-0.258819	-0.500000
6.283185	0.000000	-0.000000	-0.000000

Table 1: Sine functions

Figure 1: Sine functions