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Abstract: This standard specifies interchange and arithmetic formats and methods for binary and 
decimal floating-point arithmetic in computer programming environments. This standard specifies 
exception conditions  and their  default  handling.  An implementation of  a  floating-point  system 
conforming to this standard may be realized entirely in software, entirely in hardware, or in any 
combination of  software and hardware.  For  operations specified in the normative part  of  this 
standard, numerical results and exceptions are uniquely determined by the values of the input 
data, sequence of operations, and destination formats, all under user control.
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Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE documents  are  made available  for  use subject  to  important  notices and  legal  disclaimers.  These  
notices and disclaimers, or a reference to this page, appear in all standards and may be found under the  
heading “Important Notices and Disclaimers Concerning IEEE Standards Documents.” They can also be 
obtained on request from IEEE or viewed at http://standards.ieee.org/ipr/disclaimers.html.

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards 
Documents

IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use, are 
developed  within  IEEE  Societies  and  the  Standards  Coordinating  Committees  of  the  IEEE  Standards 
Association  (“IEEE-SA”)  Standards  Board.  IEEE  (“the  Institute”)  develops  its  standards  through  a 
consensus development process, approved by the American National Standards Institute (“ANSI”), which 
brings together volunteers representing varied viewpoints and interests to achieve the final product. IEEE 
Standards are documents developed through scientific,  academic, and industry-based technical  working 
groups. Volunteers in IEEE working groups are not necessarily members of the Institute and participate 
without compensation from IEEE. While IEEE administers the process and establishes rules to promote 
fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the 
accuracy of any of the information or the soundness of any judgments contained in its standards.

IEEE Standards do not guarantee or ensure safety, security, health, or environmental protection, or ensure 
against interference with or from other devices or networks. Implementers and users of IEEE Standards 
documents  are  responsible  for  determining  and  complying  with  all  appropriate  safety,  security, 
environmental, health, and interference protection practices and all applicable laws and regulations.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and 
expressly  disclaims  all  warranties  (express,  implied  and  statutory)  not  included  in  this  or  any  other 
document relating to the standard, including, but not limited to, the warranties of: merchantability; fitness 
for a particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness  
of material. In addition, IEEE disclaims any and all conditions relating to: results; and workmanlike effort.  
IEEE standards documents are supplied “AS IS” and “WITH ALL FAULTS.”

Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there  
are no other ways to produce, test, measure, purchase, market, or provide other goods and services related  
to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved 
and issued is subject to change brought about through developments in the state of the art and comments 
received from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other 
services for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by 
any other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon 
his or her own independent judgment in the exercise of reasonable care in any given circumstances or, as  
appropriate,  seek the advice of a competent professional in determining the appropriateness of a given  
IEEE standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 
EXEMPLARY,  OR  CONSEQUENTIAL  DAMAGES  (INCLUDING,  BUT  NOT  LIMITED  TO: 
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 
WHETHER  IN  CONTRACT,  STRICT  LIABILITY,  OR  TORT  (INCLUDING  NEGLIGENCE  OR 
OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION,  USE OF,  OR RELIANCE 
UPON ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND 
REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.
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Translations 

The IEEE consensus development process involves the review of documents in English only. In the event  
that an IEEE standard is translated, only the English version published by IEEE should be considered the 
approved IEEE standard.

Official statements 

A statement,  written  or  oral,  that  is  not  processed  in  accordance  with  the  IEEE-SA Standards  Board  
Operations Manual shall not be considered or inferred to be the official position of IEEE or any of its  
committees and shall not be considered to be, or be relied upon as, a formal position of IEEE. At lectures,  
symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall 
make it clear that his or her views should be considered the personal views of that individual rather than the 
formal position of IEEE.

Comments on standards

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of 
membership  affiliation  with  IEEE.  However,  IEEE does  not  provide  consulting  information  or  advice 
pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a  
proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a 
consensus of concerned interests, it is important that any responses to comments and questions also receive 
the concurrence of  a balance  of  interests.  For this reason,  IEEE and the members  of  its  societies and 
Standards Coordinating Committees are not able to provide an instant response to comments or questions 
except in those cases where the matter has previously been addressed. For the same reason, IEEE does not 
respond to interpretation  requests.  Any person  who would  like  to  participate  in  revisions to  an  IEEE 
standard is welcome to join the relevant IEEE working group.

Comments on standards should be submitted to the following address:

Secretary, IEEE-SA Standards Board 
445 Hoes Lane 
Piscataway, NJ 08854 USA

Laws and regulations 

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with 
the provisions of any IEEE Standards document does not imply compliance to any applicable regulatory 
requirements.  Implementers of the standard are responsible for observing or referring to the applicable 
regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not  
in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws. 
They are made available by IEEE and are adopted for a wide variety of both public and private uses.  
These  include  both  use,  by  reference,  in  laws  and  regulations,  and  use  in  private  self-regulation, 
standardization,  and the promotion of engineering practices  and methods. By making these documents 
available for use and adoption by public authorities and private users, IEEE does not waive any rights in 
copyright to the documents.

4
Copyright © 2019 IEEE. All rights reserved.

Authorized licensed use limited to: BOURNEMOUTH UNIVERSITY. Downloaded on October 14,2019 at 12:20:34 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Std 754-2019
IEEE Standard for Floating-Point Arithmetic

Photocopies 

Subject  to  payment  of  the  appropriate  fee,  IEEE  will  grant  users  a  limited,  non-exclusive  license  to 
photocopy portions of any individual standard for company or organizational internal use or individual, 
non-commercial use only. To arrange for payment of licensing fees, please contact Copyright Clearance 
Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission 
to  photocopy  portions  of  any  individual  standard  for  educational  classroom use  can  also  be  obtained 
through the Copyright Clearance Center.

Updating of IEEE Standards documents 

Users of IEEE Standards documents should be aware that these documents may be superseded at any time 
by the issuance of new editions or may be amended from time to time through the issuance of amendments,  
corrigenda, or errata. A current IEEE document at any point in time consists of the current edition of the 
document together with any amendments, corrigenda, or errata then in effect. 

Every IEEE standard is subjected to review at least every ten years. When a document is more than ten 
years old and has not undergone a revision process, it is reasonable to conclude that its contents, although  
still  of  some value,  do not wholly reflect  the present  state of  the art.  Users are cautioned to check to  
determine that they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended 
through the issuance of amendments, corrigenda, or errata, visit IEEE Xplore at http://ieeexplore.ieee.org/ 
or  contact  IEEE at  the address listed previously.  For more information about  the IEEE-SA or IEEE’s  
standards development process, visit the IEEE-SA Website at http://standards.ieee.org.

Errata 

Errata,  if any, for all IEEE standards can be accessed on the IEEE-SA Website at the following URL: 
http://standards.ieee.org/findstds/errata/index.html.  Users  are  encouraged  to  check  this  URL for  errata 
periodically.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter 
covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to  
the existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant  
has filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the  
IEEE-SA Website  at  http://standards.ieee.org/about/sasb/patcom/patents.html.  Letters  of  Assurance  may 
indicate  whether  the  Submitter  is  willing  or  unwilling  to  grant  licenses  under  patent  rights  without 
compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of  
any unfair discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not 
responsible for identifying Essential Patent Claims for which a license may be required, for conducting  
inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or  
conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing 
agreements  are  reasonable  or  non-discriminatory.  Users  of  this  standard  are  expressly  advised  that 
determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely  
their own responsibility. Further information may be obtained from the IEEE Standards Association.

5
Copyright © 2019 IEEE. All rights reserved.

 

Authorized licensed use limited to: BOURNEMOUTH UNIVERSITY. Downloaded on October 14,2019 at 12:20:34 UTC from IEEE Xplore.  Restrictions apply. 

http://standards.ieee.org/about/sasb/patcom/patents.html
http://standards.ieee.org/findstds/errata/index.html
http://standards.ieee.org/
http://ieeexplore.ieee.org/


IEEE Std 754-2019
IEEE Standard for Floating-Point Arithmetic

Participants

The following participants in the Floating-Point Working Group contributed to the development of this 
standard:

David G. Hough, Chair           
Mike Cowlishaw, Editor           

Jonathan Bradbury
Neil Burgess
David H. C. Chen
Marius Cornea
John H. Crawford
Joe Darcy
James Demmel
Florent de Dinechin
Ken Dockser
Hossam A. H. Fahmy
Warren E. Ferguson
David M. Gay

Ivan Godard
Roger A. Golliver
Mrudula Gore
Trenton Grale
Michel Hack
John Hauser
Peter C. B. Henderson
William Kahan 
R. Baker Kearfott
Christoph Lauter
Vincent Lefèvre
David Lutz
Terje Mathisen

David Matula
Ian McIntosh
Richard A. Painter
Bogdan Pasca
Nathalie Revol
Jason Riedy
Eric M. Schwarz
James W. Thomas
Leonard Tsai 
Fred J. Tydeman
Liang-Kai Wang
Lee Winter

The following individual members of the balloting committee voted on this standard. Balloters might have 
voted for approval, disapproval, or abstention.

Robert Aiello
Amelia Andersdotter
Israel Barrientos
Demetrio Bucaneg Jr.
David H. C. Chen
James Cloos
Marius Cornea
Mike Cowlishaw
James Demmel
Ken Dockser
Hossam A. H. Fahmy
Andrew Fieldsend
David M. Gay
H. Glickenstein
Roger A. Golliver

Randall Groves
Michel Hack
Peter Harrod
Chris N. Hinds
Werner Hoelzl
David G. Hough
Piotr Karocki
R. Baker Kearfott
Jim Kulchisky
Christoph Lauter
Vincent Lefèvre
Edward Mccall
Jean-Michel Muller
Bruce Muschlitz
Ned Nedialkov

Nick S. A. Nikjoo
Richard A. Painter
John Pryce
Nathalie Revol
Jason Riedy
Randy Saunders
Eric M. Schwarz
James Stine
Walter Struppler
James W. Thomas
Michael Thompson
Leonard Tsai
Forrest Wright
Jian Yu
Oren Yuen

6
Copyright © 2019 IEEE. All rights reserved.

Authorized licensed use limited to: BOURNEMOUTH UNIVERSITY. Downloaded on October 14,2019 at 12:20:34 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Std 754-2019
IEEE Standard for Floating-Point Arithmetic

When  the  IEEE-SA  Standards  Board  approved  this  standard  on  13  June  2019,  it  had  the  following 
membership:

Gary Hoffman, Chair  
Ted Burse, Vice Chair  

Jean-Philippe Faure, Past Chair  
Konstantinos Karachalios, Secretary  

Masayuki Ariyoshi
Stephen D. Dukes
J. Travis Griffith
Guido Hiertz
Christel Hunter
Joseph L. Koepfinger*
Thomas Koshy
John D. Kulick

David J. Law
Joseph Levy
Howard Li 
Xiaohui Liu
Kevin Lu
Daleep Mohla
Andrew Myles

Annette Reilly
Dorothy Stanley
Sha Wei
Phil Wennblom
Philip Winston
Howard Wolfman
Feng Wu
Jingyi Zhou

* Member Emeritus

7
Copyright © 2019 IEEE. All rights reserved.

 

Authorized licensed use limited to: BOURNEMOUTH UNIVERSITY. Downloaded on October 14,2019 at 12:20:34 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Std 754-2019
IEEE Standard for Floating-Point Arithmetic

Introduction

This introduction is not part of IEEE Std 754-2019, IEEE Standard for Floating-Point Arithmetic.

This standard is a product of the Floating-Point Working Group of, and sponsored by, the Microprocessor 
Standards Committee of the IEEE Computer Society. 

This  standard  provides  a  discipline  for  performing  floating-point  computation  that  yields  results 
independent of whether the processing is done in hardware, software, or a combination of the two. For 
operations specified in the normative part of this standard, numerical results and exceptions are uniquely 
determined by the values of the input data, the operation, and the destination, all under user control.

This standard defines a family of commercially feasible ways for systems to perform binary and decimal 
floating-point arithmetic. Among the desiderata that guided the formulation of this standard were:

a) Facilitate movement of existing programs from diverse computers to those that adhere to this 
standard as well as among those that adhere to this standard.

b) Enhance the capabilities and safety available to users  and programmers who, although not 
expert  in  numerical  methods,  might  well  be  attempting  to  produce  numerically  sophisticated 
programs. 

c) Encourage experts to develop and distribute robust and efficient numerical programs that are 
portable, by way of minor editing and recompilation, onto any computer that conforms to this  
standard and possesses adequate capacity. Together with language controls it should be possible to 
write programs that produce identical results on all conforming systems.

d) Provide direct support for

― execution-time diagnosis of anomalies

― smoother handling of exceptions

― interval arithmetic at a reasonable cost.

e) Provide for development of

― common elementary functions such as exp or cos

― high precision (multiword) arithmetic

― coupled numerical and symbolic algebraic computation.

f) Enable rather than preclude further refinements and extensions.

In programming environments, this standard is also  intended to form the basis for a dialog between the 
numerical community and programming language designers. It is hoped that language-defined methods for 
the control of expression evaluation and exceptions might be defined in coming years, so that it will be  
possible  to  write  programs  that  produce  identical  results  on  all  conforming  systems.  However,  it  is 
recognized that utility and safety in languages are sometimes antagonists, as are efficiency and portability.

Therefore,  it  is  hoped  that  language  designers  will  look  on  the  full  set  of  operation,  precision,  and  
exception controls described  here as a guide to providing the programmer with the ability to portably 
control  expressions and  exceptions.  It  is  also hoped that  designers  will  be  guided  by  this standard  to 
provide extensions in a completely portable way.

Informative annexes provide additional information  – Annex A lists bibliographical resources, Annex B 
suggests programming environment features for debugging support, and Annex C lists all references to the 
operations of the standard.
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I

IEEE Standard for Floating-Point 
Arithmetic 

1. Overview  1.0

1.1 Scope  1.1.0

This standard specifies formats and operations for floating-point arithmetic in computer systems. Exception 
conditions are defined and handling of these conditions is specified.

1.2 Purpose  1.2.0

This standard provides a method for  computation with floating-point numbers that will yield the same 
result whether the processing is done in hardware, software, or a combination of the two. The results of the 
computation will be identical, independent of implementation, given the same input data. Errors, and error 
conditions,  in  the  mathematical  processing  will  be  reported  in  a  consistent  manner  regardless  of  
implementation.

1.3 Inclusions  1.3.0

This standard specifies:

― Formats for binary and decimal floating-point data, for computation and data interchange.

― Addition,  subtraction,  multiplication,  division, fused  multiply  add,  square  root,  compare,  and 
other operations.

― Conversions between integer and floating-point formats.

― Conversions between different floating-point formats.

― Conversions between floating-point formats and external representations as character sequences.

― Floating-point exceptions and their handling, including data that are not numbers (NaNs).

1.4 Exclusions  1.4.0

This standard does not specify:

― Formats of integers.

― Interpretation of the sign and significand fields of NaNs. 
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1.5 Programming environment considerations  1.5.0

This standard specifies floating-point arithmetic in two radices, 2 and 10. A programming environment 
may conform to this standard in one radix or in both.

This standard does not define all aspects of a conforming programming environment. Such behavior should 
be defined by a programming language definition supporting this standard, if available, and otherwise by a  
particular implementation. Some programming language specifications might permit some behaviors to be 
defined by the implementation.

Language-defined behavior  should  be  defined  by  a  programming  language  standard  supporting  this 
standard. Then all implementations conforming both to this floating-point standard and to that language 
standard  behave  identically  with  respect  to  such  language-defined  behaviors.  Standards  for  languages 
intended to reproduce results exactly on all platforms are expected to specify behavior more tightly than do 
standards for languages intended to maximize performance on every platform.

Because  this  standard  requires  facilities  that  are  not  currently  available  in  common  programming 
languages, the standards for such languages might not be able to fully conform to this standard if they are  
no longer being revised.  If  the language can be extended by a function library or  class or package to 
provide a conforming environment, then that extension should define all the language-defined behaviors 
that would normally be defined by a language standard.

Implementation-defined behavior  is  defined  by  a specific  implementation  of  a  specific  programming 
environment conforming to this standard. Implementations define behaviors not specified by this standard 
nor by any relevant programming language standard or programming language extension.

Conformance  to  this  standard  is  a  property  of  a  specific  implementation  of  a  specific  programming 
environment, rather than of a language specification.

However a language standard could also be said to conform to this standard if it were constructed so that  
every conforming implementation of that language also conformed automatically to this standard.

1.6 Word usage  1.6.0

In this standard three words are used to differentiate between different levels of requirements and 
optionality, as follows:

― may  indicates a course of action permissible within the limits of the standard with no implied 
preference (“may” means “is permitted to”)

― shall indicates mandatory requirements strictly to be followed in order to conform to the standard 
and from which no deviation is permitted (“shall” means “is required to”)

― should indicates that among several  possibilities, one is recommended as particularly suitable, 
without mentioning or excluding others; or that a certain course of action is preferred but not 
necessarily required; or that (in the negative form) a certain course of action is deprecated but not 
prohibited (“should” means “is recommended to”).

Further:

― might  indicates  the  possibility  of  a  situation  that  could  occur,  with  no  implication  of  the 
likelihood of that situation (“might” means “could possibly”)

― see followed by a number is a cross-reference to the clause or subclause of this standard identified 
by that number

― NOTE introduces text that is informative (that is, is not a requirement of this standard).
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2. Definitions, abbreviations, and acronyms  2.0

2.1 Definitions  2.1.0

For the purposes of this standard, the following terms and definitions apply. 

applicable attribute: The  value  of  an  attribute  governing  a  particular  instance  of  execution  of  a 
computational operation of this standard. Languages specify how the applicable attribute is determined.

arithmetic format: A floating-point format that can be used to represent floating-point operands or results 
for the operations of this standard.

attribute:  An implicit  parameter to operations of  this standard, which a user might statically  set  in a  
programming language by specifying a constant value. The term attribute might refer to the parameter (as  
in “rounding-direction attribute”) or its value (as in “roundTowardZero attribute”).

basic format: One of five floating-point representations, three binary and two decimal, whose encodings 
are specified by this standard, and which can be used for arithmetic. One or more of the basic formats is 
implemented in any conforming implementation.

biased exponent:  The sum of the exponent and a constant (bias) chosen to make the biased exponent’s 
range non-negative.

binary floating-point number: A floating-point number with radix two.

block: A language-defined syntactic unit for which a user can specify attributes. Language standards might 
provide means for  users  to specify attributes  for  blocks of  varying scopes,  even as  large as  an entire  
program and as small as a single operation.

canonical  encoding: A preferred encoding  of  a  floating-point  representation  in  a format.   “Canonical 
encoding” also applies to declets, significands of finite numbers, infinities, and NaNs, especially in decimal 
formats.

cohort: The set of all floating-point representations that represent a given floating-point number in a given  
floating-point format. In this context −0 and +0 are considered distinct and are in different cohorts.

computational operation: An operation that produces floating-point results or that might signal floating-
point exceptions. Computational operations produce results in floating-point or other destination formats  
by rounding them to fit if necessary.

correct rounding: This standard’s method of converting an infinitely precise result  to a floating-point 
number, as determined by the applicable rounding direction. A floating-point number so obtained is said to 
be correctly rounded.

decimal floating-point number: A floating-point number with radix ten.

declet:  An encoding  of  three  decimal  digits  into ten  bits  using the densely packed decimal  encoding 
scheme.  Computational  operations  accept  all  1024  possible  declets  in  operands.  Most  computational 
operations produce only the 1000 canonical declets.

denormalized number: See: subnormal number.

destination: The location for the result of an operation upon one or more operands. A destination might be 
either explicitly designated by the user or implicitly supplied by the system (for example, intermediate  
results in subexpressions or arguments for procedures). Even though some languages place the results of  
intermediate calculations in destinations beyond the user’s control, this standard defines the result of an  
operation in terms of that destination’s format and the operands’ values.

dynamic mode:  An optional method of  dynamically  setting attributes  by means of  operations of  this 
standard to set, test, save, and restore them.

exception: An event that occurs when an operation on some particular operands has no outcome suitable 
for every reasonable application. That operation might signal an exception by invoking default exception 
handling or alternate exception handling. Exception handling might signal further exceptions. Recognize 
that event, exception, and signal are defined in diverse ways in different programming environments.
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exponent: The component of a finite floating-point representation that signifies the integer power to which 
the radix is raised in determining the value of that floating-point representation. The exponent  e is used 
when the significand is regarded as an integer digit and fraction field, and the exponent q is used when the 
significand is regarded as an integer; e = q + p − 1 where p is the precision of the format in digits.

extendable precision format: A format with precision and range that are defined under user control.

extended precision format: A format that extends a supported basic format by providing wider precision 
and range.

external  character sequence: A representation of  a  floating-point  datum as a  sequence of  characters, 
including the character sequences in floating-point literals in program text.

flag: See: status flag.

floating-point datum: A floating-point number or non-number (NaN) that is representable in a floating-
point format. In this standard, a floating-point datum is not always distinguished from its representation or  
encoding.

floating-point number: A finite  or  infinite  number that  is  representable  in a  floating-point  format.  A 
floating-point  datum that  is  not  a  NaN.  All  floating-point  numbers,  including  zeros  and infinities,  are 
signed.

floating-point operation: An operation where an operand or result is a floating-point datum.

floating-point representation: An unencoded member of a floating-point  format,  representing a finite 
number, a signed infinity, a quiet NaN, or a signaling NaN. A representation of a finite number has three 
components:  a  sign,  an  exponent,  and  a  significand;  its  numerical  value  is  the  signed  product  of  its 
significand and its radix raised to the power of its exponent.

format: A set of representations of numerical values and symbols, perhaps accompanied by an encoding.

fusedMultiplyAdd: The operation  fusedMultiplyAdd(x,  y,  z) computes (x × y ) + z as if  with unbounded 
range and precision, rounding only once to the destination format.

generic operation: An operation of this standard that can take operands of various formats, for which the 
formats of the results might depend on the formats of the operands.

homogeneous operation: An operation of this standard that takes operands and returns results all in the  
same format.

implementation-defined:  Behavior  defined  by  a  specific  implementation  of  a  specific  programming 
environment conforming to this standard.

integer format: A format not defined in this standard that represents a subset of the integers and perhaps 
additional values representing infinities, NaNs, or negative zeros. 

interchange format: A format that has a specific fixed-width encoding defined in this standard.

language-defined: Behavior defined by a programming language standard supporting this standard. 

NaN: not a number — a symbolic floating-point datum. There are two kinds of NaN representations: quiet 
and signaling. Most operations propagate quiet NaNs without signaling exceptions, and signal the invalid 
operation exception when given a signaling NaN operand.

narrower/wider format: If the set of floating-point numbers of one format is a proper subset of another 
format, the first is called narrower and the second wider. The wider format might have greater precision, 
range, or (usually) both.

non-computational operation: An operation that is not computational.

normal number: For a particular format, a finite non-zero floating-point number with magnitude greater 
than or equal to a minimum b emin value, where b is the radix. Normal numbers can use the full precision 
available in a format. In this standard, zero is neither normal nor subnormal.

not a number: See: NaN.

operation:  this standard defines required and recommended operations which operate on zero or more 
operands and produce results or side effects, such as changes in dynamic modes or flags or control flow, or  
both.  In this standard, operations are written as named functions; in a specific programming environment 
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they might be represented by operators, or by families of format-specific functions, or by operations or  
functions whose names might differ from those in this standard.

payload: The information, which might be diagnostic, contained in a NaN.

precision: The maximum number p of significant digits that can be represented in a format, or the number  
of digits to which a result is rounded.

preferred exponent: For the result of a decimal operation, the value of the exponent q which best reflects 
the quanta of the operands when the result is exact.

preferredWidth method: A method used by a programming language to determine the destination formats 
for generic operations and functions. Some preferredWidth methods take advantage of the extra range and 
precision of wide formats without requiring the program to be written with explicit conversions.

quantum: The quantum of a finite floating-point representation is the value of a unit in the last position of 
its significand.  This is equal to the radix raised to the exponent q, which is used when the significand is 
regarded as an integer.

quiet operation: An operation that never signals any floating-point exception.

radix: The base for the representation of binary or decimal floating-point numbers, two or ten.

result: The floating-point representation or encoding that is delivered to the destination.

signal:  When an operation on some particular  operands has no outcome suitable for every reasonable 
application, that operation might signal one or more exceptions by invoking the default handling or, if 
explicitly requested, a language-defined alternate handling selected by the user.

significand: A component of a finite floating-point number containing its significant digits. The significand 
can be thought of as an integer, a fraction, or some other fixed-point form, by choosing an appropriate 
exponent offset. A decimal or subnormal binary significand can also contain leading zeros, which are not 
significant.

status flag: A variable that can take two states, raised or lowered. When raised, a status flag might convey 
additional  system-dependent  information,  possibly  inaccessible  to  some  users.  The  operations  of  this 
standard, when exceptional, can as a side effect raise some of the following status flags: inexact, underflow, 
overflow, divideByZero, and invalid operation.

subnormal number: In a particular format, a non-zero floating-point number with magnitude less than the 
magnitude of that format’s smallest normal number. A subnormal number does not use the full precision  
available to normal numbers of the same format. 

supported format: A floating-point format provided in the programming environment and implemented in 
conformance with the requirements of this standard. Thus, a programming environment might provide 
more formats than it supports, as only those implemented in accordance with the standard are said to be 
supported. Also, an integer format is said to be supported if conversions between that format and supported 
floating-point formats are provided in conformance with this standard.

trailing significand field: A component of an encoded binary or decimal floating-point format containing 
all the significand digits except the leading digit. In these formats, the biased exponent or combination field 
encodes or implies the leading significand digit.

user:  Any  person,  hardware,  or  program  not  itself  specified  by  this  standard,  having  access  to  and  
controlling those operations of the programming environment specified in this standard.

width of an operation: The format of the destination of an operation specified by this standard; it will be 
one of the supported formats provided by an implementation in conformance to this standard.

2.2 Abbreviations and acronyms  2.2.0

LSB least significant bit
MSB most significant bit
NaN not a number
qNaN quiet NaN
sNaN signaling NaN
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3. Floating-point formats  3.0

3.1 Overview  3.1.0

3.1.1 Formats  3.1.1.0

This clause defines floating-point formats, which are used to represent a finite subset of real numbers (see  
3.2). Formats are characterized by their radix, precision, and exponent range, and each format can represent 
a unique set of floating-point data (see 3.3).

All formats can be supported as arithmetic formats; that is, they may be used to represent floating-point 
operands or results for the operations described in later clauses of this standard.

Specific fixed-width encodings for binary and decimal formats are defined in this clause for a subset of the 
formats (see 3.4 and 3.5). These interchange formats are identified by their size (see 3.6) and can be used 
for the exchange of floating-point data between implementations.

Five basic formats are defined in this clause:

― Three binary formats, with encodings in lengths of 32, 64, and 128 bits.

― Two decimal formats, with encodings in lengths of 64 and 128 bits.

Additional arithmetic formats are recommended for extending these basic formats (see 3.7).

The choice of which of this standard’s formats to support is language-defined or, if the relevant language 
standard is silent or defers to the implementation, implementation-defined. The names used for formats in 
this standard are not necessarily those used in programming environments.

3.1.2 Conformance  3.1.2.0

A conforming implementation of any supported format shall provide means to initialize that format and 
shall provide conversions between that format and all other supported formats.

A conforming  implementation of a supported arithmetic format shall provide all the operations of this  
standard defined in Clause 5, for that format.

A conforming implementation of a supported interchange format shall provide means to read and write that 
format using a specific encoding defined in this clause, for that format.

A programming environment conforms to this standard, in a particular radix, by implementing one or more 
of the basic formats of that radix as both a supported arithmetic format and a supported interchange format.
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3.2 Specification levels  3.2.0

Floating-point  arithmetic  is  a  systematic  approximation  of  real  arithmetic,  as  illustrated  in  Table  3.1. 
Floating-point arithmetic can only represent a finite subset of the continuum of real numbers. Consequently  
certain properties of real arithmetic, such as associativity of addition, do not always hold for floating-point 
arithmetic.

Table 3.1 — Relationships between different specification levels for a particular format  3.2.0

Level 1 {−∞ …  0  … +∞} Extended real numbers.

many-to-one ↓ rounding ↑ projection (except for NaN)

Level 2 {−∞ … −0} ∪ {+0 … +∞}  Na∪ N Floating-point data — an 
algebraically closed system.

one-to-many ↓ representation specification ↑ many-to-one

Level 3 (sign, exponent, significand) ∪ {−∞, +∞} ∪ qNaN ∪ 
sNaN

Representations of floating-
point data.

one-to-many ↓ encoding for representations of floating-point data ↑ many-to-one

Level 4 0111000… Bit strings.

The mathematical structure underpinning the arithmetic in this standard is the extended reals, that is, the set  
of real numbers together with positive and negative infinity. For a given format, the process of rounding 
(see  Clause  4)  maps  an  extended  real  number  to  a  floating-point  number included  in  that  format.  A 
floating-point datum, which can be a signed zero, finite non-zero number, signed infinity, or a NaN (not-a-
number), can be mapped to one or more representations of floating-point data in a format.

The representations of floating-point data in a format consist of:

― triples (sign, exponent, significand); in radix b, the floating-point number represented by a triple is 
(−1) sign × b exponent × significand

― +∞, −∞

― qNaN (quiet), sNaN (signaling).

An encoding maps a representation of a floating-point datum to a bit string. An encoding might map some 
representations of floating-point data to more than one bit string. A NaN encoding should be used to store  
retrospective diagnostic information (see 6.2).

3.3 Sets of floating-point data  3.3.0

This subclause specifies the sets of floating-point data representable within all floating-point formats; the 
encodings for specific representations of floating-point data in interchange formats are defined in 3.4 and 
3.5, and the parameters for interchange formats are defined in 3.6. 

The set  of  finite  floating-point  numbers  representable  within a particular  format  is  determined  by  the 
following integer parameters:

― b = the radix, 2 or 10

― p = the number of digits in the significand (precision)

― emax = the maximum exponent e

― emin = the minimum exponent e

emin shall be 1 − emax for all formats. 

The values  of  these parameters  for  each  basic format  are given in Table 3.2,  in which each format  is 
identified by its radix and the number of bits in its encoding. Constraints on these parameters for extended 
and extendable precision formats are given in 3.7. 

Within each format, the following floating-point data shall be represented:
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― Signed zero and non-zero floating-point numbers of the form (−1) s  × b e  × m, where

― s is 0 or 1.

― e is any integer emin ≤ e ≤ emax.

― m is a number represented by a digit string of the form

d0 • d1 d2…dp −1 where di is an integer digit 0 ≤ di < b (therefore 0 ≤ m < b).

― Two infinities, +∞ and −∞.

― Two NaNs, qNaN (quiet) and sNaN (signaling).

These are the only floating-point data represented.

In  the  foregoing  description,  the  significand  m is  viewed  in  a  scientific  form,  with  the  radix  point 
immediately following the first digit. It is also convenient for some purposes to view the significand as an 
integer; in which case the finite floating-point numbers are described thus:

― Signed zero and non-zero floating-point numbers of the form (−1)s ×b q ×c, where

― s is 0 or 1.

― q is any integer emin ≤ q + p − 1 ≤ emax.

― c is a number represented by a digit string of the form
d0 d1 d2…dp −1 where di is an integer digit 0 ≤ di < b (c is therefore an integer with 0 ≤ c < b p).

This view of the significand as an integer c, with its corresponding exponent q, describes exactly the same 
set of zero and non-zero floating-point numbers as the view in scientific form. (For finite floating-point 
numbers, e = q + p − 1 and m = c × b1− p.)

The smallest positive normal floating-point number is b emin and the largest is b emax×(b − b1− p). The non-zero 
floating-point  numbers  for  a format  with magnitude  less than  b emin are called  subnormal because  their 
magnitudes  lie  between  zero  and  the  smallest  normal  magnitude.  They  always  have  fewer  than  p 
significant  digits.  Every  finite  floating-point  number  is  an integral  multiple of  the smallest  subnormal 
magnitude b emin × b1−p.

For a floating-point number that has the value zero, the sign  s provides extra information. Although all 
formats have distinct representations for +0 and −0, the sign of a zero is significant in some circumstances, 
such  as  division  by  zero,  but  not  in  others  (see  6.3).  Binary  interchange  formats  have  just  one 
representation each for +0 and −0, but decimal formats have many. In this standard, 0 and ∞ are written 
without a sign when the sign is not important.

Table 3.2 — Parameters defining basic format floating-point numbers  0

Binary format  (b=2) Decimal format  (b=10)

parameter binary32 binary64 binary128 decimal64 decimal 128

p, digits 24 53 113 16 34

emax +127 +1023 +16383 +384 +6144
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3.4 Binary interchange format encodings  3.4.0

Each floating-point number has just one encoding in a binary interchange format. To make the encoding  
unique, in terms of the parameters in 3.3, the value of the significand m is maximized by decreasing e until 
either  e = emin or  m ≥ 1. After this process is done, if  e = emin and 0 < m < 1, the floating-point number is 
subnormal. Subnormal numbers (and zero) are encoded with a reserved biased exponent value.

Representations of floating-point data in the binary interchange formats are uniquely encoded in k bits in 
the following three fields ordered as shown in Figure 3.1:

a) 1-bit sign S

b) w-bit biased exponent E = e + bias

c) (t = p − 1)-bit trailing significand field digit string T = d1 d2…dp −1; the leading bit of the significand, 
d0, is implicitly encoded in the biased exponent E.

Figure 3.1 — Binary interchange floating-point format  3.4.0

The values of k, p, t, w, and bias for binary interchange formats are listed in Table 3.5 (see 3.6). 

The range of the encoding’s biased exponent E shall include:

― every integer between 1 and 2w − 2, inclusive, to encode normal numbers

― the reserved value 0 to encode ±0 and subnormal numbers

― the reserved value 2w − 1 to encode ±∞ and NaNs.

The representation r of the floating-point datum, and value v of the floating-point datum represented, are 
inferred from the constituent fields as follows: 

a) If E = 2w − 1 and  T ≠ 0, then  r is qNaN or sNaN and  v is NaN regardless of  S  and then  d1  shall 
exclusively distinguish between qNaN and sNaN (see 6.2.1).

b) If E = 2w − 1 and T = 0 , then r and v = (−1) S × (+∞).

c) If 1 ≤ E ≤ 2w− 2, then r is (S, (E−bias), (1 + 21− p × T));
the value of the corresponding floating-point number is v = (−1) S  × 2 E−bias  × (1 + 21− p × T);
thus normal numbers have an implicit leading significand bit of 1.

d) If E = 0 and T ≠ 0, then r is (S, emin, (0 + 21− p × T));
the value of the corresponding floating-point number is v = (−1) S  × 2 emin  × (0 + 21− p × T);
thus subnormal numbers have an implicit leading significand bit of 0.

e) If E = 0 and T = 0 , then r is (S, emin, 0) and v = (−1) S  × (+0) (signed zero, see 6.3).

In binary interchange formats, all number and NaN encodings are canonical.

NOTE — Where k  is either 64 or a multiple of 32 and ≥ 128, for these encodings all of the following are 
true (where round( ) rounds to the nearest integer):

k = 1 + w + t  = w + p  =  32 × ceiling((p + round(4 × log2(p + round(4 × log2(p)) − 13)) − 13) /32)
w = k – t − 1  = k − p  =  round(4 × log2(k)) − 13
t  = k – w − 1  = p − 1  =  k − round(4  × log2(k)) + 12
p = k − w  = t + 1  =  k − round(4  × log2(k)) + 13

emax = bias  =  2(w −1) − 1
emin = 1 − emax  =  2 − 2(w −1).
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3.5 Decimal interchange format encodings  3.5.0

3.5.1 Cohorts  3.5.1.0

Unlike in a binary floating-point format, in a decimal floating-point format a number might have multiple 
representations.  The set  of representations a floating-point  number maps to is  called the floating-point 
number’s cohort; the members of a cohort are distinct representations of the same floating-point number. 
For example, if c is a multiple of 10 and q is less than its maximum allowed value, then (s,  q,  c) and (s, 
q + 1,  c / 10)  are  two representations for  the same floating-point  number  and  are  members  of  the same 
cohort.

While  numerically  equal,  different  members  of  a  cohort  can  be  distinguished  by  the  decimal-specific  
operations  (see  5.3.2,  5.5.2,  and  5.7.3).  The  cohorts  of  different  floating-point  numbers  might  have 
different numbers of  members. If a finite non-zero number’s representation has n decimal digits from its 
most significant non-zero digit to its least significant non-zero digit, the representation’s cohort will have at 
most p − n + 1 members where p is the number of digits of precision in the format.

For example, a one-digit floating-point number might have up to p different representations while a p-digit 
floating-point number with no trailing zeros has only one representation. (An n-digit floating-point number 
might have fewer than p − n + 1 members in its cohort if it is  near the extremes of the format’s exponent 
range.) A zero has a much larger cohort: the cohort of +0 contains a representation for each exponent, as 
does the cohort of −0. 

For  decimal  arithmetic,  besides  specifying  a  numerical  result,  the  arithmetic  operations  also  select  a 
member  of  the  result’s  cohort  according  to  5.2.  Decimal  applications  can  make  use  of  the additional 
information cohorts convey.

3.5.2 Encodings  3.5.2.0

Representations of  floating-point  data  in  the decimal  interchange formats  are  encoded in  k bits  in the 
following three fields, whose detailed layouts and canonical (preferred) encodings are described below. 

a) 1-bit sign S.

b) A  w + 5 bit  combination  field  G encoding  classification  and,  if  the encoded datum is a  finite 
number,  the  exponent q and  four  significand  bits (1  or  3  of  which  are  implied).  The biased 
exponent  E is a  w + 2 bit quantity  q + bias,  where the value of the first two bits of the biased 
exponent taken together is either 0, 1, or 2.

c) A t-bit trailing significand field T that contains J  × 10 bits and contains the bulk of the significand. 
When this field is combined with the leading significand bits from the combination field,  the  
format encodes a total of p = 3 × J + 1 decimal digits.

Figure 3.2 — Decimal interchange floating-point formats  3.5.2.0

The values of k, p, t, w, and bias for decimal interchange formats are listed in Table 3.6 (see 3.6).

The representation r of the floating-point datum, and value v of the floating-point datum represented, are 
inferred from the constituent fields as follows:

a) If G0 through G4 are 11111, then v is NaN regardless of S. Furthermore, if G5 is 1, then r is sNaN; 
otherwise r is qNaN. The remaining bits of G are ignored, and T is the payload, which can be used 
to distinguish various NaNs.

The payload is encoded similarly to finite numbers described below, with G treated as though all 
bits were zero. The payload corresponds to the significand of finite numbers, interpreted as an 
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integer with a maximum value of 10  (3×J) − 1, and the exponent field is ignored (it is treated as if it 
were zero). A NaN is in its preferred (canonical) encoding if the bits G6 through Gw + 4 are zero and 
the encoding of the payload is canonical.

b) If G0 through G4 are 11110 then r and v = (−1) S × (+∞). The values of the remaining bits in G, and 
T, are ignored. The two canonical encodings of infinity have bits G5 through Gw +4 = 0, and T = 0.

c) For finite numbers, r is (S, E − bias, C) and v = (−1) S × 10 (E−bias) × C, where C is the concatenation 
of the leading significand digit or bits from the combination field G and the trailing significand 
field T, and where the biased exponent E is encoded in the combination field. The encoding within 
these fields depends on whether the implementation uses the decimal or the binary encoding for 
the significand.

1) If the implementation uses the decimal encoding for the significand, then the least significant 
w bits  of  the exponent  are  G5 through  Gw +4.  The  most  significant  two bits  of  the  biased 
exponent and the decimal digit string d0 d1…dp −1 of the significand are formed from bits G0 

through G4 and T as follows:

i) When the most significant five bits of G are 110xx or 1110x, the leading significand digit 
d0 is 8 + G4, a value 8 or 9, and the leading biased exponent bits are 2G2 + G3 , a value 0, 1, 
or 2.

ii) When the most significant five bits of G are 0xxxx or 10xxx, the leading significand digit 
d0 is 4G2 + 2G3 + G4, a value in the range 0 through 7, and the leading biased exponent bits 
are 2G0 + G1, a value 0, 1, or 2. Consequently if T is 0 and the most significant five bits of 
G are 00000, 01000, or 10000, then v = (−1) S × (+0).

The p −1 = 3 × J decimal digits d1…dp −1 are encoded by T, which contains J declets encoded in 
densely packed decimal. 

A  canonical  significand  has  only  canonical  declets,  as  shown  in  Tables  3.3 and  3.4. 
Computational  operations  accept  all  1024  possible  declets  in  operands.  Except  for  quiet-
computational  operations  (see  5.5),  computational  operations  produce  only  the  1000 
canonical declets.

2) Alternatively, if the implementation uses the binary encoding for the significand, then:

i) If G0 and G1 together are one of 00, 01, or 10, then the biased exponent E is formed from 
G0 through  Gw +1 and the significand is formed from bits  Gw +2 through the end of  the 
encoding (including T).

ii) If  G0 and  G1 together are 11 and  G2 and  G3 together are one of 00, 01, or 10, then the 
biased exponent  E is formed from  G2 through  Gw +3 and the significand is formed by 
prefixing the 4 bits (8 + Gw +4) to T.

The  maximum  value  of  the  binary-encoded  significand  is  the  same  as  that  of  the 
corresponding decimal-encoded significand; that is, 10 (3 × J + 1) −1 (or 10 (3 × J ) −1 when T is used 
as  the  payload  of  a  NaN).  If  the  value  exceeds  the  maximum,  the  significand  c is  non-
canonical and the value used for c is zero. 

Computational operations generally produce only canonical significands, and always accept non-
canonical significands in operands.

NOTE — Where k  is a positive multiple of 32, for these encodings all of the following are true:

k = 1 + 5 + w + t  =  32 × ceiling(( p + 2) /9) 
w = k – t − 6  =  k /16 + 4 
t  = k – w − 6  =  15 × k /16 − 10 
p = 3 × t /10 + 1  =  9 × k /32 − 2

emax =  3 × 2 (w
 
−1) 

emin =  1 − emax
bias =  emax + p − 2.
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Decoding densely packed decimal: Table 3.3 decodes a declet, with 10 bits  b(0) to  b(9), into 3 decimal 
digits  d(1), d(2), d(3).  The first column is in binary  and an “x” denotes a “don’t  care” bit. Thus all 1024 
possible 10-bit patterns shall be accepted and mapped into 1000 possible 3-digit combinations with some 
redundancy.

Table 3.3 — Decoding 10-bit densely packed decimal to 3 decimal digits  0

b(6), b(7), b(8), b(3), b(4) d(1) d(2) d(3)

0 x x x x 4b(0) + 2b(1) + b(2) 4b(3) + 2b(4) + b(5) 4b(7) + 2b(8) + b(9)

1 0 0 x x 4b(0) + 2b(1) + b(2) 4b(3) + 2b(4) + b(5) 8 + b(9)

1 0 1 x x 4b(0) + 2b(1) + b(2) 8 + b(5) 4b(3) + 2b(4) + b(9)

1 1 0 x x 8 + b(2) 4b(3) + 2b(4) + b(5) 4b(0) + 2b(1) + b(9)

1 1 1 0 0 8 + b(2) 8 + b(5) 4b(0) + 2b(1) + b(9)

1 1 1 0 1 8 + b(2) 4b(0) + 2b(1) + b(5) 8 + b(9)

1 1 1 1 0 4b(0) + 2b(1) + b(2) 8 + b(5) 8 + b(9)

1 1 1 1 1 8 + b(2) 8 + b(5) 8 + b(9)

Encoding densely packed decimal:  Table 3.4 encodes 3 decimal digits  d(1),  d(2),  and  d(3),  each having 
4 bits which can  be  expressed  by  a second subscript  d(1,0:3), d(2,0:3),  and  d(3,0:3), where  bit  0 is  the most 
significant  and  bit  3  the  least  significant,  into  a  declet,  with  10  bits  b(0) to  b(9).  Most  computational 
operations generate only the 1000 canonical 10-bit patterns defined by Table 3.4.

Table 3.4 — Encoding 3 decimal digits to 10-bit densely packed decimal  0

d(1,0), d(2,0), d(3,0) b(0), b(1), b(2) b(3), b(4), b(5) b(6) b(7), b(8), b(9) 

0 0 0 d(1,1:3) d(2,1:3) 0 d(3,1:3)

0 0 1 d(1,1:3) d(2,1:3) 1 0, 0, d(3,3)

0 1 0 d(1,1:3) d(3,1:2), d(2,3) 1 0, 1, d(3,3)

0 1 1 d(1,1:3) 1, 0, d(2,3) 1 1, 1, d(3,3)

1 0 0 d(3,1:2), d(1,3) d(2,1:3) 1 1, 0, d(3,3)

1 0 1 d(2,1:2), d(1,3) 0, 1, d(2,3) 1 1, 1, d(3,3)

1 1 0 d(3,1:2), d(1,3) 0, 0, d(2,3) 1 1, 1, d(3,3)

1 1 1 0, 0, d(1,3) 1, 1, d(2,3) 1 1, 1, d(3,3)

The  24  non-canonical  patterns  of  the  form  01x11x111x,  10x11x111x,  or  11x11x111x  (where  an  “x” 
denotes a “don’t care” bit) are not generated in the result of a computational operation. However, as listed  
in Table 3.3, these 24 bit patterns do map to values in the range 0 through 999. The bit pattern in a NaN 
trailing significand field can affect how the NaN is propagated (see 6.2).
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3.6 Interchange format parameters  3.6.0

Interchange formats support the exchange of floating-point data between implementations. In each radix,  
the precision and range of an interchange format is defined by its size; interchange of a floating-point  
datum of a given size is therefore always exact with no possibility of overflow or underflow. 

This standard defines binary interchange formats of widths 16, 32, 64, and 128 bits, and in general for any 
multiple of 32 bits of at least 128 bits. Decimal interchange formats are defined for any multiple of 32 bits 
of at least 32 bits.

The  parameters  p and  emax  for  every  interchange  format  width  are  shown  in  Table 3.5 for  binary 
interchange formats and in Table 3.6 for decimal interchange formats. The encodings for the interchange 
formats are as described in 3.4 and 3.5.2; the encoding parameters for each interchange format width are 
also shown in Tables 3.5 and  3.6.

Table 3.5 — Binary interchange format parameters  0

Parameter binary16 binary32 binary64 binary128 binary{k}  (k ≥ 128)

k, storage width in bits 16 32 64 128 multiple of 32

p, precision in bits 11 24 53 113 k – round(4 × log2 (k)) + 13

emax, maximum exponent e 15 127 1023 16383 2 (k– p –1) – 1

Encoding parameters

bias, E − e 15 127 1023 16383 emax

sign bit 1 1 1 1 1

w, exponent field width in bits 5 8 11 15 round(4 × log2  (k)) – 13

t, trailing significand field width in 
bits

10 23 52 112 k – w – 1

k, storage width in bits 16 32 64 128 1 + w + t

In Table 3.5, round( ) rounds to the nearest integer.

For example, binary256 would have p = 237 and emax = 262143.

Table 3.6 — Decimal interchange format parameters  0

Parameter decimal32 decimal64 decimal 128 decimal{k}  (k ≥ 32)

k, storage width in bits 32 64 128 multiple of 32

p, precision in digits 7 16 34 9 × k / 32 – 2

emax 96 384 6144 3 × 2 (k /16 + 3)

Encoding parameters

bias, E − q 101 398 6176 emax + p – 2

sign bit 1 1 1 1

w +5, combination field width in bits 11 13 17 k / 16 + 9

t, trailing significand field width in bits 20 50 110 15 × k / 16 – 10

k, storage width in bits 32 64 128 1 + 5 + w + t

For example, decimal256 would have p = 70 and emax = 1572864.
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NOTE — This  standard  defines  the  representation  of  individual  data  as  conceptual  Level  4  entities. 
Applications exchanging data between different  implementations must communicate certain parameters 
that describe the formats and layout of the data.  Besides issues such as byte order which affect all data  
interchange, certain implementation options allowed by this standard must also be considered:

― for binary formats, how signaling NaNs are distinguished from quiet NaNs

― for decimal formats, whether binary or decimal encoding is used.

This standard does not define how these parameters are to be communicated.
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3.7 Extended and extendable precisions  3.7.0

Extended  and  extendable  precision  formats  are  recommended  for  extending  the  precisions  used  for 
arithmetic beyond the basic formats. Specifically:

― An extended precision format is an arithmetic format that extends a supported basic format with 
both wider precision and wider range.

― An  extendable precision format is  an arithmetic  format  with a precision and range that  are 
defined under user control.

These  formats  are  characterized  by  the  parameters  b, p, and  emax, which  may  match  those  of  an 
interchange format and shall:

― provide all the representations of floating-point data defined in terms of those parameters in 3.2 
and 3.3

― provide all the operations of this standard, as defined in Clause 5, for that format.

Encodings in these formats should be fixed width and may match those of an interchange format.  Each  
representation of a floating-point number has a unique canonical encoding and may have non-canonical 
encodings.  Each NaN in these formats has a payload, which might encode diagnostic information. Each 
NaN payload  has  a  canonical  encoding  and  may have non-canonical  encodings.   All  other  aspects  of  
encodings for these formats are implementation defined.

Language standards should define mechanisms supporting extendable precision for each supported radix. 
Language standards supporting extendable precision shall permit users to specify  p and  emax. Language 
standards shall also allow the specification of an extendable precision by specifying p alone; in this case 
emax shall be defined by the language standard to be at least 1000 × p  when p is  ≥ 237 bits in a binary 
format or p is ≥ 51 digits in a decimal format.

Language  standards  or  implementations  should  support  an  extended precision format  that  extends  the 
widest basic format that is supported in that radix. Table 3.7 specifies the minimum precision and exponent 
range of the extended precision format for each basic format.

Table 3.7 — Extended format parameters for floating-point numbers  0

Extended formats associated with:

Parameter binary32 binary64 binary128 decimal64 decimal 128

p digits ≥ 32 64 128 22 40

emax ≥ 1023 16383 65535 6144 24576

NOTE 1 — For extended formats, the minimum exponent range is that of the next wider basic format, if  
there is one, while the minimum precision is intermediate between a given basic format and the next wider 
basic format.

NOTE 2 — For interchange of binary floating-point data, the width k  in bits of the smallest format that will 
allow the encoding of a significand of at least p bits is given by:

k = 32 × ceiling(( p + round(4  × log2( p + round(4  × log2( p)) − 13)) − 13) /32), where round( ) rounds to 
the nearest integer and p ≥ 113; for smaller values of p, see Table 3.5.

For interchange of decimal floating-point data, the width k in bits of the smallest format that will allow the 
encoding of a significand of at least p digits is given by:

k = 32 × ceiling(( p + 2) /9), where p ≥ 1.

In both cases the chosen format might have a larger precision (see 3.4 and 3.5.2).

NOTE 3 — For  binary formats, the precision p should be at least 3, as some numerical properties do not 
hold for lower precisions.

Similarly, emax should be at least 2 to support the operations listed in 9.2.
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4. Attributes and rounding  4.0

4.1 Attribute specification  4.1.0

An attribute is logically associated with a program block to modify its numerical and exception semantics.  
A user can specify a constant value for an attribute parameter.

Some attributes have the effect of an implicit parameter to most individual operations of this standard; 
language standards shall specify

― rounding-direction attributes (see 4.3)

and should specify

― alternate exception handling attributes (see Clause 8).

Other attributes change the mapping of language expressions into operations of this standard; language 
standards that permit more than one such mapping should provide support for:

― preferredWidth attributes (see 10.3)

― value-changing optimization attributes (see 10.4)

― reproducibility attributes (see Clause 11).  

For attribute specification,  the implementation shall provide language-defined means, such as compiler  
directives, to specify a constant value for the attribute parameter for the operations in a block; the scope of  
the attribute value is the block with which it is associated. Language standards shall provide for constant  
specification of the default and each specific value of the attribute.

4.2 Dynamic modes for attributes  4.2.0

Attributes in this standard shall be supported with the constant specification of 4.1. Particularly to support 
debugging, language standards should also support dynamic-mode specification of attributes. 

With dynamic-mode specification, a user can specify that the attribute parameter assumes the value of a 
dynamic-mode variable whose value might not be known until program execution. This standard does not 
specify the underlying implementation mechanisms for constant attributes or dynamic modes.

For dynamic-mode specification, the implementation shall provide language-defined means to specify that 
the attribute parameter assumes the value of a dynamic-mode variable for the operations within the scope  
of the dynamic-mode specification in a block. The implementation initializes a dynamic-mode variable to 
the default value for the dynamic mode. Within its language-defined (dynamic) scope, changes to the value 
of a dynamic-mode variable are under the control of the user via the operations in 9.3.1 and   9.3.2.

The following aspects of dynamic-mode variables are language-defined; language standards may explicitly 
defer the definitions to implementations:

― The precedence of static attribute specifications and dynamic-mode assignments.

― The effect of changing the value of the dynamic-mode variable in an asynchronous event, such as 
in another thread or signal handler.

― Whether the value of the dynamic-mode variable can be determined by non-programmatic means, 
such as a debugger.

NOTE — A constant value for an attribute can be specified and meet the requirements of 4.1 by a dynamic 
mode specification with appropriate scope of that constant value. 
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4.3 Rounding-direction attributes  4.3.0

Rounding  takes  a  number  regarded  as  infinitely  precise  and,  if  necessary,  modifies  it  to  fit  in  the  
destination’s format while signaling the inexact  exception, underflow, or overflow when appropriate (see 
Clause 7). Except where stated otherwise,  every operation shall be performed as if it first produced an 
intermediate result correct to infinite precision and with unbounded range, and then rounded that result  
according to one of the attributes in this clause.

Except where stated otherwise, the rounding-direction attribute affects all computational operations that 
might be inexact. Inexact numeric floating-point results always have the same sign as the unrounded result.

The  rounding-direction  attribute  affects  the  signs  of  exact  zero  sums  (see  6.3),  and  also  affects  the 
thresholds beyond which overflow (see 7.4) and underflow (see 7.5) are signaled.

Implementations supporting  both decimal  and  binary formats  shall  provide  separate rounding-direction 
attributes  for  binary  and  decimal,  the  binary  rounding  direction  and  the  decimal  rounding  direction.  
Operations returning results in a floating-point format shall use the rounding-direction attribute associated 
with the radix of the results. Operations converting from an operand in a floating-point format to a result in 
integer  format  or  to an external  character  sequence (see 5.8 and 5.12) shall  use the rounding-direction 
attribute associated with the radix of the operand.

NaNs are not rounded (but see  6.2.3).

4.3.1 Rounding-direction attributes to nearest  4.3.1.0

In  the  following  two  rounding-direction  attributes, an  infinitely  precise  result  with magnitude  at  least 
b emax  ×(b − ½ b 1−p) shall  round  to  ∞  with  no  change  in  sign;  here  emax and  p are  determined  by  the 
destination format (see 3.3). With:

― roundTiesToEven,  the  floating-point  number  nearest  to  the  infinitely  precise  result  shall  be 
delivered;  if  the  two  nearest  floating-point  numbers  bracketing  an  unrepresentable  infinitely 
precise result are equally near, the one with an even least significant digit shall be delivered; if  
that is not possible, the one larger in magnitude shall be delivered (this can happen for one-digit 
precision, possible with convertToDecimalCharacter for example, as when rounding 9.5 to one 
digit in which case both 9 and 1× 101 have odd significands)

― roundTiesToAway,  the  floating-point  number  nearest  to  the  infinitely  precise  result  shall  be 
delivered;  if  the  two  nearest floating-point  numbers  bracketing  an  unrepresentable  infinitely 
precise result are equally near, the one with larger magnitude shall be delivered.

4.3.2 Directed rounding attributes  4.3.2.0

Three  other  user-selectable  rounding-direction  attributes  are  defined,  the  directed  rounding  attributes  
roundTowardPositive, roundTowardNegative, and roundTowardZero. With:

― roundTowardPositive, the result shall be the format’s floating-point number (possibly +∞) closest 
to and no less than the infinitely precise result

― roundTowardNegative, the result shall be the format’s floating-point number (possibly −∞) closest 
to and no greater than the infinitely precise result

― roundTowardZero, the result shall be the format’s floating-point number closest to and no greater 
in magnitude than the infinitely precise result.
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4.3.3 Rounding attribute requirements  4.3.3.0

An  implementation  of  this  standard  shall  provide  roundTiesToEven  and  the  three  directed  rounding 
attributes. A decimal format implementation of this standard shall provide roundTiesToAway as a user-
selectable  rounding-direction  attribute.  The rounding  attribute  roundTiesToAway  is  not  required  for  a 
binary format implementation.

The  roundTiesToEven  rounding-direction  attribute  shall  be  the  default  rounding-direction  attribute  for 
results  in  binary  formats.  The  default  rounding-direction  attribute  for  results  in  decimal  formats  is 
language-defined, but should be roundTiesToEven.
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5. Operations  5.0

5.1 Overview  5.1.0

All conforming implementations of this standard shall provide the operations  listed in this clause for all 
supported arithmetic formats, except as stated below. Unless otherwise specified, each of the computational 
operations specified by this standard that returns a numeric result shall be performed as if it first produced 
an  intermediate  result  correct to  infinite  precision  and  with  unbounded  range,  and  then  rounded  that 
intermediate result, if necessary, to fit in the destination’s format (see Clause 4 and Clause 7). Clause 6 
augments the following specifications to cover ±0, ±∞, and NaN. Clause 7 describes default  exception 
handling.

In this standard, operations are written as named functions; in a specific programming environment they  
might be denoted by operators, or by families of format-specific functions, or by operations or functions 
whose names might differ from those in this standard.

Operations are broadly classified into four groups according to the kinds of  results and exceptions they 
produce:

― General-computational  operations  produce  floating-point  or  integer  results,  round  all  results 
according to Clause 4, and might signal the floating-point exceptions of Clause 7.

― Quiet-computational  operations  produce  floating-point  results  and  do  not  signal  floating-point 
exceptions.

― Signaling-computational operations produce no floating-point results and might signal floating-
point exceptions; comparisons are signaling-computational operations.

― Non-computational operations do not produce floating-point results and do not signal floating-
point exceptions.

Operations in the first three groups are referred to collectively as “computational operations”.

Operations are also classified in two ways according to the relationship between the result format and the 
operand formats:

― homogeneous operations, in which the floating-point operands and floating-point result are all of 
the same format

― formatOf operations, which indicate the format of the result, independent of the formats of the 
operands.

Language standards might permit other kinds of operations and combinations of operations in expressions. 
By  their  expression  evaluation  rules,  language  standards  specify  when  and  how  such  operations  and 
expressions are mapped into the operations of this standard. Operations (except re-encoding operations) do 
not have to accept operands or produce results of differing encodings. 

Except as specified otherwise in 5.5, operation results shall be canonical.

In the operation descriptions that follow, operand and result formats are indicated by:

― source to represent homogeneous floating-point operand formats

― source1, source2, source3 to represent non-homogeneous floating-point operand formats

― int to represent integer operand formats

― boolean to represent a value of false or true (for example, 0 or 1)

― enum to represent one of a small set of enumerated values

― sourceFormat to represent a destination format that is the same as the source format

― integralFormat to represent a format that contains integral values

― logBFormat to represent an integralFormat  for the destination of the logB operation and the scale 
exponent operand of the scaleB operation

― decimalCharacterSequence to represent a decimal character sequence

― hexCharacterSequence to represent a hexadecimal-significand character sequence
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― conversionSpecification to represent a language dependent conversion specification

― decimal to represent a supported decimal floating-point format

― decimalEncoding to represent a decimal floating-point format encoded in decimal

― binaryEncoding to represent a decimal floating-point format encoded in binary

― exceptionGroup to represent a set of exceptions as a set of booleans

― flags to represent a set of status flags

― binaryRoundingDirection to represent the rounding direction for binary

― decimalRoundingDirection to represent the rounding direction for decimal

― modeGroup to represent dynamically-specifiable modes

― void to indicate that an operation has no explicit operand or has no explicit result; the operand or  
result might be implicit.

formatOf indicates that the name of the operation specifies the floating-point destination  format,  which 
might  be  different  from  the  floating-point operands’  formats.  There  are  formatOf versions  of  these 
operations for every supported arithmetic format.

intFormatOf indicates that the name of the operation specifies the integer destination format.

In the operation descriptions that follow, languages define which of their types correspond to operands and  
results. Languages with both signed and unsigned integer types should support both signed and unsigned 
int and intFormatOf operands and results.

5.2 Decimal exponent calculation  5.2.0

As discussed in  3.5,  a  floating-point  number might have multiple representations in a decimal format. 
Therefore, decimal arithmetic involves not only computing the proper numerical result but also selecting 
the proper member of that floating-point number’s cohort.

Except for the quantize operation, the value of a floating-point result (and hence its cohort) is determined 
by the operation and the operands’  values; it is never dependent on the representation  or encoding of an 
operand.

The  selection  of  a  particular  representation  for  a  floating-point  result  is  dependent  on  the  operands’ 
representations, as described below, but is not affected by their encoding.

For all computational operations except where stated otherwise, if the result is inexact the cohort member 
of least possible exponent is used to get the maximum number of significant digits. If the result is exact, the 
cohort member is selected based on the preferred exponent for a result of that operation, a function of the 
exponents of the inputs. Thus for finite x, depending on the representation of zero, 0 + x might result in a 
different  member  of  x’s  cohort.  If  the  result’s  cohort  does  not  include  a  member  with  the  preferred 
exponent, the member with the exponent closest to the preferred exponent is used.

For  quantize and  roundToIntegralExact, a finite result has the preferred exponent, whether or not the 
result is exact.

In the operation descriptions that follow, Q(x) is the exponent q of the representation of a finite floating-
point number x. If x is infinite, Q(x) is +∞.
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5.3 Homogeneous general-computational operations  5.3.0

5.3.1 General operations  5.3.1.0

Implementations  shall  provide  the  following  homogeneous  general-computational  operations  for  all 
supported arithmetic formats:

― sourceFormat roundToIntegralTiesToEven(source)
sourceFormat roundToIntegralTiesToAway(source)
sourceFormat roundToIntegralTowardZero(source)
sourceFormat roundToIntegralTowardPositive(source)
sourceFormat roundToIntegralTowardNegative(source)

See 5.9 for details. 

The preferred exponent is max(Q(source), 0).

― sourceFormat roundToIntegralExact(source)

See 5.9 for details. 

The preferred exponent is max(Q(source), 0), even when the inexact exception is signaled.

― sourceFormat nextUp(source) 
sourceFormat nextDown(source) 

nextUp(x) is the least floating-point number in the format of x that compares greater than x. If x is 
the negative number of least magnitude in x’s format, nextUp(x) is −0. nextUp(±0) is the positive 
number  of  least  magnitude  in  x’s  format.  nextUp(+∞)  is  +∞,  and  nextUp(−∞)  is  the  finite 
negative  number  largest  in magnitude.  When  x is  a  NaN,  then the result  is  according  to  6.2. 
nextUp(x) is quiet except for signaling NaNs.

The preferred exponent is the least possible.

nextDown(x) is −nextUp(−x).

― sourceFormat remainder(source, source)

When  y ≠ 0,  the  remainder r = remainder(x,  y) is  defined  for  finite  x and  y regardless  of  the 
rounding-direction  attribute  by  the  mathematical  relation  r = x − y × n ,  where  n is  the  integer 
nearest  the exact  number  x/y ;  whenever  | n − x/y |  = ½ ,  then  n is even.  Thus, the  remainder is 
always exact. If r = 0, its sign shall be that of x.  remainder(x, ∞) is x for finite x.

The preferred exponent is min(Q(x), Q( y)).

NOTE — The minNum and maxNum operations of the 2008 version of the standard have been replaced by 
the recommended operations of  9.6.
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5.3.2 Decimal operations  5.3.2.0

Implementations  supporting  decimal  formats  shall  provide  the  following  homogeneous  general-
computational operation for all supported decimal arithmetic formats:

― sourceFormat quantize(source, source)

For finite decimal operands x and y of the same format, quantize(x, y) is a floating-point number 
in the same format that has, if possible, the same numerical value as x and the same quantum as y. 
If  the  exponent  is  being  increased,  rounding  according  to  the  applicable  rounding-direction  
attribute  might  occur:  the  result  is  a  different  floating-point  representation  and  the  inexact  
exception is signaled if the result does not have the same numerical value as x. If the exponent is 
being  decreased  and  the significand  of  the  result  would  have  more  than  p digits,  the  invalid 
operation exception is signaled and the result is a NaN. If one or both operands are NaN, the rules  
in 6.2 are followed. Otherwise if only one operand is infinite then the invalid operation exception 
is signaled and the result is a NaN. If both operands are infinite then the result is canonical ∞ with 
the sign of x.  quantize does not signal underflow or overflow.

The preferred exponent is Q( y).

Implementations  supporting  decimal  formats  should  provide  the  following  homogeneous  general-
computational operation for all supported decimal arithmetic formats:

― sourceFormat quantum(source)

If x is a finite number, the operation quantum(x) is the number represented by (0, q, 1) where q is 
the exponent of x. If x is infinite, quantum(x) is +∞ with no exception. 

The preferred exponent is Q(x). 

5.3.3 logBFormat operations  5.3.3.0

Implementations shall provide the following general-computational operations for all supported floating-
point formats available for arithmetic.

For each supported arithmetic format, languages define an associated logBFormat to contain the integral 
values of logB(x). The logBFormat shall have enough range to include all integers between ±2 × (emax + p) 
inclusive, which includes the scale factors for scaling between the finite numbers of largest and smallest 
magnitude.

― sourceFormat scaleB(source, logBFormat)

scaleB(x,  N) is  x × b N for integral values  N. The result is computed as if the exact product were 
formed and then rounded to the destination format, subject to the applicable rounding-direction 
attribute. When logBFormat is a floating-point format, the behavior of scaleB is language-defined 
when the second operand is non-integral. For non-zero values of N, scaleB(±0, N) returns ±0 and 
scaleB(±∞, N) returns ±∞. For zero values of N, scaleB(x, N) returns x.

The preferred exponent is Q(x) + N.

― logBFormat logB(source)

logB(x) is the exponent e of x, a signed integral value,  determined as though x were represented 
with infinite range and minimum exponent. Thus 1  ≤ scaleB(x, −logB(x)) < b when x is positive 
and finite.  logB(1) is +0.

When logBFormat is a floating-point format, logB(NaN) is a NaN, logB(∞) is +∞, and logB(0) is 
−∞ and  signals  the  divideByZero  exception.  When  logBFormat is  an  integer  format,  then 
logB(NaN),  logB(∞),  and  logB(0)  return  language-defined  values  outside  the  range 
±2 × (emax + p − 1) and signal the invalid operation exception.

The preferred exponent is 0.

NOTE — For positive finite  x,  the value of  logB(x)  is floor(log2  (x)) in a binary format,  and is 
floor(log10  (x)) in a decimal format.
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5.4 formatOf general-computational operations  5.4.0

5.4.1 Arithmetic operations  5.4.1.0

Implementations shall provide the following  formatOf general-computational operations, for destinations 
of  all  supported  arithmetic  formats,  and,  for  each  destination  format,  for  operands  of  all  supported 
arithmetic formats with the same radix as the destination format.

― formatOf-addition(source1, source2)

The operation addition(x, y) computes x + y.

The preferred exponent is min(Q(x), Q( y)).

― formatOf-subtraction(source1, source2)

The operation subtraction(x, y) computes x − y.

The preferred exponent is min(Q(x), Q( y)).

― formatOf-multiplication(source1, source2)

The operation multiplication(x, y) computes x × y.

The preferred exponent is Q(x) + Q( y).

― formatOf-division(source1, source2)

The operation division(x, y) computes x / y.

The preferred exponent is Q(x) − Q( y).

― formatOf-squareRoot(source1)

The operation squareRoot(x) computes √ x. It has a positive sign for all operands ≥ 0, except that 
squareRoot(−0) shall be −0.

The preferred exponent is floor(Q(x) / 2).

― formatOf-fusedMultiplyAdd(source1, source2, source3))

The operation  fusedMultiplyAdd(x,  y,  z)  computes  (x × y) + z as if  with unbounded range and 
precision,  rounding  only  once  to  the  destination  format.  An  underflow,  overflow,  or  inexact 
exception (see Clause 7)  can only arise due to the rounding of the exact value (x × y) + z. Thus at 
most one exception is signaled per fused operation invocation.  fusedMultiplyAdd differs from a 
multiplication operation followed  by an addition operation.

The preferred exponent is min(Q(x) + Q( y), Q(z)).

― formatOf-convertFromInt(int)

It  shall  be  possible to  convert  from all  supported  signed  and  unsigned integer  formats  to  all 
supported  arithmetic  formats.  Integral  values  are  converted  exactly  from  integer  formats  to 
floating-point formats whenever the value is representable in both formats. If the converted value 
is not exactly representable in the destination format,  the result is determined according to the 
applicable rounding-direction attribute, and an inexact or floating-point overflow exception arises 
as  specified  in  Clause 7,  just  as  with  arithmetic  operations.  The  signs  of  integer  zeros  are 
preserved. Integer zeros without signs are converted to +0.

The preferred exponent is 0.
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Implementations  shall  provide  the  following  intFormatOf general-computational  operations  for 
destinations of all supported integer formats and for operands of all supported arithmetic formats. 

― intFormatOf-convertToIntegerTiesToEven(source)
intFormatOf-convertToIntegerTowardZero(source)
intFormatOf-convertToIntegerTowardPositive(source)
intFormatOf-convertToIntegerTowardNegative(source)
intFormatOf-convertToIntegerTiesToAway(source)

See 5.8 for details.

― intFormatOf-convertToIntegerExactTiesToEven(source)
intFormatOf-convertToIntegerExactTowardZero(source)
intFormatOf-convertToIntegerExactTowardPositive(source)
intFormatOf-convertToIntegerExactTowardNegative(source)
intFormatOf-convertToIntegerExactTiesToAway(source)

See 5.8 for details.

NOTE — Implementations might provide some of the operations in this subclause, and the convertFormat 
operations in 5.4.2, as sequences of one or more of a subset of the operations in subclause 5.4 when those 
sequences produce the correct numerical value, quantum, and exception results.

5.4.2 Conversion operations for floating-point formats and decimal character sequences  5.4.2.0

Implementations shall provide the following formatOf conversion operations from all supported floating-
point formats to all supported floating-point formats, as well as conversions to and from decimal character 
sequences. Some format conversion operations produce results in a different radix than the operands. 

― formatOf-convertFormat(source)

If the conversion is to a format in a different radix or to a narrower precision in the same radix, the 
result shall be rounded as specified in Clause 4. Conversion to a format with the same radix but 
wider precision and range is always exact.

For  inexact  conversions  from  binary  to  decimal  formats,  the  preferred  exponent  is  the  least  
possible. For exact conversions from binary to decimal formats, the preferred exponent is 0.

For conversions between decimal formats, the preferred exponent is Q(source).

NOTE — A formatOf-convertFormat operation with identical source and destination formats is a 
canonicalizing operation that signals the invalid operation exception for signaling NaN operands, 
unlike the copy operation (5.5.1). 

― formatOf-convertFromDecimalCharacter(decimalCharacterSequence)

See 5.12 for  details.  The  preferred  exponent  is  Q(decimalCharacterSequence),  which  is  the 
exponent value q of the last digit in the significand of the decimalCharacterSequence.

― decimalCharacterSequence convertToDecimalCharacter(source, conversionSpecification)

See 5.12 for  details.  The  conversionSpecification specifies  the precision and formatting of  the 
decimalCharacterSequence result.

5.4.3 Conversion operations for binary formats  5.4.3.0

Implementations shall provide the following formatOf  conversion operations to and from all supported 
binary floating-point formats.

― formatOf-convertFromHexCharacter(hexCharacterSequence)

See 5.12 for details.

― hexCharacterSequence convertToHexCharacter(source, conversionSpecification)

See 5.12 for  details.  The  conversionSpecification specifies  the precision and formatting of  the 
hexCharacterSequence result.
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5.5 Quiet-computational operations  5.5.0

5.5.1 Sign bit operations  5.5.1.0

Implementations shall provide the following homogeneous quiet-computational sign bit operations for all 
supported arithmetic interchange formats; they only affect the sign bit. The operations treat floating-point 
numbers  and  NaNs  alike,  and  signal  no  exception.  These  operations may  propagate  non-canonical 
encodings.

― sourceFormat copy(source)
sourceFormat negate(source)
sourceFormat abs(source)

copy(x)  copies a floating-point operand x to a destination in the same format, with no change to 
the sign bit.  

negate(x)  copies a floating-point operand x to a destination in the same format, reversing the sign 
bit.  negate(x) is not the same as subtraction(0, x)  (see  6.3).

abs(x)  copies a floating-point operand x to a destination in the same format, setting the sign bit to 
0 (positive).

― sourceFormat copySign(source, source)

copySign(x, y)  copies a floating-point operand x to a destination in the same format as x, but with 
the sign bit of y.

This standard does not specify encodings for non-interchange formats.

For  all  supported  non-interchange  formats,  the  implementation  shall  provide  copy,  negate,  abs,  and 
copySign operations that match the sign bit operations above at the representation level (see 3.2 and 3.3):

For numeric x,

copy(x) has the same representation as x, with no change of sign

negate(x) has the same representation as x, but with the opposite sign

abs(x) has the same representation as x, but with the sign 0 (positive)

copySign(x, y) has the same representation as  x, but with the sign of  y if  y is numeric and with 
unspecified sign if y is a NaN.

For x a NaN, the results of the operations have the same representation as x (qNaN or sNaN).

The operations for  non-interchange formats  should follow the specification  for  sign bit  operations  for 
interchange formats if the encoding permits.
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5.5.2 Decimal re-encoding operations  5.5.2.0

For each supported decimal interchange format, the implementation shall provide the following operations 
to convert between the decimal format and the two encodings for that format (see 3.5.2). These operations 
enable portable programs that are independent of the implementation’s encoding for decimal formats to 
access data represented with either encoding.  If the significand encoding of the result format is the same as 
the significand encoding of the operand format,  then these operations should be copy operations.  These 
operations may propagate  non-canonical  encodings;  if  the significand encoding  of  the result  format  is 
different from the significand encoding of the operand format, then the result should be canonical.

― decimalEncoding encodeDecimal(decimal)

Encodes the value of the operand using decimal encoding.

― decimal decodeDecimal(decimalEncoding)

Decodes the decimal-encoded operand.

― binaryEncoding encodeBinary(decimal)

Encodes the value of the operand using the binary encoding.

― decimal decodeBinary(binaryEncoding) 

Decodes the binary-encoded operand.
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5.6 Signaling-computational operations  5.6.0

5.6.1 Comparisons  5.6.1.0

Implementations  shall  provide  the  following  comparison operations,  for  all  supported  floating-point 
operands of the same radix in arithmetic formats:

― boolean compareQuietEqual(source1, source2)
boolean compareQuietNotEqual(source1, source2)
boolean compareSignalingEqual(source1, source2)
boolean compareSignalingGreater(source1, source2)
boolean compareSignalingGreaterEqual(source1, source2)
boolean compareSignalingLess(source1, source2)
boolean compareSignalingLessEqual(source1, source2)
boolean compareSignalingNotEqual(source1, source2)
boolean compareSignalingNotGreater(source1, source2)
boolean compareSignalingLessUnordered(source1, source2)
boolean compareSignalingNotLess(source1, source2)
boolean compareSignalingGreaterUnordered(source1, source2)
boolean compareQuietGreater(source1, source2)
boolean compareQuietGreaterEqual(source1, source2)
boolean compareQuietLess(source1, source2)
boolean compareQuietLessEqual(source1, source2)
boolean compareQuietUnordered(source1, source2)
boolean compareQuietNotGreater(source1, source2)
boolean compareQuietLessUnordered(source1, source2)
boolean compareQuietNotLess(source1, source2)
boolean compareQuietGreaterUnordered(source1, source2)
boolean compareQuietOrdered(source1, source2).

See 5.11 for details.

5.7 Non-computational operations  5.7.0

5.7.1 Conformance predicates  5.7.1.0

Implementations shall provide the following non-computational operations, true if and only if the indicated  
conditions are true:

― boolean is754version1985(void)

is754version1985( ) is true if and only if this programming environment conforms to the 1985 
version of the standard.

― boolean is754version2008(void)

is754version2008( ) is true if and only if  this programming environment conforms to  the 2008 
version of the standard.

― boolean is754version2019(void)

is754version2019( )  is  true  if  and  only  if  this  programming  environment  conforms  to  this 
standard.

Implementations should make these predicates available at translation time (if applicable) in cases where 
their values can be determined at that point.
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5.7.2 General operations  5.7.2.0

Implementations shall  provide  the following non-computational  operations for  all  supported  arithmetic 
formats and should provide them for all supported interchange formats. They are never exceptional, even 
for signaling NaNs.

― enum class(source)

class(x) tells which of the following ten classes x falls into:
signalingNaN
quietNaN
negativeInfinity
negativeNormal
negativeSubnormal
negativeZero
positiveZero
positiveSubnormal
positiveNormal
positiveInfinity.

― boolean isSignMinus(source)

isSignMinus(x) is true if and only if x has negative sign.  isSignMinus applies to zeros and NaNs 
as well.

― boolean isNormal(source)

isNormal(x) is true if and only if x is normal (not zero, subnormal, infinite, or NaN).

― boolean isFinite(source)

isFinite(x) is true if and only if x is zero, subnormal or normal (not infinite or NaN).

― boolean isZero(source)

isZero(x) is true if and only if x is ±0.

― boolean isSubnormal(source)

isSubnormal(x) is true if and only if x is subnormal.

― boolean isInfinite(source)

isInfinite(x) is true if and only if x is infinite.

― boolean isNaN(source)

isNaN(x) is true if and only if x is a NaN.

― boolean isSignaling(source)

isSignaling(x) is true if and only if x is a signaling NaN.

― boolean isCanonical(source)

isCanonical(x)  is  true  if  and  only if  x is  a  finite  number,  infinity,  or  NaN that  is  canonical. 
Implementations should  extend  isCanonical(x)  to formats  that  are  not  interchange formats  in 
ways appropriate to those formats, which might, or might not, have finite numbers, infinities, or 
NaNs that are non-canonical.

― enum radix(source)
radix(x) is the radix b of the format of x, that is, two or ten.

― boolean totalOrder(source, source)

totalOrder(x, y) is defined in 5.10.

― boolean totalOrderMag(source, source)

totalOrderMag(x, y) is totalOrder(abs(x), abs(y)).

Implementations should make these predicates available at translation time (if applicable) in cases where 
their values can be determined at that point.
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5.7.3 Decimal operation  5.7.3.0

Implementations supporting decimal formats shall provide the following non-computational operation for  
all supported decimal arithmetic formats:

― boolean sameQuantum(source, source)

For numerical decimal operands  x and  y  of the same format,  sameQuantum(x,  y) is true if the 
exponents of x and y are the same, that is, Q(x) = Q(y), and false otherwise. sameQuantum(NaN, 
NaN) and sameQuantum(∞, ∞) are true; if exactly one operand is infinite or exactly one operand 
is a NaN, sameQuantum is false.  sameQuantum signals no exception, even if an argument is a 
signaling NaN.

5.7.4 Operations on subsets of flags  5.7.4.0

Implementations shall provide the following non-computational operations that act upon  multiple  status 
flags collectively; these operations do not signal exceptions:

― void lowerFlags(exceptionGroup)

Lowers  (clears)  the  flags  corresponding  to  the  exceptions  specified  in  the  exceptionGroup 
operand, which can represent any subset of the exceptions.

― void raiseFlags(exceptionGroup)

Raises (sets) the flags corresponding to the exceptions specified in the exceptionGroup operand, 
which can represent any subset of the exceptions.

― boolean testFlags(exceptionGroup)

Queries whether any of the flags corresponding to the exceptions specified in the exceptionGroup 
operand, which can represent any subset of the exceptions, are raised.

― boolean testSavedFlags(flags, exceptionGroup)

Queries whether any of the flags in the flags operand corresponding to the exceptions specified in 
the exceptionGroup operand, which can represent any subset of the exceptions, are raised.

― void restoreFlags(flags, exceptionGroup)

Restores  the  flags  corresponding  to  the  exceptions  specified  in  the  exceptionGroup  operand, 
which can represent any subset of the exceptions, to their state represented in the flags operand.

― flags saveAllFlags(void)

Returns a representation of the state of all status flags.

The  return  value  of  the  saveAllFlags operation  is  for  use  as  the  first  operand  to  a  restoreFlags or 
testSavedFlags operation in the same program; this standard does not require support for any other use.

5.8 Details of conversions from floating-point to integer formats  5.8.0

Implementations shall provide conversion operations from all supported arithmetic formats to all supported 
signed and unsigned integer formats. Integral values are converted exactly from floating-point formats to 
integer formats whenever the value is representable in both formats.

Conversion  to  integer  shall  round as  specified  in  Clause 4;  the  rounding  direction  is indicated  by  the 
operation name.

When a NaN or infinite operand cannot be represented in the destination format and this cannot otherwise 
be indicated, the invalid operation exception shall be signaled. When a numeric operand would convert to 
an integer outside the range of the destination format, the invalid operation exception shall be signaled if 
this situation cannot otherwise be indicated.

When the value of the conversion operation’s result differs from its operand value, yet is representable in  
the destination format, some conversion operations are specified below to signal the inexact exception and 
others to not signal the inexact exception.
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A language standard that permits implicit conversions or expressions involving mixed types should require 
that these be implemented with the inexact-signaling conversion operations below.

The operations for conversion from floating-point to a specific signed or unsigned integer format without 
signaling the inexact exception are:

― intFormatOf-convertToIntegerTiesToEven(source)

convertToIntegerTiesToEven(x)  rounds  x to  the  nearest  integral  value,  with  halfway  cases 
rounded to even.

― intFormatOf-convertToIntegerTowardZero(source)

convertToIntegerTowardZero(x) rounds x to an integral value toward zero.

― intFormatOf-convertToIntegerTowardPositive(source) 

convertToIntegerTowardPositive(x) rounds x to an integral value toward positive infinity.

― intFormatOf-convertToIntegerTowardNegative(source) 

convertToIntegerTowardNegative(x) rounds x to an integral value toward negative infinity.

― intFormatOf-convertToIntegerTiesToAway(source)

convertToIntegerTiesToAway(x)  rounds  x to  the  nearest  integral  value,  with  halfway  cases 
rounded away from zero.

The operations for conversion from floating-point to a specific signed or unsigned integer format, signaling 
if inexact, are:

― intFormatOf-convertToIntegerExactTiesToEven(source)

convertToIntegerExactTiesToEven(x) rounds x to the nearest integral value, with halfway cases 
rounded to even.

― intFormatOf-convertToIntegerExactTowardZero(source)

convertToIntegerExactTowardZero(x) rounds x to an integral value toward zero.

― intFormatOf-convertToIntegerExactTowardPositive(source)

convertToIntegerExactTowardPositive(x) rounds x to an integral value toward positive infinity.

― intFormatOf-convertToIntegerExactTowardNegative(source)

convertToIntegerExactTowardNegative(x)  rounds  x to  an  integral  value  toward  negative 
infinity.

― intFormatOf-convertToIntegerExactTiesToAway(source)

convertToIntegerExactTiesToAway(x) rounds x to the nearest integral value, with halfway cases 
rounded away from zero.
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5.9 Details of operations to round a floating-point datum to integral value  5.9.0

Several operations round a floating-point number to an integral-valued floating-point number in the same 
format.

The rounding is analogous to that specified in Clause 4, but the rounding chooses only from among those 
floating-point  numbers of integral values in the format. These operations convert zero operands to zero  
results of the same sign, and infinite operands to infinite results of the same sign.

For the following operations,  the  rounding  direction  is specified  by  the operation  name and  does not 
depend  on  a  rounding-direction  attribute.  These  operations  shall  not  signal  any  exception  except  for 
signaling NaN input.

― sourceFormat roundToIntegralTiesToEven(source)

roundToIntegralTiesToEven(x)  rounds  x to  the  nearest  integral  value,  with  halfway  cases 
rounding to even.

― sourceFormat roundToIntegralTowardZero(source)

roundToIntegralTowardZero(x) rounds x to an integral value toward zero.

― sourceFormat roundToIntegralTowardPositive(source)

roundToIntegralTowardPositive(x) rounds x to an integral value toward positive infinity.

― sourceFormat roundToIntegralTowardNegative(source)

roundToIntegralTowardNegative(x) rounds x to an integral value toward negative infinity.

― sourceFormat roundToIntegralTiesToAway(source)

roundToIntegralTiesToAway(x)  rounds  x to  the  nearest  integral  value,  with  halfway  cases 
rounding away from zero.

For the following operation,  the rounding  direction  is the applicable  rounding-direction  attribute.  This 
operation  signals  the  invalid  operation  exception  for  a  signaling  NaN  operand,  and  for  a  numerical 
operand, signals the inexact exception if the result does not have the same numerical value as x.

― sourceFormat roundToIntegralExact(source)

roundToIntegralExact(x)  rounds  x to an integral  value according to the applicable rounding-
direction attribute.
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5.10 Details of totalOrder predicate  5.10.0

For each supported arithmetic format, an implementation shall provide the following predicate that defines  
an ordering among all operands in a particular format:

― boolean totalOrder(source, source)

totalOrder(x, y) imposes a total ordering on canonical members of the format of x and y:

a) If x < y, totalOrder(x, y) is true.

b) If x > y, totalOrder(x, y) is false.

c) If x = y:

1) totalOrder(−0, +0) is true.

2) totalOrder(+0, −0) is false.

3) If x and y represent the same floating-point datum:

i) If x and y have negative sign, 
totalOrder(x, y) is true if and only if the exponent of x ≥ the exponent of y

ii) otherwise,
totalOrder(x, y) is true if and only if the exponent of x ≤ the exponent of y.

d) If x and y are unordered numerically because x or y is a NaN:

1) totalOrder(−NaN, y) is true where −NaN represents a NaN with negative sign bit and y is a 
floating-point number.

2) totalOrder(x, −NaN) is false where −NaN represents a NaN with negative sign bit and x is a 
floating-point number.

3) totalOrder(x, +NaN) is true where +NaN represents a NaN with positive sign bit and x is a 
floating-point number.

4) totalOrder(+NaN, y) is false where +NaN represents a NaN with positive sign bit and y is a 
floating-point number.

5) If x and y are both NaNs, then totalOrder reflects a total ordering based on: 

i) negative sign orders below positive sign 

ii) signaling orders below quiet for +NaN, reverse for −NaN 

iii) otherwise, the order of NaNs is implementation-defined.

Neither signaling NaNs nor quiet NaNs signal an exception. For canonical  x and y,  totalOrder(x, y) and 
totalOrder( y, x) are both true if x and y are bitwise identical. 

Unsigned NaNs, as may occur in non-interchange formats, should order like NaNs with positive sign bit.

NOTE —  totalOrder does not impose a total ordering on all encodings in a format. In particular, it does 
not distinguish among different encodings of the same floating-point representation, as when one or both 
encodings are non-canonical.
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5.11 Details of comparison predicates  5.11.0

For every supported arithmetic format, it shall be possible to compare one floating-point datum to another 
in that format (see  5.6.1). Additionally, it shall be possible to compare one floating-point datum to another 
in a different format as long as the operands’ formats have the same radix.

Four mutually exclusive relations are possible: less than,  equal,  greater than, and unordered;  unordered 
arises when at least one operand is a NaN. Every NaN shall compare unordered with everything, including 
itself. Comparisons shall ignore the sign of zero (so +0 = −0). Infinite operands of the same sign shall  
compare equal.

Language standards shall define the comparison predicates in Tables 5.1 and 5.2. These predicates deliver 
a true-false response and are defined in pairs.  Each predicate is true if and only if any of its indicated 
relations is true.  Each member of a pair is the logical negation of the other.  Applying a prefix such as 
NOT to negate  a  predicate  reverses  the true-false sense of  its  associated  entries,  but  does  not  change 
whether unordered relations signal an invalid operation exception.

Invalid operation is the only exception that a comparison predicate can signal.  All predicates signal the 
invalid operation exception on signaling NaN operands.  The predicates named Quiet shall not signal any 
exception, unless an operand is a signaling NaN.  The predicates named Signaling shall signal the invalid  
operation exception on quiet NaN operands. 

For the common mathematical symbols = ≠ > ≥ < ≤ , many language standards define notations that do not 
explicitly  indicate  signaling  or  quiet.   In  Table  5.1,  those  notations are  represented  by  their  common 
mathematical symbols.  Language standards should map their notations for the symbols = and ≠  to the 
Quiet predicates in Table 5.1, and their notations for the symbols > ≥ < ≤  to the Signaling predicates in 
Table 5.1.

Table 5.1 — Required predicates and negations, recommended for common math symbols 
 5.11.0

math
symbol

predicate
true relations

math
symbol

negation
true relations

= compareQuietEqual
equal

≠, NOT = compareQuietNotEqual
less than, greater than, unordered 

 > compareSignalingGreater
greater than

NOT > compareSignalingNotGreater
less than, equal, unordered

 ≥ compareSignalingGreaterEqual
equal, greater than

NOT ≥ compareSignalingLessUnordered
less than, unordered 

< compareSignalingLess
less than

NOT < compareSignalingNotLess
equal, greater than, unordered

≤ compareSignalingLessEqual
less than, equal

NOT ≤ compareSignalingGreaterUnordered
greater than, unordered 

NOTE — When NaNs are present, operands have the unordered relation, so trichotomy does not apply.  For 
example, NOT (X < Y) is not logically equivalent to (X ≥ Y).   The Signaling predicates in Table 5.1 signal 
the invalid operation exception on quiet NaN operands to warn of potential incorrect behavior of programs  
written assuming trichotomy.
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Table 5.2 — Other required predicates and negations  0

predicate

true relations

negation

true relations

compareSignalingEqual
equal

compareSignalingNotEqual
less than, greater than, unordered

compareQuietGreater
greater than

compareQuietNotGreater
less than, equal, unordered 

compareQuietGreaterEqual
equal, greater than

compareQuietLessUnordered
less than, unordered

compareQuietLess
less than

compareQuietNotLess
equal, greater than, unordered

compareQuietLessEqual
less than, equal

compareQuietGreaterUnordered
greater than, unordered

compareQuietUnordered
unordered 

compareQuietOrdered
less than, equal, greater than

5.12 Details of conversion between floating-point data and external character 
sequences  5.12.0

This clause specifies conversions between supported formats and external character sequences. Observe 
that conversions between supported formats of different radices are correctly rounded and set exceptions  
correctly as described in 5.4.2, subject to limits stated in 5.12.2 below.

Implementations shall provide conversions between each supported binary format and external  decimal 
character sequences such that, under roundTiesToEven, conversion from the supported format to external 
decimal  character  sequence  and  back  recovers  the  original  floating-point  representation,  except  that  a  
signaling NaN might be converted to a quiet NaN. See 5.12.1 and 5.12.2 for details.

Implementations shall provide exact conversions from each supported decimal format to external decimal 
character  sequences,  and  shall  provide  conversions  back  that  recover  the  original  floating-point 
representation, except that a signaling NaN might be converted to a quiet NaN. See 5.12.1 and 5.12.2 for 
details.

Implementations shall provide exact conversions from each supported binary format to external character 
sequences representing numbers with hexadecimal digits for the significand, and shall provide conversions 
back that recover the original floating-point representation, except that a signaling NaN might be converted 
to a quiet NaN. See 5.12.1 and 5.12.3 for details.

This clause primarily discusses conversions during program execution; there is one special consideration 
applicable  to  program  translation  separate  from  program  execution:  translation-time  conversion  of 
constants in program text from external character sequences to supported formats, in the absence of other 
specification in the program text, shall use this standard’s default rounding direction and language-defined 
exception handling.  An implementation might also provide means to permit constants to be translated at 
execution time with the attributes in effect at execution time and exceptions generated at execution time.

Issues of character codes (ASCII, Unicode, etc.) are not defined by this standard.
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5.12.1 External character sequences representing zeros, infinities, and NaNs  5.12.1.0

The conversions (described in 5.4.2) from supported formats to external character sequences and back that 
recover the original floating-point representation, shall recover zeros, infinities, and quiet NaNs, as well as 
non-zero finite numbers. In particular, signs of zeros and infinities are preserved.

Conversion of an infinity in a supported format to an external character sequence shall produce a language-
defined one of “inf” or “infinity” or a sequence that is equivalent except for case (e.g., “Infinity” or “INF”), 
with a preceding minus sign if the input is negative. Whether the conversion produces a preceding plus  
sign if the input is positive is language-defined.

Conversion  of  external  character  sequences  “inf”  and  “infinity”  (regardless  of  case)  with  an  optional  
preceding sign, to a supported floating-point format shall produce an infinity (with the same sign as the 
input).

Conversion  of  a  quiet  NaN in  a  supported  format  to  an  external  character  sequence  shall  produce  a  
language-defined one of “nan” or a sequence that is equivalent except for  case (e.g.,  “NaN”),  with an 
optional preceding sign. (This standard does not interpret the sign of a NaN.)

Conversion of a signaling NaN in a supported format to an external character sequence should produce a  
language-defined one of “snan” or “nan” or a sequence that is equivalent except for case, with an optional 
preceding sign. If the conversion of a signaling NaN produces “nan” or a sequence that is equivalent except 
for case, with an optional preceding sign, then the invalid operation exception should be signaled. 

Conversion of external character sequences “nan” (regardless of case) with an optional preceding sign, to a  
supported floating-point format shall produce a quiet NaN. 

Conversion of an external character sequence “snan” (regardless of case) with an optional preceding sign, 
to a supported format should either produce a signaling NaN or else produce a quiet NaN and signal the  
invalid operation exception. 

Language standards should provide  an optional  conversion of  NaNs in a supported format  to external  
character sequences which appends to the basic NaN character sequences a suffix that can represent the  
payload (see  6.2). The form and interpretation of the payload suffix is language-defined. The language  
standard  shall  require  that  any  such  optional  output  sequences  be  accepted  as  input  in  conversion  of 
external character sequences to supported formats.

5.12.2 External decimal character sequences representing finite numbers  5.12.2.0

An implementation  shall  provide  operations  that  convert  from all  supported  floating-point  formats  to  
external decimal character sequences (see 5.4.2). For finite numbers, these operations can be thought of as 
parameterized by the source format, the number of significant digits in the result (if specified), and whether 
the quantum is preserved (for decimal formats). Observe that specifying the number of significant digits  
and specifying quantum preservation are mutually incompatible. The means of specifying the number of  
significant digits and of specifying quantum preservation are language-defined and are typically embodied 
in the conversionSpecification of 5.4.2.

An implementation shall also provide operations that convert external decimal character sequences to all 
supported formats. These operations can be thought of as parameterized by the result format.

Within the limits stated in this clause, conversions in both directions shall preserve the value of a number 
unless rounding is necessary and shall preserve its sign. If rounding is necessary, they shall use correct  
rounding and shall correctly signal the inexact and other exceptions.

All  conversions  from  external  character  sequences  to  supported  decimal  formats  shall  preserve  the 
quantum (see  5.4.2)  unless rounding is necessary. At least one conversion from each supported decimal  
format shall preserve the quantum as well as the value and sign.

If a conversion to an external character sequence requires an exponent but the exponent is not of sufficient  
width to avoid overflow or underflow (see 7.4 and 7.5), the overflow or underflow should be indicated to 
the user by appropriate language-defined character sequences.
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For the purposes of discussing the limits on correctly rounded conversion, define the following quantities:

― for binary16, Pmin (binary16) = 5

― for binary32, Pmin (binary32) = 9

― for binary64, Pmin (binary64) = 17

― for binary128, Pmin (binary128) = 36

― for  all  other  binary formats  bf,  Pmin (bf  )  =  1 + ceiling( p × log10(2)),  where  p is  the number  of 
significant bits in bf

― M = max(Pmin (bf  )) for all supported binary formats bf

― for decimal32, Pmin (decimal32) = 7

― for decimal64, Pmin (decimal64) = 16

― for decimal 128, Pmin (decimal 128) = 34

― for all other decimal formats df, Pmin (df  ) is the number of significant digits in df.

Conversions to and from supported decimal formats shall be correctly rounded regardless of how many  
digits are requested or given.

There might be an implementation-defined limit on the number of significant digits that can be converted  
with correct rounding to and from supported binary formats. That limit, H, shall be such that H ≥ M + 3 and 
it should be that H is unbounded.

For all supported binary formats the conversion operations shall support correctly rounded conversions to 
or  from external  character  sequences for  all  significant  digit  counts from 1 through H (that  is,  for  all 
expressible counts if H is unbounded).

Conversions  from  supported  binary  formats  to  external  character  sequences  for  which  more  than  H 
significant digits are specified shall pad with trailing zeros.

Conversion from a character sequence of more than H significant digits or larger in exponent range than 
the  destination  binary  format  first  shall  be  correctly  rounded  to  H digits  according  to  the  applicable 
rounding  direction and shall  signal  exceptions as though narrowing from a wider format  and  then the 
resulting  character  sequence  of  H  digits  shall  be  converted  with  correct  rounding  according  to  the 
applicable rounding direction.

NOTE 1 — As a consequence of the foregoing, the following are true:

― Conversions to or from decimal formats are correctly rounded.

― For binary formats, all conversions of H significant digits or fewer round correctly according to  
the applicable rounding direction; conversions of  greater  than H significant digits might incur 
additional rounding of the order of 10 (M − H) < 10 −3 units in the last place.

― Intervals are respected,  in the sense that directed-rounding constraints are honored even when 
more than H significant digits are given: the directed rounding error has the correct sign in all  
cases, and never exceeds 1 + 1/1000 units in the last place in magnitude.

― Conversions are monotonic; increasing the value of a supported floating-point number does not  
decrease its value after conversion to an external character sequence, and increasing the value of 
an external character sequence does not decrease its value after conversion to a supported floating-
point number.

― Conversions from a supported binary format bf to an external character sequence and back again 
results in a copy of the original number so long as there are at  least  Pmin (bf  ) significant digits 
specified and the rounding-direction attributes in effect during the two conversions are round to 
nearest rounding-direction attributes.

― Conversions from a supported decimal format df to an external character sequence and back again 
results  in  a  canonical  copy of  the original  number  so long  as  the conversion  to  the external  
character sequence is one that preserves the quantum.

― Conversions from a supported decimal format df to an external character sequence and back again 
recovers the value (but not necessarily the quantum) of the original number so long as there are at  
least Pmin (df  ) significant digits specified.
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― All implementations exchange equivalent decimal sequences: two decimal character sequences are 
equivalent if they represent the same value (and quantum, for decimal formats); if two imple-
mentations support a given format they convert any floating-point representation in that format to  
equivalent  decimal character  sequences when the same number of  digits is specified and (for 
binary formats) the specified number of digits is no greater than H (for both implementations), or  
(for decimal formats) when the quantum-preserving conversion is specified.

― Similarly, any two implementations convert equivalent decimal sequences to the same floating-
point number (with the same quantum, for decimal formats) when the number of significant digits 
and the result format are supported on both implementations.

NOTE 2 — H should be as large as practical, noting that “practical” might well include “unbounded” on 
many systems because any H at least as large as the number of digits required for the longest exact decimal 
representation is effectively as good as unbounded. The length of the longest exact decimal representation 
is less than twelve thousand digits for binary128.

5.12.3 External hexadecimal-significand character sequences representing finite numbers 5.12.3.0

Language  standards  should  provide  conversions  between  all  supported  binary  formats  and  external 
hexadecimal-significand character  sequences.  External  hexadecimal-significand character  sequences  for 
finite numbers shall be described by the following grammar, which defines a hexSequence:

sign     [+ −]
digit      [0123456789]
hexDigit  [0123456789abcdefABCDEF]
hexExpIndicator [Pp]
hexIndicator  "0" [Xx]
hexSignificand ( {hexDigit} * "." {hexDigit}+  |  {hexDigit}+ "."  |  {hexDigit}+ )
decExponent   {hexExpIndicator} {sign}? {digit}+
hexSequence     {sign}? {hexIndicator} {hexSignificand} {decExponent}

where each line is a name followed by a rule in which ‘[...]’ selects one of the terminal characters listed 
between the brackets, ‘{...}’ refers to an earlier named rule, ‘(...  | ... | ...)’ indicates a choice of one of three 
alternatives, straight double quotes enclose a terminal character, ‘?’ indicates that there shall be either no 
instance or one instance of the preceding item, ‘*’ indicates that there shall be zero or more instances of the 
preceding item, and ‘+’ indicates that there shall be one or more instances of the preceding item. 

The hexSignificand is interpreted as a hexadecimal constant in which each hexDigit represents a value in 
the range 0 through 15 with the letters ‘a’ through ‘f  ’ representing 10  through 15, regardless of case. 
Within  the  hexSignificand,  the  first  (leftmost)  character  is  the  most  significant.  If  present,  the  period 
defines the start of a hexadecimal fractional part; if the period is to the right of all hexadecimal digits the 
hexSignificand is an integer.  The decExponent is interpreted as an optionally-signed integer expressed in 
decimal following the hexExpIndicator, again with the most significant digit first. 

The value of a hexSequence is the value of the hexSignificand multiplied by two raised to the power of the 
value of the decExponent, negated if there is a leading ‘−’ sign. The hexIndicator and the hexExpIndicator  
have no effect on the value. 

When converting to hexadecimal-significand character sequences in the absence of an explicit precision 
specification, enough hexadecimal characters shall be used to represent the binary floating-point number  
exactly.  Conversions  to  hexadecimal-significand  character  sequences  with  an  explicit  precision 
specification,  and  conversions  from  hexadecimal-significand  character  sequences  to  supported  binary 
formats,  are correctly rounded according to the applicable binary rounding-direction attribute, and signal 
all exceptions appropriately.

NOTE — The external hexadecimal-significand character sequences described here follow those specified 
for finite numbers in ISO/IEC 9899:2018(E) Programming languages  — C (C17), in:

6.4.4.2  floating constants
7.21.6.1  fprintf (conversion specifiers ‘a’ and ‘A’)
7.21.6.2  fscanf (conversion specifier ‘a’)
7.22.1.3  strtod.
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6. Infinity, NaNs, and sign bit  6.0

6.1 Infinity arithmetic  6.1.0

The behavior of infinity in floating-point arithmetic is derived from the limiting cases of real arithmetic 
with operands of arbitrarily large magnitude, when such a limit exists. Infinities shall be interpreted in the  
affine sense, that is:  −∞ < {every finite number} < +∞.

Operations on infinite operands are usually exact  and therefore signal no exceptions,  including, among 
others,

― addition(∞, x), addition(x, ∞), subtraction(∞, x), or subtraction(x, ∞), for finite x

― multiplication(∞, x) or multiplication(x, ∞) for finite or infinite x ≠ 0

― division(∞, x) or division(x, ∞) for finite x

― squareRoot(+∞)

― remainder(x, ∞) for finite normal x

― conversion of an infinity into the same infinity in another format.

The exceptions that do pertain to infinities are signaled only when

― ∞ is an invalid operand (see 7.2)

― ∞ is created from finite operands by overflow (see 7.4) or division by zero (see 7.3)

― remainder(subnormal, ∞) signals underflow.

6.2 Operations with NaNs  6.2.0

Two different  kinds  of  NaN,  signaling  and  quiet,  shall  be  supported  in  all  floating-point  operations.  
Signaling NaNs afford  representations for uninitialized variables and arithmetic-like enhancements (such 
as complex-affine infinities or extremely wide range) that are not in the scope of this standard. Quiet NaNs 
should, by means left to the implementer’s discretion, afford retrospective diagnostic information inherited 
from invalid or unavailable data and results. To facilitate propagation of diagnostic information contained 
in NaNs, as much of that information as possible should be preserved in NaN results of operations.

Under default exception handling, any operation signaling an invalid operation exception and for which a 
floating-point  result is to be delivered,  except as stated otherwise,  shall deliver a quiet NaN. For non-
default treatment, see 8.

Signaling NaNs shall be reserved operands that signal the invalid operation exception (see 7.2) for every 
general-computational and signaling-computational operation except for the conversions described in 5.12. 

Every general-computational and quiet-computational operation involving one or more input NaNs, none 
of them signaling, shall signal no exception, except fusedMultiplyAdd might signal the invalid operation 
exception (see 7.2). For an operation with quiet NaN inputs, except as stated otherwise, if a floating-point 
result is to be delivered the result shall be  a canonical  quiet NaN. Recognize that format  conversions, 
including  conversions  between  supported  formats  and  external  representations  as  character  sequences, 
might  be unable to deliver the same NaN. Quiet NaNs signal exceptions  on some operations that do not 
deliver a floating-point result; these operations, namely comparison and conversion to a format that has no 
NaNs, are discussed in 5.6, 5.8, and 7.2.

6.2.1 NaN encodings in binary interchange formats  6.2.1.0

All binary NaN bit strings have the sign bit S set to 0 or 1 and all the bits of the biased exponent field E set 
to 1 (see 3.4). A quiet NaN bit string should be encoded with the first bit (d 1) of the trailing significand 
field T being 1. A signaling NaN bit string should be encoded with the first bit of the trailing significand  
field being 0. If the first bit of the trailing significand field is 0, some other bit of the trailing significand  
field must be non-zero to distinguish the NaN from infinity. In the preferred encoding just described, a 
signaling NaN shall be quieted by setting d1 to 1, leaving the remaining bits of T unchanged. Bits  d2 d3 … 
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d p −1 of  the  trailing  significand  field  contain  the  encoding  of  the  payload,  which  might  be  diagnostic  
information (see 6.2). 

6.2.2 NaN encodings in decimal interchange formats  6.2.2.0

A decimal signaling NaN shall be quieted by clearing  G5 and leaving the values of the digits  d1 through 
dp − 1 of the trailing significand field unchanged (see 3.5).

For decimal formats, the payload is the trailing significand field, as defined in 3.5.

6.2.3 NaN propagation  6.2.3.0

An operation that propagates a NaN operand to its result and has a single NaN as an input should produce a 
NaN with the payload of the input NaN if representable in the destination format. 

If two or more inputs are NaN, then the payload of the resulting NaN should be identical to the payload of 
one of the input NaNs if representable in the destination format. This standard does not specify which of  
the input NaNs will provide the payload.

Conversion of a quiet NaN from a narrower format to a wider format in the same radix, and then back to 
the  same  narrower  format,  should  not  change  the  quiet  NaN payload  in  any  way  except  to  make  it  
canonical.

Conversion of a quiet NaN to a floating-point format of the same or a different radix that does not allow 
the payload to be preserved shall return a quiet NaN that should provide some language-defined diagnostic 
information. 

There should be means to read and write payloads from and to external character sequences (see 5.12.1).

Except for the operations specified otherwise in  5.5,  a NaN result shall be canonical, even if that NaN 
result were derived  from a non-canonical NaN operand.
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6.3 The sign bit  6.3.0

When either an input or result is a NaN, this standard does not interpret the sign of a NaN. However, 
operations on bit strings — copy, negate, abs, copySign — specify the sign bit of a NaN result, sometimes 
based upon the sign bit of a NaN operand. The logical predicates  totalOrder and  isSignMinus are also 
affected by the sign bit of a NaN operand. For all other operations, this standard does not specify the sign 
bit of a NaN result, even when there is only one input NaN, or when the NaN is produced from an invalid  
operation.

When neither the inputs nor result are NaN, the sign of a product or quotient is the exclusive OR of the 
operands’ signs; the sign of a sum, or of a difference x − y regarded as a sum x + (−y), differs from at most 
one of the addends’ signs; and the sign of the result of conversions, the quantize operation, the roundTo-
Integral operations, and the  roundToIntegralExact (see  5.3.1) is the sign  of the first or only operand. 
These rules shall apply even when operands or results are zero or infinite.

When the sum of two operands with opposite signs (or the difference of two operands with like signs) is 
exactly zero, the sign of that sum (or difference) shall be +0 under all rounding-direction attributes except  
roundTowardNegative;  under that  attribute,  the sign of  an exact  zero sum (or  difference)  shall  be −0.  
However, under all rounding-direction attributes, when x is zero, x + x and x − (−x) have the sign of x.

When (a × b) + c is exactly zero, the sign of  fusedMultiplyAdd(a,  b,  c) shall be determined by the rules 
above  for  a  sum  of  operands. When  the  exact  result  of  (a × b) + c is  non-zero  yet  the  result  of 
fusedMultiplyAdd is zero because of rounding, the zero result takes the sign of the exact result. 

Except that squareRoot(−0) shall be −0, every numeric squareRoot result shall have a positive sign.
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7. Exceptions and default exception handling  7.0

7.1 Overview: exceptions and flags  7.1.0

This clause specifies five kinds of exceptions that shall be signaled when they arise; the signal invokes 
default or alternate handling for the signaled exception. For each kind of exception the implementation 
shall provide a corresponding status flag.

This clause also specifies default non-stop exception handling for exception signals, which is to deliver a  
default  result,  continue  execution,  and  raise the corresponding status flag (except  in the case of  exact 
underflow, see 7.5). Clause 8 specifies alternate exception handling attributes for those signals; a language 
standard might specify that some of those attributes be implemented and then define means for users to  
enable them. Default or alternate exception handling for one exception might also signal other exceptions  
(see overflow and underflow, 7.4 and 7.5). Therefore, a status flag might be raised by default, by alternate 
exception handling, or by explicit user action (see 5.7.4). 

With default exception handling, a raised status flag usually indicates that the corresponding exception was 
signaled and handled by default. Exceptions are handled without raising status flags only in the case of  
exact underflow and status flags are raised without an exception being signaled only at the user’s request.  
Status flags shall be lowered only at the user’s request. The user shall be able to test and to alter the status  
flags individually or collectively, and shall further be able to save and restore all at one time (see 5.7.4). 

A program that does not inherit status flags from another source begins execution with all status flags 
lowered.  Language standards should specify  defaults in  the absence  of  any  explicit  user  specification, 
governing: 

― Whether any particular flag exists (in the sense of being testable by non-programmatic means such 
as debuggers) outside of scopes in which a program explicitly sets or tests that flag.

― When  a  flag  has  scope  greater  than  within  an  invoked  function,  whether  and  when  an 
asynchronous  event,  such as  raising  or  lowering  the flag in another  thread  or  signal  handler,  
affects  the flag  tested within that  invoked  function;  this  includes  events arising  from explicit 
asynchronicity in the program and also events arising from asynchronicity introduced by language 
or implementation.

― When a flag has scope greater than within an invoked function, whether that flag’s state can be 
determined by non-programmatic means (such as a debugger) within that invoked function.

― Whether flags raised in invoked functions raise flags in invoking functions.

― Whether flags raised in invoking functions raise flags in invoked functions.

― Whether to allow, and if so the means, to specify that flags shall be persistent in the absence of 
any explicit program statement otherwise: 

― The flags standing at the beginning of execution of a particular function are inherited from an 
outer environment, typically an invoking function.

― On return  from  or  termination of  an  invoked function,  the flags  standing in an  invoking 
function are the flags that  were standing in the invoked function at  the time of  return  or 
termination.

An  invocation  of  any  operation  required  by  this  standard  signals  at  most  one  exception;  additional 
exceptions might be signaled by default exception handling or by alternate exception handling for the first  
exception.  Default  exception  handling  for  overflow  (see  7.4)  signals  the  inexact  exception.  Default 
exception handling for underflow (see  7.5) signals the inexact exception if the default result is inexact. 
Default exception handling for invalid (see 7.2) due to a signaling NaN operand may signal another invalid 
operation exception for comparisons by way of unordered-signaling predicates.

An invocation of the  restoreFlags or  raiseFlags operation (see  5.7.4) might raise any combination of 
status  flags.  An invocation  of  any  other  operation  required  by  this  standard,  when  all  exceptions  are 
handled by default, might raise at most two status flags, overflow with inexact (see 7.4) or underflow with 
inexact (see 7.5).

For the computational operations defined in this standard, exceptions are defined below to be signaled if 
and only if certain conditions arise. Thus, these operations shall be computed in a way that avoids user-
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observable signals of the exceptions for other conditions, even if the operation is implemented in software  
using other  exception-signaling operations.  Operations not specified by this standard,  such as complex 
arithmetic or certain transcendental functions, should signal exceptions according to the definitions below 
for  operations  defined  in  this  standard,  but  that  might  not  always  be  economical.   The  signaling  of 
exceptions for operations not specified in this standard is language-defined.

NOTE — Redundant signals of an exception by the implementation of an operation are not detectable by 
the user under default exception handling. Such redundant signals might be detectable by the user under 
the recordException attribute for (recommended) alternate exception handling (see 8.2), and, in the case of 
unordered-signaling predicates with a signaling NaN operand,  under other  alternate exception handling 
attributes if sub-exceptions (see 8.1) are supported.

7.2 Invalid operation  7.2.0

The invalid operation exception is signaled if and only if there is no usefully definable result. In these cases  
the operands are invalid for the operation to be performed. 

For operations producing results in floating-point format, the default result of an operation that signals the 
invalid operation exception shall be a quiet NaN that should provide some diagnostic information (see 6.2). 
These operations are:

a) any general-computational operation on a signaling NaN (see 6.2), except for some conversions 
(see 5.12)

b) multiplication: multiplication(0, ∞) or multiplication(∞, 0)

c) fusedMultiplyAdd: fusedMultiplyAdd(0, ∞, c) or fusedMultiplyAdd(∞, 0, c) unless c is a quiet 
NaN; if c is a quiet NaN then it is implementation defined whether the invalid operation exception 
is signaled

d) addition or  subtraction or  fusedMultiplyAdd:  magnitude  subtraction  of  infinities,  such  as: 
addition(+∞, −∞)

e) division: division(0, 0) or division(∞, ∞)

f) remainder: remainder(x, y), when y is zero or x is infinite and neither is a NaN

g) squareRoot if the operand is less than zero

h) quantize when the result does not fit in the destination format or when one operand is finite and 
the other is infinite

For operations producing no result in floating-point format, the operations that signal the invalid operation  
exception are:

i) any signaling-computational operation on a signaling NaN (see 6.2); then, under default exception 
handling, the operation is evaluated with quiet NaNs in place of the signaling NaN operands to 
determine  the result,  which  for  unordered-signaling comparisons might  signal  another  invalid 
operation exception

j) conversion of a floating-point number to an integer format, when the source is a NaN, infinity, or 
a value that would convert to an integer outside the range of the result format under the applicable  
rounding attribute

k) comparison by way of unordered-signaling predicates listed in Table 5.2, when the operands are 
unordered

l) logB(NaN), logB(∞), or logB(0), when logBFormat is an integer format (see 5.3.3).
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7.3 Division by zero  7.3.0

The divideByZero  exception  shall  be  signaled if  and  only if  an  exact  infinite  result  is  defined  for  an  
operation on finite operands. The default result of divideByZero shall be an ∞ correctly signed according 
to the operation:

― For division, when the divisor is zero and the dividend is a finite non-zero number, the sign of the 
infinity is the exclusive OR of the operands’ signs (see 6.3).

― For logB(0) when logBFormat is a floating-point format, the sign of the infinity is minus (−∞).

7.4 Overflow  7.4.0

The overflow exception shall be signaled if and only if the destination format’s largest finite number is 
exceeded in magnitude by what would have been the rounded floating-point result (see Clause 4) were the 
exponent range unbounded. The default result shall be determined by the rounding-direction attribute and 
the sign of the intermediate result as follows:

a) roundTiesToEven and  roundTiesToAway  carry  all  overflows  to  ∞  with  the  sign  of  the 
intermediate result.

b) roundTowardZero carries all overflows to the format’s largest finite number with the sign of the 
intermediate result.

c) roundTowardNegative carries positive overflows to the format’s largest finite number, and carries 
negative overflows to −∞.

d) roundTowardPositive carries negative overflows to the format’s most negative finite number, and 
carries positive overflows to +∞.

In addition, under default exception handling for overflow, the overflow flag shall be raised and the inexact  
exception shall be signaled.

7.5 Underflow  7.5.0

The underflow exception shall be signaled when a tiny non-zero result is detected. For binary formats, this 
shall be either:

a) after rounding  — when a non-zero result computed as though the exponent range were unbounded 
would lie strictly between ± b emin, or

b) before rounding — when a non-zero result computed as though both the exponent range and the 
precision were unbounded would lie strictly between ± b emin.

The implementer shall choose how tininess is detected, but shall detect tininess in the same way for all  
operations in radix two, including conversion operations under a binary rounding attribute.

For decimal formats, tininess is detected  before rounding — when a non-zero result computed as though 
both the exponent range and the precision were unbounded would lie strictly between ± b emin.

The  default  exception  handling  for  underflow shall  always  deliver  a  rounded  result.  The  method  for  
detecting tininess does not affect the rounded result delivered, which might be zero, subnormal, or ±  b emin.

In addition, under default exception handling for underflow, if the rounded result is inexact  — that is, it 
differs from what would have been computed were both exponent range and precision unbounded — the 
underflow flag shall be raised and the inexact (see 7.6) exception shall be signaled. If the rounded result is 
exact, no flag is raised and no inexact exception is signaled. This is the only case in this standard of an 
exception signal receiving default handling that does not raise the corresponding flag. Such an underflow 
signal has no observable effect under default handling.
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7.6 Inexact  7.6.0

Except as specified otherwise (e.g., 5.8 and 5.9), an operation delivering a numerical result that signals no 
other exception shall signal inexact if its rounded result differs from what would have been computed were 
both exponent range and precision unbounded. The rounded result shall be delivered to the destination.

NOTE — Default exception handling for overflow raises the overflow flag and signals inexact. When the 
rounded result is not an exact subnormal, default exception handling for underflow raises the underflow 
flag and signals inexact. When all of these exceptions are handled by default, the inexact flag is always 
raised when either the overflow or underflow flag is raised.
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8. Alternate exception handling attributes  8.0

8.1 Overview  8.1.0

Language standards should define, and require implementations to provide, means for the user to associate 
alternate exception handling attributes with blocks (see 4.1).  Alternate exception handlers specify lists of 
exceptions and actions to be taken for each listed exception if it is signaled. Language standards should 
define exception lists containing any subset of the exceptions listed in Clause 7: invalid operation, divide-
ByZero,  overflow,  underflow,  or  inexact.   Language  standards  should  also  define  exception  lists 
containing:

― allExceptions: all five exceptions listed in Clause 7, or 

― any subset of sub-exceptions ― sub-cases of the exceptions in Clause 7 (e.g., the sub-cases of the 
invalid operation exception in 7.2); the action for a listed sub-exception is taken if and only if the  
operation is a specified case for the sub-exception; the sub-exception names are language-defined.

Language  standards  should  define  all  the  alternate  exception  handling  attributes  of  this clause.   In 
particular, language standards should define at least one delayed alternate exception handling attribute (see 
8.3) for each of the five exceptions listed in Clause 7.  The syntax and scope for such specifications of 
attribute values are language-defined.

Changing an exception handling attribute does not signal any exception.

8.2 Resuming alternate exception handling attributes  8.2.0

Associating a resuming alternate exception handling attribute with a block means: handling the implied 
exceptions according to the resuming attribute specified, and resuming execution of the associated block.  
Implementations should support these resuming attributes:

― default (raise flag)

Provide the default exception handling (see Clause 7) in the associated block despite alternate 
exception handling that might be in effect in wider scope.

― raiseNoFlag 

Provide the default exception handling  (see Clause  7)  without raising the corresponding status 
flag.

― mayRaiseFlag 

Provide the default exception handling (see Clause 7), except languages define whether a flag is 
raised. Languages may defer to implementations for performance.

― recordException 

Provide the default  exception handling (see Clause  7) and record the corresponding exception 
whenever Clause 7 specifies raising a flag. Recording an exception means storing a description of 
the exception, including language-defined details which might include the current operation and 
operands,  and  the location of  the exception.  Language  standards  define  operations  to  convert 
exception descriptions to and from character sequences, and to inspect, save, and restore exception 
descriptions.

― substitute(x) 

Specifiable for any exception: replace the default result of such an exceptional operation with a  
variable or expression x. The timing and scope in which x is evaluated is language-defined.

― substituteXor(x) 

Specifiable for any exception arising from multiplication or division operations: like substitute(x), 
but replace the default result of such an exceptional operation with |x| and, if |x| is not a NaN, 
obtaining the sign bit from the XOR of the signs of the operands.

― abruptUnderflow

When underflow is signaled because a tiny non-zero result is detected, replace the default result 
with a zero of the same sign or a minimum normal rounded result of the same sign, raise the 
underflow flag, and signal the inexact exception. When roundTiesToEven, roundTiesToAway, or 
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the roundTowardZero attribute is applicable, the rounded result magnitude shall be zero. When 
the  roundTowardPositive  attribute  is  applicable,  the  rounded  result  magnitude  shall  be  the 
minimum normal magnitude for positive tiny results, and zero for negative tiny results. When the  
roundTowardNegative attribute is applicable, the rounded result magnitude shall be the minimum 
normal magnitude for negative tiny results, and zero for positive tiny results. This attribute has no  
effect on the interpretation of subnormal operands.

For the augmented arithmetic operations (9.5),  which return two results (x operation  y and its 
error, where operation is +, −, or ×), if underflow is signaled because x operation y rounded using 
roundTiesTowardZero would signal underflow, both results are zero with the sign of x operation 
y. If underflow is signaled because the error (x operation y − roundTiesTowardZero(x operation y)) 
is non-zero and lies strictly between ±b emin , the default error result is replaced with a zero with the 
sign of (x operation y − roundTiesTowardZero(x operation y)). These cases raise the underflow flag 
and signal the inexact exception.

8.3 Immediate and delayed alternate exception handling attributes  8.3.0

Associating alternate exception handling with a block means: handling the indicated exception(s) according 
to the attribute specified. If the indicated exception is signaled then, depending on the exception and the 
exception handling attribute,  the execution of the associated block might be abandoned immediately or  
might continue with default handling. In the latter case the exception handling is delayed and takes place  
when the associated block terminates normally. Delayed exception handling is fully deterministic,  while 
immediate exception handling licenses but does not require an implementation to trade determinism for 
performance, because  intermediate  results  being  computed  within  the  associated  block  might  not  be 
deterministic. 

Language standards should define, and require implementations to provide, these attributes:

― Immediate alternate exception handler block associated with a block: if the indicated exception is 
signaled, abandon execution of the associated block as soon as possible and execute the handler 
block, then continue execution where execution would have continued after normal termination of 
the associated block, according to the semantics of the language.

― Delayed alternate exception handler block associated with a block: if the indicated exception is 
signaled,  handle it  by default  until  the associated block terminates normally,  then execute the 
handler  block,  then  continue  execution  where  execution  would  have  continued  after  normal 
termination of the associated block, according to the semantics of the language.

― Immediate transfer associated with a block: if the indicated exception is signaled, transfer control 
as soon as possible; no return is possible.

― Delayed  transfer  associated  with  a  block:  if  the  indicated  exception  is  signaled,  handle  it  by 
default until the associated block terminates normally, then transfer control; no return is possible.

Immediate  alternate  exception  handling  for  underflow  shall  be  invoked  when  underflow  is  signaled, 
whether the default result would be exact or inexact. Delayed alternate exception handling for underflow 
shall  be  invoked  only  for  underflow  signals  corresponding  to  inexact  default  results  for  which  the 
underflow flag would be raised.

NOTE  1 — Delayed  alternate  exception  handling  for  an  exception  listed  in  Clause  7 (but  not  sub-
exceptions)  can  be  implemented  by  testing  status  flags.  However  implemented,  the  status  flag 
corresponding to the indicated exception should be saved prior to the beginning of the associated block and 
then lowered. At the end of the associated block, the current status flag should be saved, and the previously  
saved status flag should be restored. The recently saved status flag should then be tested to determine 
whether to execute the handler block or transfer control.

NOTE 2 — Immediate alternate exception handling for an exception can be implemented by traps or, for 
exceptions listed in Clause 7 other than underflow, by testing status flags after each operation or at the end 
of the associated block.  Thus for exceptions listed in Clause 7 other than underflow, immediate exception 
handling  can  be  implemented  with  the  same  mechanism as  delayed  exception  handling,  if  no  better 
implementation mechanism is available.  No matter how implemented, if the indicated exception is not 
signaled in the associated block, then the corresponding status flag should not be changed. If the indicated 
exception is signaled in the associated block, causing execution of the handler block or transfer of control,  
then the state of the corresponding status flag might not be deterministic.
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NOTE 3 — A transfer is a language-specific idiom for non-resumable control transfer. Language standards 
might offer several transfer idioms such as:

― break: Abandon the associated block and continue execution where execution would continue 
after normal termination of the associated block, according to the semantics of the language.

― throw exceptionName: Causes an exceptionName not to be handled locally, but rather signaled 
to the next handling in scope, perhaps the function that invoked the current subprogram, according 
to the semantics of that language. The invoker might handle exceptionName by default  or by 
alternate handling such as signaling exceptionName to the next higher invoking subprograms.

― goto label: Jump; the label might be local or global according to the semantics of the language.
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9. Recommended operations  9.0

Clause 5 completely specifies the operations required for all supported arithmetic formats. 

This clause specifies additional operations that are recommended. In a specific programming environment, 
these operations might be represented in operator notation or in function notation. The function names used  
in a specific programming environment might differ from the names of the corresponding mathematical  
functions or from the names of this standard’s corresponding operations.

9.1 Conforming language- and implementation-defined operations  9.1.0

For one or more formats, language standards and implementations might define one or more floating-point 
operations,  not  otherwise  defined  in  this  document,  that  conform  to  this  standard  by  meeting  all  the 
requirements of this clause. In particular, language standards should define, to be implemented according 
to this clause, as many of the operations of 9.2 through 9.7 as are appropriate to the language. 

9.2 Additional mathematical operations  9.2.0

Language  standards  should  define,  to  be  implemented  according  to  this  subclause,  as  many  of  the 
operations in Table 9.1 as is appropriate to the language. As with other operations of this standard, the 
names  of  the  operations  in  Table  9.1 do  not  necessarily  correspond  to  the  names  that  any  particular 
programming language would use.

In this subclause the domain of  an  operation is that subset of the affinely extended reals for which the 
corresponding mathematical function is well defined.

A conforming operation shall return results correctly rounded for the applicable rounding direction for all  
operands in its domain.

Operation results shall be canonical.

Except as specified here, operations signal all appropriate exceptions according to Clause 7.  An operation 
that returns a floating-point result shall return a quiet NaN as a result if there is a signaling NaN among the  
operation’s operands.  An operation that returns a floating-point result shall return a quiet NaN as a result if  
there is a quiet NaN among the operation’s operands, except in the cases stated otherwise in this subclause. 

― invalid  operation: For all  operations, signaling NaN operands shall signal the invalid operation 
exception.

Outside  its  domain  an  operation  shall  return  a  quiet  NaN  and  signal  the  invalid  operation 
exception.

― divideByZero: An  operation that has a simple pole for some finite floating-point operand shall  
signal the divideByZero exception and return an infinity by default.

― inexact: Operations should signal the inexact exception if the result is inexact. Operations should 
not signal the inexact exception if the result is exact.

Other exceptions are shown in Table 9.1. 

58
Copyright © 2019 IEEE. All rights reserved.

Authorized licensed use limited to: BOURNEMOUTH UNIVERSITY. Downloaded on October 14,2019 at 12:20:34 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Std 754-2019
IEEE Standard for Floating-Point Arithmetic

Table 9.1 —  Additional mathematical operations  9.2.0

Operation Function Domain Other exceptions; see also 9.2.1

exp
expm1
exp2

exp2m1
exp10

exp10m1

e x

e x − 1
2x

2x − 1
10 x

10 x − 1

[−∞, +∞] overflow; underflow

log
log2
log10

loge(x)
log2(x)
log10(x)

[0, +∞] x = 0: divideByZero;
x < 0: invalid operation

logp1

log2p1

log10p1

loge(1 + x)
log2(1 + x)
log10(1 + x)

[−1, +∞] x = −1: divideByZero;
x < −1: invalid operation; underflow

hypot(x, y) √(x2 + y2) [−∞, +∞] × [−∞, +∞] overflow; underflow

rSqrt 1/√x [0, +∞] x < 0: invalid operation;
x is ±0: divideByZero

compound(x, n) (1+x)n [−1, +∞] × Z x < −1: invalid operation; overflow; 
underflow

rootn(x, n) x1/n [−∞, +∞] × Z

n = 0: invalid operation;
x < 0 and n even: invalid operation;
n = −1: overflow, underflow
x = 0 and n < 0: divideByZero

pown(x, n) xn [−∞, +∞] × Z overflow; underflow

pow(x, y) x y [−∞, +∞] × [−∞, +∞] overflow; underflow

powr(x, y) x y [0, +∞] × [−∞, +∞] overflow; underflow

See continuation overleaf for circular and hyperbolic trigonometric operations.
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Table 9.1 —  Additional mathematical operations (continued)

Operation Function Domain Other exceptions; see also 9.2.1

sin sin(x) (−∞, +∞) | x| = ∞: invalid operation; underflow

cos cos(x) (−∞, +∞) | x| = ∞: invalid operation

tan tan(x) (−∞, +∞) | x| = ∞: invalid operation; underflow

sinPi sin(π × x) (−∞, +∞) | x| = ∞: invalid operation; underflow

cosPi cos(π × x) (−∞, +∞) | x| = ∞: invalid operation

tanPi tan(π × x) (−∞, +∞) | x| = ∞: invalid operation; underflow;
| x| = (n + 0.5) for integer n: divideByZero

asin asin(x) [−1, +1] | x| > 1: invalid operation; underflow

acos acos(x) [−1, +1] | x| > 1: invalid operation

atan atan(x) [−∞, +∞] underflow

atan2( y, x) see 9.2.1 [−∞, +∞] × [−∞, +∞] underflow

asinPi asin(x)/π [−1, +1] | x| > 1: invalid operation; underflow

acosPi acos(x)/π [−1, +1] | x| > 1: invalid operation

atanPi atan(x)/π [−∞, +∞] underflow

atan2Pi( y, x) see 9.2.1 [−∞, +∞] × [−∞, +∞] underflow

sinh sinh(x) [−∞, +∞] overflow; underflow

cosh cosh(x) [−∞, +∞] overflow

tanh tanh(x) [−∞, +∞] underflow

asinh asinh(x) [−∞, +∞] underflow

acosh acosh(x) [+1, +∞] x < 1: invalid operation

atanh atanh(x) [−1, +1]
underflow;
| x| = 1: divideByZero;
| x| > 1: invalid operation

Interval notation is used for the domain: a value adjacent to a bracket is included in the domain and a value  
adjacent to a parenthesis is not. Z is the set of integers. 

The notation A × B in the domain denotes the set of ordered pairs of elements (a, b) where a is an element 
of A and b is an element of B. 

The operations sin, cos, tan, asin, acos, atan, and atan2 measure angles in radians. The operations sinPi, 
cosPi, tanPi, asinPi, acosPi, atanPi, and atan2Pi measure angles in half-revolutions.

For operations f defined by even mathematical functions, f (−x) is f (x) for all rounding attributes for their 
entire  domain  and  range.  For  operations  f defined  by  odd  mathematical  functions,  f (−x) is  −f (x) for 
roundTiesToEven,  roundTiesToAway,  and  roundTowardZero  for  their  entire  domain  and  range. 
atan2( y, x) and atan2Pi( y, x) are odd in their first operand. hypot(x, y) is even in both operands.

NOTE — Non-interchange  formats  with  very  large  precision  relative  to  exponent  range  might  signal 
additional exceptions not listed in Table 9.1. For instance, log might signal underflow and tan might signal 
overflow.
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9.2.1 Special values  9.2.1.0

For the  operations  sin,  tan,  sinPi,  tanPi,  asin,  atan,  asinPi,  atanPi,  sinh,  tanh,  asinh,  atanh,  expm1, 
exp2m1, exp10m1, logp1, log2p1, and log10p1,  f (+0) is +0 and f (−0) is −0 with no exception.

For the operations cos, cosPi, cosh, exp, exp2, and exp10,  f (±0) is +1 with no exception.

sinPi(+n)  is  +0  and  sinPi(−n)  is  −0  for  positive  integers  n.  This  implies,  under  roundTiesToEven, 
roundTiesToAway,  and  roundTowardZero, that  sinPi(−x)  and  −sinPi(x) are the same number (or  both 
NaN) for  all  x.  cosPi(n + ½) is  +0  for  any  integer  n  when n + ½ is representable.  This implies  that 
cosPi(−x) and cosPi(x) are the same number (or both NaN) for all x, in all rounding directions. 

For integer n ≥  0:
tanPi(2 × n + 0.5) is +∞ and signals the divideByZero exception
tanPi(2 × n + 1) is −0
tanPi(2 × n + 1.5) is −∞ and signals the divideByZero exception
tanPi(2 × n + 2) is +0

For integer n ≤  0:
tanPi(2 × n − 0.5) is −∞ and signals the divideByZero exception
tanPi(2 × n − 1) is +0
tanPi(2 × n − 1.5) is +∞ and signals the divideByZero exception
tanPi(2 × n − 2) is −0

This  implies,  under  roundTiesToEven,  roundTiesToAway,  and  roundTowardZero,  that  tanPi(−x)  and 
−tanPi(x) are the same number (or both NaN) for all x.

acos(1), acosPi(1), and acosh(1) are +0.

atan(±∞) is ±π/2 rounded and thus should signal the inexact exception.

atan2( y, x) is the angle subtended at the origin by the point (x, y) and the positive x-axis; that angle is also 
the argument or phase or imaginary part of the logarithm of the complex number  x + i y.  The unrounded 
range of atan2 is [−π, +π].  

For  y with positive sign bit,  the general cases of  atan2( y, x) for finite non-zero numeric  x are correctly 
rounded from the following expressions:

atan2( y, x) for finite x > 0 is atan(| y/x|), which could signal the underflow exception
atan2( y, x) for finite x < 0 is π − atan(| y/x|).

The special cases of atan2( y, x) involving 0 and ∞ are constants which should signal the inexact exception 
when the result is non-zero, but they signal no other exception:

atan2(±0, −0) is ±π 
atan2(±0, +0) is ±0 
atan2(±0, x) is ±π for x < 0
atan2(±0, x) is ±0 for x > 0
atan2(y, ±0) is −π/2 for y < 0 
atan2(y, ±0) is +π/2 for y > 0 
atan2(±y, −∞) is ±π for finite y > 0
atan2(±y, +∞) is ±0 for finite y > 0
atan2(±∞, x) is ±π/2 for finite x
atan2(±∞, −∞) is ±3π/4 
atan2(±∞, +∞) is ±π/4.

For some formats under some rounding attributes the rounded magnitude range of  atan (atan2) might 
exceed the unrounded magnitude of  π/2 (π). A programmer must then take care to properly handle any 
anomalous manifold jump that might occur under the inverse operation.

atanPi(±∞) is ±½ with no exception.

atan2Pi( y, x) is the angle subtended at the origin by the point (x, y) and the positive x-axis. The range of 
atan2Pi is [−1, +1].
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For y with positive sign bit, the general cases of atan2Pi( y, x) for finite non-zero numeric x are correctly 
rounded from the following expressions:

atan2Pi( y, x) for finite x > 0 is atan(| y/x|)/π, which could signal the underflow exception
atan2Pi( y, x) for finite x < 0 is 1− atan(| y/x|)/π.

The special cases of atan2Pi(y, x) involving 0 and ∞ are exact constants that signal no exception:
atan2Pi(±0, −0) is ±1 
atan2Pi(±0, +0) is ±0 
atan2Pi(±0, x) is ±1 for x < 0
atan2Pi(±0, x) is ±0 for x > 0
atan2Pi(y, ±0) is −½ for y < 0 
atan2Pi(y, ±0) is +½ for y > 0 
atan2Pi(±y, −∞) is ±1 for finite y > 0
atan2Pi(±y, +∞) is ±0 for finite y > 0
atan2Pi(±∞, x) is ±½ for finite x
atan2Pi(±∞, −∞) is ±¾ 
atan2Pi(±∞, +∞) is ±¼.

sinh(±∞) and asinh(±∞) are ±∞ with no exception.  cosh(±∞) and acosh(+∞) are +∞ with no exception. 
tanh(±∞) is ±1 with no exception.  atanh(±1) is ±∞ and signals the divideByZero exception.

For  the  operations  exp,  exp2,  and  exp10,  f (+∞)  is  +∞ and  f (−∞)  is  +0  with  no  exception.  For  the 
operations expm1, exp2m1, and exp10m1, f (+∞) is +∞ and f (−∞) is −1 with no exception.

For the operations log, log2, log10, logp1, log2p1, and log10p1,  f (+∞) is +∞ with no exception. For the 
operations log, log2, and log10, f (±0) is −∞ and signals the divideByZero exception, and f (1) is +0.  For 
the operations logp1, log2p1, and log10p1, f (−1) is −∞ and signals the divideByZero exception.

For the hypot operation, hypot(±0, ±0) is +0, hypot(±∞, qNaN) is +∞, and hypot(qNaN, ±∞) is +∞.

rSqrt(+∞) is +0 with no exception.  rSqrt(±0) is ±∞ and signals the divideByZero exception.

For the  compound,  rootn,  and  pown operations,  n is a finite integral  value in  integralFormat.  When 
integralFormat is a floating-point format, the behavior of  these  operations is language-defined when the 
second operand is non-integral or infinite. 

For the compound operation:
compound (x, 0) is 1 for x ≥  −1 or quiet NaN
compound (−1, n) is +∞ and signals the divideByZero exception for n < 0 
compound (−1, n) is +0 for n > 0
compound (±0, n) is 1
compound (+∞, n) is +∞ for n > 0
compound (+∞, n) is +0 for n < 0
compound (x, n) is qNaN and signals the invalid operation exception for x < −1
compound (qNaN, n) is qNaN for n ≠ 0.

For the rootn operation:
rootn (±0, n) is ±∞ and signals the divideByZero exception for odd n < 0
rootn (±0, n) is +∞ and signals the divideByZero exception for even n < 0 
rootn (±0, n) is +0 for even n > 0
rootn (±0, n) is ±0 for odd n > 0
rootn (+∞, n) is +∞ for n > 0
rootn (−∞, n) is −∞ for odd n > 0
rootn (−∞, n) is qNaN and signals the invalid operation exception for even n > 0
rootn (+∞, n) is +0 for n < 0
rootn (−∞, n) is −0 for odd n < 0
rootn (−∞, n) is qNaN and signals the invalid operation exception for even n < 0.

NOTE — rootn (−0, 2) differs from squareRoot(−0) because they have different consistency 
considerations.
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For the pown operation:
pown (x, 0) is 1 if x is not a signaling NaN
pown (±0, n) is ±∞ and signals the divideByZero exception for odd n < 0 
pown (±0, n) is +∞ and signals the divideByZero exception for even n < 0
pown (±0, n) is +0 for even n > 0
pown (±0, n) is ±0 for odd n > 0
pown (+∞, n) is +∞ for n > 0
pown (−∞, n) is −∞ for odd n > 0
pown (−∞, n) is +∞ for even n > 0
pown (+∞, n) is +0 for n < 0
pown (−∞, n) is −0 for odd n < 0
pown (−∞, n) is +0 for even n < 0.

For the pow operation: 
pow (x, ±0) is 1  if x is not a signaling NaN
pow (±0, y) is ±∞ and signals the divideByZero exception for y an odd integer < 0
pow (±0, −∞) is +∞ with no exception 
pow (±0, +∞) is +0 with no exception
pow (±0, y) is ±0 for finite y > 0 an odd integer 
pow (−1, ±∞) is 1 with no exception
pow (+1, y) is 1 for any y (even a quiet NaN)
pow (x, +∞) is +0 for  −1 < x < 1
pow (x, +∞) is +∞ for x < −1 or for 1 < x (including ±∞)
pow (x, −∞) is +∞ for −1 < x < 1
pow (x, −∞) is +0 for x < −1 or for 1 < x (including ±∞)
pow (+∞, y) is +0 for a number y  <  0
pow (+∞, y) is +∞ for a number y  >  0
pow (−∞, y) is −0 for finite y  <  0 an odd integer 
pow (−∞, y) is −∞ for finite y  >  0 an odd integer
pow (−∞, y) is +0 for finite y  <  0 and not an odd integer
pow (−∞, y) is +∞ for finite y  >  0 and not an odd integer

 pow (±0, y) is +∞ and signals the divideByZero exception for finite y < 0 and not an odd integer
pow(±0, y) is +0 for finite y > 0 and not an odd integer
pow(x, y) signals the invalid operation exception for finite x < 0 and finite non-integer y.

NOTE — To support special cases that could occur in decimal floating-point numbers but not in binary
floating-point numbers when x is negative and y is not an odd integer, language standards might
define another power operation, powd, whose specification expands the last five rules above as:

powd (−∞, y) is +0 for finite y  <  0 an even integer
powd (−∞, y) is +∞ for finite y  >  0 an even integer

 powd (+0, y) is +∞ and signals the divideByZero exception for finite y < 0 and not an odd integer
powd (−0, y) is +∞ and signals the divideByZero exception for finite y < 0 an even integer
powd (+0, y) is +0 for finite y > 0 and not an odd integer
powd(−0, y) is +0 for finite y > 0 an even integer
powd (−1, y) is +1 for finite non-integer y whose simplest form is m / n with m even and n odd
powd (−1, y) is −1 for finite non-integer y whose simplest form is m / n with both m and n odd
powd (−1, y) is qNaN and signals the invalid operation exception for finite non-integer y whose
simplest form is m / n with n even
powd(x, y) is powd (−1, y) × powd (abs(x), y) for finite non-integer y and negative x (including −0,
finite negative x, and −∞).

For the powr operation:
powr (x, ±0) is 1 for finite x > 0
powr (±0, y) is +∞ and signals the divideByZero exception for finite y < 0
powr (±0, −∞) is +∞
powr (±0, y) is +0 for y > 0
powr (+1, y) is 1 for finite y
powr (x, y) signals the invalid operation exception for x < 0
powr (±0, ±0) signals the invalid operation exception 
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powr (+∞, ±0) signals the invalid operation exception 
powr (+1, ±∞) signals the invalid operation exception
powr (x, qNaN) is qNaN for x ≥ 0
powr (qNaN, y) is qNaN.

NOTE — This standard defines several operations to raise x to a given power:
pown(x, n) accepts integral powers n only, for any x
pow(x, y) behaves the same as pown(x, n) when y contains a value which is equal to an integral n
powr(x, y) is defined by considering exp(y × log(x)), and thus its domain excludes negative x.

9.2.2 Preferred exponents  9.2.2.0

The preferred exponent for operations in sub-clause 9.2 is 0, except for the following:

Q(hypot(x, y)) is min(Q(x), Q(y))
Q(rSqrt(x)) is −floor(Q(x)/2)
Q(compound(x, n)) is floor(n × min(0, Q(x)))
Q(rootn(x, n)) is floor(Q(x)/n)
Q(pow(x, y)) is floor(y × Q(x))
Q(pown(x, n)) is floor(n × Q(x))
Q(powr(x, y)) is floor(y × Q(x)).
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9.3 Dynamic mode operations  9.3.0

9.3.1 Operations on individual dynamic modes  9.3.1.0

Language  standards  that  define  dynamic  mode specification  (see 4.2)  for  binary  or  decimal  rounding 
directions shall define corresponding non-computational operations to get and set the applicable value of 
each specified dynamic mode rounding direction. The applicable value of the rounding direction might 
have been set by a constant attribute specification or a dynamic-mode assignment, according to the scoping 
rules  of  the  language.  The  effect  of  these  operations,  if  used  outside  the  static  scope  of  a  dynamic 
specification for a rounding direction, is language-defined (and may be unspecified).

Language standards that define dynamic mode specification for binary rounding direction shall define:

― binaryRoundingDirection getBinaryRoundingDirection(void)

― void setBinaryRoundingDirection(binaryRoundingDirection).

Language standards that define dynamic mode specification for decimal rounding direction shall define:

― decimalRoundingDirection getDecimalRoundingDirection(void)

― void setDecimalRoundingDirection(decimalRoundingDirection).

Language standards that define dynamic mode specification for other attributes shall define corresponding  
operations to get and set those dynamic modes.

9.3.2 Operations on all dynamic modes  9.3.2.0

Language standards that define dynamic mode specification shall define the following non-computational 
operations for all dynamic-specifiable modes collectively:

― modeGroup saveModes(void)

Saves the values of all dynamic-specifiable modes as a group.

― void restoreModes(modeGroup)

Restores the values of all dynamic-specifiable modes as a group.

― void defaultModes(void) 

Sets all dynamic-specifiable modes to default values.

modeGroup represents  the  set  of  dynamically-specifiable  modes.  The return  values  of  the  saveModes 
operation are for use as operands of the restoreModes operation in the same program; this standard does 
not require support for any other use.
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9.4 Reduction operations  9.4.0

Language standards should define the following reduction operations for all supported arithmetic formats. 
Unlike the other operations in this standard, these operate on vectors of operands in one format and return a 
result in the same format. Implementations may associate in any order or evaluate in any wider format.

The vector  length  operand shall  have  integral  values  in  a  language-defined  format,  integralFormat.  If 
integralFormat is a floating-point format, it shall have a precision at least as large as  sourceFormat and 
have the same radix. The behavior of these operations is language-defined when the vector length operand  
is non-integral or negative.

Numerical  results  and  exceptional  behavior,  including  the  invalid  operation  exception  and  its  sub-
exceptions, might differ due to the precision of intermediates and the order of evaluation. However, only  
one  exception  is  signaled  per  reduction  operation  invocation;  exceptions  are  not  signaled  for  each 
exceptional intermediate operand or result. All reduction operations signal the invalid operation exception 
if any operand is a signaling NaN. Once an invalid operation condition is signaled, due to signaling NaN,  
∞ − ∞, or 0 × ∞, processing of vector elements may stop.

Under default exception handling, inexact is also signaled when these operations signal overflow or inexact 
underflow. Otherwise whether the inexact exception is signaled is not specified. 

Preferred exponents and cohort members of results are not specified for these operations. 

Language standards should define the following sum reductions:

― sourceFormat sum(source vector, integralFormat) 
sum( p, n) is an implementation-defined approximation to ∑(i=1, n) pi, where p is a vector of length n.

― sourceFormat dot(source vector, source vector, integralFormat) 
dot( p, q, n)  is  an  implementation-defined  approximation  to ∑(i=1, n) ( pi × qi),  where  p and  q are 
vectors of length n.

― sourceFormat sumSquare(source vector, integralFormat) 
sumSquare( p, n) is an implementation-defined approximation to ∑(i=1, n) pi

2, where p is a vector of 
length n.

― sourceFormat sumAbs(source vector, integralFormat) 
sumAbs( p, n) is an implementation-defined approximation to ∑(i=1, n) | pi|,  where  p is a vector of 
length n.

For sum and dot, if any operand element is a NaN a quiet NaN is returned. A product of ∞ × 0 signals the 
invalid operation exception. A sum of infinities of different signs signals the invalid operation exception. 
Otherwise, a sum of infinities of the same sign returns that infinity  and does not signal any exception. 
Otherwise, sums are computed with no avoidable intermediate exception conditions in the calculation and 
the final result is determined from that intermediate result. If the final result overflows, signal overflow. If 
the final result underflows, signal underflow.

For  sumSquare and  sumAbs,  if any operand element is an infinity,  +∞ is returned.  Otherwise,  if any 
operand element  is a NaN a quiet  NaN is returned.  Otherwise,  sums are  computed  with no avoidable 
intermediate exception conditions in the calculation and the final result is determined from that. If the final  
result overflows, signal overflow. If the final result underflows, signal underflow.

When the vector length operand is zero, the return value is +0 without exception.

Language standards should define the following scaled product reduction operations:

― (sourceFormat, integralFormat) scaledProd(source vector, integralFormat)
scaledProd( p,  n)  returns  {pr,  sf}  so  that  scaleB( pr,  sf )  is  an  implementation-defined 
approximation to ∏(i = 1, n) pi, , where p is a vector of length n.

― (sourceFormat, integralFormat) scaledProdSum(source vector, source vector, integralFormat) 
scaledProdSum( p,  q,  n)  returns  {pr,  sf}  so  that  scaleB( pr,  sf )  is an  implementation-defined 
approximation to ∏(i = 1, n) (pi + qi), where p and q are vectors of length n.
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― (sourceFormat, integralFormat) scaledProdDiff(source vector, source vector, integralFormat) 
scaledProdDiff( p,  q,  n)  returns  {pr,  sf}  so  that  scaleB( pr,  sf )  is  an  implementation-defined 
approximation to ∏(i = 1, n) (pi − qi), where p and q are vectors of length n.

The vector operands and the scaled product member of the result shall be of the same format. The vector  
length operand and the scale factor member of the result shall have integral values and should be of the 
same language-defined format, integralFormat. 

For  scaledProd,  scaledProdSum, and  scaledProdDiff, if any operand element is a NaN a quiet NaN is 
returned. A product of ∞ × 0 signals the invalid operation exception. A sum of infinities of different signs 
(or a difference of infinities of like signs) signals the invalid operation exception. Otherwise, if there are 
infinities  in  the  product,  an  infinity  is  returned  and  the invalid  operation exception  is  not  signaled. 
Otherwise, if there are zeros in the product, a zero is returned and the invalid operation exception is not 
signaled. 

In the absence of any of the above, the scaled result,  pr, shall not be affected by overflow or underflow. 
These operations should not signal the divideByZero exception, even if implemented with  logB. If the 
scale factor is too large in magnitude to be represented exactly in the format of  sf,  then these operations 
shall  signal  the invalid operation exception  and by default  return quiet  NaN for  pr,  and also for  sf  if 
integralFormat is a floating-point format. When the vector length operand is zero,  pr is 1 and  sf  is +0 
without exception.
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9.5 Augmented arithmetic operations  9.5.0

Language standards should define for binary formats, to be implemented according to  9.1, this clauseʼs 
operations  as  is  appropriate  to  the  language.  These  homogeneous  operations  produce  a  pair  of  
sourceFormat results  denoted  (sourceFormat,  sourceFormat).  This  standard  recommends  only  the 
operations for binary formats because the requirements to address augmenting decimal format arithmetic 
are not yet determined. 

This standard specifies a single rounding direction to be used in the operations in this subclause, defined as 
roundTiesTowardZero: the floating-point number nearest to the infinitely precise result shall be delivered; 
if the two nearest floating-point numbers bracketing an unrepresentable infinitely precise result are equally 
near,  the  one  with  smaller  magnitude  shall  be  delivered.   However,  an  infinitely  precise  result  with 
magnitude greater than  b emax  ×(b − ½ b 1−p)  shall round to ∞ with no change in sign; here  emax and  p are 
determined by the destination format (see 3.3).  Thus, roundTiesTowardZero carries all overflows (see 7.4) 
to  ∞ with  the  sign  of  the  intermediate  result.   An  infinitely  precise  result  with  magnitude  equal  to  
b emax  ×(b − ½ b 1−p) shall  round to b emax  ×(b − b 1−p) with  no change in sign.

In the specification in this subclause, roundTiesTowardZero(x operation  y) denotes the infinitely precise 
result of x operation y rounded using roundTiesTowardZero, where operation is +, −, or ×.

― (sourceFormat, sourceFormat) augmentedAddition(source, source) 

The operation augmentedAddition(x, y) computes both the infinitely precise sum x + y rounded to 
sourceFormat using roundTiesTowardZero and the error in rounding the sum when the rounded 
x + y is finite. If roundTiesTowardZero(x + y) is a finite number,  augmentedAddition produces 
roundTiesTowardZero(x + y) and  x + y − roundTiesTowardZero(x + y),  where  if  x + y − roundTies-
TowardZero(x + y) equals zero, it is returned with the sign of roundTiesTowardZero(x + y). 

This  operationʼs  exceptional  behavior  is  the  same  as  that  of  addition (see 5.4.1)  using 
roundTiesTowardZero, with the following additional specifications. The operation propagates a 
NaN as both results if any input is a NaN (see 6.2.3).  If roundTiesTowardZero(x + y) is infinite, 
both produced results are the result of roundTiesTowardZero(x + y) and the operation signals like 
addition(x , y)  using  roundTiesTowardZero.  If  the  operation  signals  the  invalid  operation 
exception, it produces the same quiet NaN for both outputs. If x + y − roundTiesTowardZero(x + y) 
is non-zero and lies strictly between  ±b emin ,  the underflow exception  shall  be signaled.  Under 
default exception handling, the operation signals inexact only when roundTiesTowardZero(x + y) 
overflows; the operationʼs subnormal and zero results are exact.

― (sourceFormat, sourceFormat) augmentedSubtraction(source, source) 

The operation  augmentedSubtraction(x,  y) computes both the infinitely precise difference  x − y 
rounded to  sourceFormat using  roundTiesTowardZero and the error in rounding the difference 
when  the  rounded  x − y is  finite.   If  roundTiesTowardZero(x − y) is  a  finite  number, 
augmentedSubtraction produces  roundTiesTowardZero(x − y) and  x − y − roundTiesToward-
Zero(x − y), where if x − y − roundTiesTowardZero(x − y) equals zero, it is returned with the sign of 
roundTiesTowardZero(x − y).

This  operationʼs  exceptional  behavior  is  the  same  as  that  of  subtraction (see 5.4.1)  using 
roundTiesTowardZero, with the following additional specifications. The operation propagates a 
NaN as both results if any input is a NaN (see 6.2.3). If  roundTiesTowardZero(x − y) is infinite, 
both produced results are the result of roundTiesTowardZero(x − y) and the operation signals like 
subtraction(x , y)  using  roundTiesTowardZero.  If  the  operation  signals  the  invalid  operation 
exception, it produces the same quiet NaN for both outputs. If x − y − roundTiesTowardZero(x − y) 
is non-zero and lies strictly between  ±b emin ,  the underflow exception  shall  be signaled.  Under 
default exception handling, the operation signals inexact only when roundTiesTowardZero(x − y) 
overflows; the operationʼs subnormal and zero results are exact.
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― (sourceFormat, sourceFormat) augmentedMultiplication(source, source)

The operation  augmentedMultiplication(x,  y) computes both the infinitely precise product  x × y 
rounded to sourceFormat using roundTiesTowardZero and the error in rounding the product when 
the rounded x × y is finite, under the conditions described below. If roundTiesTowardZero(x × y) is 
a  finite  number  and  x × y − roundTiesTowardZero(x × y)  can  be  represented  exactly  as  a  finite 
number  in sourceFormat,  augmentedMultiplication produces roundTiesTowardZero(x × y)  and 
x × y − roundTiesTowardZero(x × y), where if  x × y − roundTiesTowardZero(x × y) equals zero, it is 
returned with the sign of roundTiesTowardZero(x × y).

This  operationʼs  exceptional  behavior  is  the same as  that  of  multiplication (see 5.4.1)  using 
roundTiesTowardZero, with the following additional specifications. The operation propagates a 
NaN as both results if any input is a NaN (see 6.2.3). If  roundTiesTowardZero(x × y) is infinite, 
both produced results are the result of  roundTiesTowardZero(x × y).  If the operation signals the 
invalid  operation  exception,  it  produces  the  same  quiet  NaN  for  both  outputs.  If  
x × y − roundTiesTowardZero(x × y)  is  non-zero  and  lies  strictly  between  ±b emin ,  the  underflow 
exception  shall  be  signaled.  If  x × y − roundTiesTowardZero(x × y)  is  finite  and  non-zero  and 
cannot be represented exactly in sourceFormat (because some non-zero digits lie strictly between 
±b(emin− p +1)),  the  results  are  roundTiesTowardZero(x × y)  and  the  infinitely  precise  result  of 
x × y − roundTiesTowardZero(x × y)  rounded  to  sourceFormat using  roundTiesTowardZero. 
Default exception handling raises the underflow flag and signals the inexact exception in this case.  
Otherwise,  under  default  exception  handling,   the  operation  signals  inexact  only  when 
roundTiesTowardZero(x × y) overflows.

9.6 Minimum and maximum operations  9.6.0

Language standards should define the following homogeneous general-computational  operations for all 
supported arithmetic formats:

― sourceFormat minimum(source, source)
sourceFormat minimumNumber(source, source)
sourceFormat maximum(source, source)
sourceFormat maximumNumber(source, source)

minimum(x, y) is x if x < y, y if y < x, and a quiet NaN if either operand is a NaN, according to 6.2. 
For this operation, −0 compares less than +0.  Otherwise (i.e., when  x = y and signs are the same) 
it is either x or y.

minimumNumber(x, y) is x if x < y, y if y < x, and the number if one operand is a number and the 
other is a NaN.  For this operation, −0 compares less than +0.  If x = y and signs are the same it is 
either  x or  y. If  both operands are NaNs, a quiet NaN is returned, according to  6.2.  If  either 
operand is a signaling NaN, an invalid operation exception is signaled, but unless both operands 
are NaNs, the signaling NaN is otherwise ignored and not converted to a quiet NaN as stated in  
6.2 for other operations.

maximum(x, y) is x if x > y, y if y > x, and a quiet NaN if either operand is a NaN, according to 6.2. 
For this operation,  +0 compares greater than  −0.  Otherwise (i.e., when  x = y  and signs are the 
same) it is either x or y.

maximumNumber(x, y) is x if x > y, y if y > x, and the number if one operand is a number and the 
other is a NaN.  For this operation, +0 compares greater than −0.  If x = y and signs are the same it 
is either  x or  y.  If both operands are NaNs, a quiet NaN is returned, according to  6.2.  If either 
operand is a signaling NaN, an invalid operation exception is signaled, but unless both operands 
are NaNs, the signaling NaN is otherwise ignored and not converted to a quiet NaN as stated in  
6.2 for other operations.
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― sourceFormat minimumMagnitude(source, source)
sourceFormat minimumMagnitudeNumber(source, source)
sourceFormat maximumMagnitude(source, source)
sourceFormat maximumMagnitudeNumber(source, source)

minimumMagnitude(x, y) is x if | x| < | y|, y if | y| < | x|, otherwise minimum(x, y).

minimumMagnitudeNumber(x, y) is x if | x| < | y|, y if | y| < | x|, otherwise minimumNumber(x, y).

maximumMagnitude(x, y) is x if | x| > | y|, y if | y| > | x|, otherwise maximum(x, y).

maximumMagnitudeNumber(x, y) is x if | x| > | y|, y if | y| > | x|, otherwise maximumNumber(x, y).

The preferred exponent is Q(x) if x is the result, Q( y) if y is the result.

NOTE — The  quantum  of  the  result  might  differ  among  implementations  when  x and  y are 
different representations of the same cohort in decimal floating-point numbers.
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9.7 NaN payload operations  9.7.0

Language standards should define the following homogeneous quiet-computational operations to provide 
generic access to payloads.  These operations signal no exceptions. 

― sourceFormat getPayload(source)

If the source operand is a NaN, the result is the payload as a non-negative floating-point integer.  
If the source operand is not a NaN, the result is −1.

The preferred exponent is 0.

― sourceFormat setPayload(source)

If  the  source  operand  is  a  non-negative  floating-point  integer  whose  value  is  one  of  an 
implementation-defined set of admissible payloads for the operation, the result is a quiet NaN 
with that payload. Otherwise, the result is +0, with a preferred exponent of 0.

― sourceFormat setPayloadSignaling(source)

If  the  source  operand  is  a  non-negative  floating-point  integer  whose  value  is  one  of  an 
implementation-defined set of admissible payloads for the operation, the result is a signaling NaN 
with that payload. Otherwise, the result is +0, with a preferred exponent of 0.

NOTE — An implementation may restrict the payloads that can be set. Thus  getPayload might return a 
value that is not an admissible operand for setPayload or setPayloadSignaling.  (A program can check by 
applying the isNaN operation to the result of setPayload or setPayloadSignaling.)
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10. Expression evaluation  10.0

10.1 Expression evaluation rules  10.1.0

Clause  5 of  this standard  specifies  the result  of  a  single arithmetic  operation.  Every  operation  has an  
explicit or implicit destination. For numerical results, one rounding occurs to fit the exact result into a  
destination format. That result is reproducible in that  the same operation applied to the same operands 
under the same attributes produces the same result on all conforming implementations in all languages.  

Programming language standards might define syntax for expressions that combine one or more operations 
of this standard, producing a result to fit an explicit or implicit final destination. When a variable with a  
declared format is a final destination, as in format conversion to a variable, that declared format of that 
variable governs its rounding. The format of an implicit destination, or of an explicit destination without a 
declared format, is defined by language standard expression evaluation rules.

A  programming  language  standard  specifies  one  or  more  rules  for  expression  evaluation.  A rule  for  
expression evaluation encompasses:

― The order of evaluation of operations.

― The formats of implicit intermediate results.

― When assignments to explicit destinations round once, and when twice (see below).

― The formats of parameters to generic and non-generic operations.

― The formats of results of generic operations.

Language  standards  might  permit  the  user  to  select  different  language-defined  rules  for  expression 
evaluation, and might allow implementations to define additional expression evaluation rules and specify 
the default  expression evaluation  rule;  in these cases language standards should define  preferredWidth 
attributes as specified below.

Some language standards implicitly convert operands of floating-point operations to a common format.  
Typically,  operands  are  promoted  to  the  widest  format  of  the  operands  or  a  preferredWidth  format. 
However, if the common format is not a superset of the operand formats, then the conversion of an operand 
to the common format might not preserve the values of the operands. Examples include:

― Converting a fixed-point or integer operand to a floating-point format with less precision.

― Converting a floating-point operand from one radix to another.

― Converting a floating-point operand to a format with the same radix but with either less range or  
less precision.

Language standards should disallow, or provide warnings for, mixed-format operations that would cause 
implicit conversion that might change operand values.

10.2 Assignments, parameters, and function values  10.2.0

The last operation of many expressions is an assignment to an explicit final destination variable. As a part  
of  expression  evaluation  rules,  language  standards  shall  specify  when  the  next  to  last  operation  is  
performed by rounding at most once to the format of the explicit final destination, and when by rounding 
as many as two times, first to an implicit intermediate format, and then to the explicit final destination 
format. The latter case does not correspond to any single operation in Clause 5 but implies a sequence of 
two such operations. 

In either case, implementations shall never use an assigned-to variable’s wider precursor in place of the 
assigned-to variable’s stored value when evaluating subsequent expressions.

When a function has explicitly-declared formal parameter types in scope, the actual parameters shall be 
rounded if necessary to those explicitly-declared types. When a function does not have explicitly-declared 
formal parameter types in scope, or is a generic operation, the actual parameters shall be rounded according 
to language-defined rules. 
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When a function explicitly declares the type of its return value, the return value shall be rounded to that  
explicitly-declared  type.  When  the  return  value  type  of  a  function  is  implicitly  defined  by  language 
standard rules, the return value shall be rounded to that implicitly-defined type.

10.3 preferredWidth attributes for expression evaluation  10.3.0

Language standards defining generic operations, supporting more than one arithmetic format in a particular  
radix, and defining or allowing more than one way to map expressions in that language into the operations 
of this standard, should define preferredWidth attributes for each such radix.  preferredWidth attributes are 
explicitly enabled by the user and specify one aspect  of expression evaluation: the implicit destination 
format of language-defined generic operations.  

In this standard, a computational operation that returns a numeric result first produces an unrounded result  
as an exact number of infinite precision. That unrounded result is then rounded to a destination format. For  
certain  language-defined  generic  operations,  that  destination  format  is  implied  by  the  widths  of  the 
operands and by the preferredWidth attribute currently in effect.

The following preferredWidth attributes disable and enable widening of  operations in expressions that 
might be as simple as z = x + y or that might involve several operations on operands of different formats.

― preferredWidthNone attribute:  Each  such  language  standard should  define,  and  require 
implementations  to  provide,  means  for  users  to  specify  a  preferredWidthNone  attribute  for  a 
block. Destination width is the maximum of the operand widths: generic operations with floating-
point  operands  and  results  of  the  same  radix  round  results  to  the  widest  format  among  the 
operands.

― preferredWidthFormat attributes:  Each  such  language  standard  should  define,  and  require 
implementations to provide, means for users to specify a preferredWidthFormat attribute for a 
block. The destination width is typically the maximum of the width of the preferredWidthFormat 
and operand widths: affected operations with floating-point  operands and results (of  the same 
radix)  round results  to the widest  format  among the operands and the preferredWidthFormat. 
Affected  operations  do  not  narrow  their  operands,  which  might  be  widened  expressions. 
preferredWidthFormat affects only destinations in the radix of that format.

preferredWidth attributes do not affect the width of the final rounding to an explicit destination with a 
declared format, which is always rounded to that format. preferredWidth attributes do not affect explicit 
format conversions within expressions; they are always rounded to the format specified by the conversion.
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10.4 Literal meaning and value-changing optimizations  10.4.0

Language standards should define the literal meaning of the source code of a program that translates to 
operations of  this  standard.  The literal  meaning  is contained  in the order  of  operations  (controlled  by 
precedence rules and parentheses), destination formats (implicit and explicit) for operations, and the scope 
of attribute or dynamic mode specifications. A language standard should require that by default, when no 
optimizations  are  enabled  and  no  alternate  exception  handling  is  enabled,  language  implementations 
preserve the literal meaning of the source code. That means that language implementations do not perform 
value-changing transformations that change the numerical results or the flags raised.

A language implementation preserves the literal meaning of the source code by, for example:  

― Preserving the order of operations defined by explicit sequence or parenthesization.

― Preserving the formats of explicit and implicit destinations.

― Applying the properties of real numbers to floating-point expressions only when they preserve 
numerical results and flags raised:

― Applying the commutative law only to operations, such as addition and multiplication,  for 
which  neither  the  numerical  values  of  the  results,  nor  the  representations  of  the  results,  
depend on the order of the operands.

― Applying the associative or distributive laws only when they preserve numerical results and 
flags raised.

― Applying the identity laws (0 + x  and  1 × x) only when they preserve numerical results and 
flags raised.

― Preserving  the  order  of  operations  affected  by  attributes  or  dynamic  modes  with  respect  to 
operations that modify attributes or dynamic modes; most computational operations are affected 
by attributes or dynamic modes.

― Preserving  the  order  of  operations  that  restore,  lower,  or  raise  status  flags  with  respect  to 
operations that test or save status flags; most computational operations can raise status flags.

The following value-changing transformations, among others, preserve the literal meaning of the source 
code:

― Applying the identity property 0  + x when x is not zero and is not a signaling NaN and the result 
has the same exponent as x.

― Applying the identity property 1  × x when x  is not a signaling NaN and the result has the same 
exponent as x.

― Changing the payload or sign bit of a quiet NaN.

― Changing the order in which different flags are raised.

― Changing the number of times a flag is raised when it is raised at least once.

A language standard should also define, and require implementations to provide, attributes that allow and 
disallow value-changing optimizations, separately or collectively, for a block. These optimizations might 
include, but are not limited to:

― Applying the associative or distributive laws.

― Synthesis of a fusedMultiplyAdd operation from a multiplication and an addition.

― Synthesis  of  a  formatOf operation  from  an  operation  and  a  conversion  of  the  result  of  the 
operation.

― Use of wider intermediate results in expression evaluation.

Programmers can allow these optimizations when the corresponding changes in numerical values or status 
flags are acceptable.
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11. Reproducible floating-point results  11.0

Reproducible floating-point numerical and status flag results are possible for reproducible operations, with  
reproducible attributes, operating on reproducible formats, defined for each language as follows:

― A reproducible operation is one of the operations described in Clause 5 or is a supported operation 
from 9.2, 9.3, 9.5 or 9.6.

― A reproducible attribute is an attribute that is required by a language standard in all implement-
ations (see Clause 4).

― A  reproducible status flag is one raised by the invalid operation, division by zero, or overflow 
exceptions (see 7.2, 7.3, and 7.4).

― A reproducible format is an arithmetic format that is also an interchange format (see Clause 3). 

Programs that can be reliably translated into an explicit or implicit sequence of reproducible operations on  
reproducible formats produce reproducible results. That is, the same numerical and reproducible status flag 
results are produced.

Reproducible  results  require  cooperation  from  language  standards,  language  processors,  and  users.  A 
language  standard  should  support  reproducible  programming.  Any  conforming  language  standard 
supporting reproducible programming shall:

― Support the reproducible-results attribute.

― Support a reproducible format by providing all the reproducible operations for that format.

― Provide  means to  explicitly  or  implicitly  specify  any  sequence  of  reproducible  operations  on 
reproducible formats supported by that language.

and shall explicitly define:

― Which language element corresponds to which supported reproducible format.

― How to  specify  in  the  language  each  reproducible  operation  on  each  supported  reproducible  
format.

― One or more unambiguous expression evaluation rules that shall be available for user selection on  
all  conforming  implementations  of  that  language  standard,  without  deferring  any  aspect  to 
implementations. If a language  standard permits more than one interpretation of a sequence of 
operations from this standard it shall provide a means of specifying an unambiguous evaluation of 
that sequence (such as by prescriptive parentheses).

― A reproducible-results attribute, as described in  4.1, with values to indicate when reproducible 
results are required or reproducible results are not required. Language standards define the default 
value. When the user selects reproducible results required:

― Execution behavior shall preserve the literal meaning (see 10.4) of the source code.

― Conversions to and from external decimal character sequence shall not limit the maximum 
supported precision H (see 5.12.2).

― Language processors shall  indicate where reproducibility of  operations that  can affect  the 
results of floating-point operations can not be guaranteed.

― Only default exception handling (see Clause 7) shall be used.

If a language supports separately compiled routines (e.g., library routines for common functions) 
there must be some mechanism to ensure reproducible behavior.

Users  obtain  the  same  floating-point  numerical  and  reproducible  status  flag results,  on  all  platforms 
supporting such a language standard, by writing programs that:

― Use the reproducible results required attribute.

― Use only floating-point formats that are reproducible formats.

― Use only reproducible floating-point operations explicitly, or implicitly via expressions.

― Use only attributes required in all implementations for rounding, and preferredWidth.
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― Use only integer and non-floating-point formats supported in all implementations of the language 
standard,  and  only  in  ways  that  avoid  signaling  integer  arithmetic  exceptions  and  other 
implement-ation-defined exceptions.

and that

― Do not use value-changing optimizations (see 10.4).

― Do not exceed system limits.

― Do not use fusedMultiplyAdd(0, ∞, c) or fusedMultiplyAdd(∞, 0, c) where c is a quiet NaN.

― Do not use signaling NaNs.

― Do not depend on the quantum of a decimal result for the minimum and maximum operations of 
9.6 when x and y are equal.

― Do not depend on quiet NaN propagation, payloads, or sign bits.

― Do not depend on the underflow and inexact exceptions and flags.

― Do not depend on the quantum of the results of operations on decimal formats in Table 9.1.

― Do not depend on encodings.
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Annex B (inform ative) Prog ram  debu gg in g  su pp o rt 

(informative)

Program debugging support

B.1 Overview  0

Implementations of this standard vary in the priorities they assign to characteristics like performance and 
debuggability (the ability to debug).  This annex describes some programming environment features that 
should  be  provided  by  implementations  that  intend  to  support  maximum  debuggability.  On  some 
implementations, enabling some of these abilities might be very expensive in performance compared to 
fully optimized code.

Debugging  includes finding the origins of  and reasons for  numerical  sensitivity or  exceptions,  finding 
programming errors such as accessing uninitialized storage that are only manifested as incorrect numerical 
results, and testing candidate fixes for problems that are found.

B.2 Numerical sensitivity  0

Debuggers  should  be  able  to  alter  the  attributes  governing  handling  of  rounding  or  exceptions  inside 
subprograms, even if the source code for those subprograms is not available; dynamic modes might be  
used for this purpose. For instance, changing the rounding direction or precision during execution might  
help identify subprograms that  are unusually sensitive to rounding,  whether  due to ill-condition of  the 
problem being solved, instability in the algorithm chosen, or an algorithm designed to work in only one  
rounding-direction attribute. The  ultimate  goal is to determine responsibility for numerical misbehavior, 
especially  in  separately-compiled  subprograms.  The  chosen  means  to  achieve  this  ultimate  goal  is  to 
facilitate the production of small reproducible test cases that elicit unexpected behavior.

B.3 Numerical exceptions  0

Debuggers should be able to detect, and pause the program being debugged, when a prespecified exception  
is  signaled  within  a  particular  subprogram,  or  within  specified  subprograms  that  it  calls.  To  avoid 
confusion, the pause should happen soon after the event which precipitated the pause. After such a pause, 
the debugger should be able to continue execution as if the exception had been handled by an alternate  
handler if specified, or otherwise by the default handler. The pause is associated with an exception and  
might not be associated with a well-defined source-code statement boundary; insisting on pauses that are  
precise with respect to the source code might well inhibit optimization.

Debuggers should be able to raise and lower status flags.

Debuggers should be able to examine all the status flags left standing at the  end of a subprogram’s or 
whole program’s execution. These capabilities should be enhanced by implementing each status flag as a 
reference to a detailed record of its origin and history.  By default,  even a subprogram presumed to be 
debugged should at least insert a reference to its name in a status flag and in the payload of any new quiet 
NaN produced as a floating-point result of an invalid operation. These references indicate the origin of the 
exception or NaN.

Debuggers should be able to maintain tables of histories of quiet NaNs, using the NaN payload to index the 
tables.

Debuggers should be able to pause at every floating-point operation, without disrupting a program’s logic  
for  dealing  with  exceptions.  Debuggers  should  display  source  code  lines  corresponding  to  machine 
instructions whenever possible.

For various purposes a signaling NaN could be used as a reference to a record containing a numerical value 
extended by an exception history, wider exponent, or wider significand. Consequently debuggers should be 
able  to  cause  bitwise  operations like  negate,  abs,  and  copySign,  which  are  normally  silent,  to  detect 
signaling NaNs. Furthermore the signaling attribute of signaling NaNs should be able to be enabled or  
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disabled globally or within a particular scope, without disrupting or being affected by a program’s logic for  
default or alternate handling of other invalid operation exceptions.

B.4 Programming errors  0

Debuggers should be able to define some or all NaNs as signaling NaNs that signal an exception every time 
they are used. In formats with superfluous bit patterns not generated by arithmetic, such as non-canonical  
significand fields in decimal formats, debuggers should be able to enable signaling-NaN behavior for data  
containing such bit patterns. 

Debuggers should be able to set uninitialized storage and variables, such as heap and common space, to 
specific bit patterns such as all-zeros or all-ones which are helpful for finding inadvertent usages of such  
variables; those usages might prove refractory to static analysis if they involve multiple aliases to the same 
physical storage.

More helpful,  and requiring correspondingly  more  software  coordination to implement,  are debugging 
environments  in  which  all  floating-point  variables,  including  automatic  variables  each  time  they  are 
allocated on a stack, are initialized to signaling NaNs that reference symbol table entries describing their  
origin in terms of the source program. Such initialization would be especially useful in an environment in 
which the debugger is able to pause execution when a prespecified exception is signaled or flag is raised.

P754-2019 2.63
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Annex C (inform ative) List of op eratio ns

(informative)

List of Operations 0

abs   35, 38, 50, 79
acos   60, 61
acosh   60-62
acosPi   60, 61
addition   33, 48, 52, 68, 74
asin   60, 61
asinh   60-62
asinPi   60, 61
atan   60-62
atan2   60, 61
atan2Pi   60-62
atanh   60-62
atanPi   60, 61
augmentedAddition   68
augmentedMultiplication   69
augmentedSubtraction   68
class   38
compareQuietEqual   37, 43
compareQuietGreater   37
compareQuietGreater   44
compareQuietGreaterEqual   37, 44
compareQuietGreaterUnordered   37, 44
compareQuietLess   37, 44
compareQuietLessEqual   37, 44
compareQuietLessUnordered   37, 44
compareQuietNotEqual   37, 43
compareQuietNotGreater   37, 44
compareQuietNotLess   37, 44
compareQuietOrdered   37, 44
compareQuietUnordered   37, 44
compareSignalingEqual   37, 44
compareSignalingGreater   37
compareSignalingGreater   43
compareSignalingGreaterEqual   37, 43
compareSignalingGreaterUnordered   37, 43
compareSignalingLess   37, 43
compareSignalingLessEqual   37, 43
compareSignalingLessUnordered   37, 43
compareSignalingNotEqual   37, 44
compareSignalingNotGreater   37, 43
compareSignalingNotLess   37, 43
compound   59, 62, 64
convertFormat   34
convertFromDecimalCharacter   34
convertFromHexCharacter   34
convertFromInt   33
convertToDecimalCharacter   34
convertToHexCharacter   34
convertToIntegerExactTiesToAway   34, 40
convertToIntegerExactTiesToEven   34, 40
convertToIntegerExactTowardNegative   34, 40
convertToIntegerExactTowardPositive   34, 40

convertToIntegerExactTowardZero   34, 40
convertToIntegerTiesToAway   34, 40
convertToIntegerTiesToEven   34, 40
convertToIntegerTowardNegative   34, 40
convertToIntegerTowardPositive   34, 40
convertToIntegerTowardZero   34, 40
copy   34-36, 50
copySign   35, 50, 79
cos   60, 61
cosh   60-62
cosPi   60, 61
decodeBinary   36
decodeDecimal   36
defaultModes   65
division   33, 48, 52, 53
dot   66
encodeBinary   36
encodeDecimal   36
exp   59, 61, 62
exp10   59, 61, 62
exp10m1   59, 61, 62
exp2   59, 61, 62
exp2m1   59, 61, 62
expm1   59, 61, 62
fusedMultiplyAdd   14, 33, 48, 50, 52, 74, 76
getBinaryRoundingDirection   65
getDecimalRoundingDirection   65
getPayload   71
hypot   59, 60, 62, 64
is754version1985   37
is754version2008   37
is754version2019   37
isCanonical   38
isFinite   38
isInfinite   38
isNaN   38, 71
isNormal   38
isSignaling   38
isSignMinus   38, 50
isSubnormal   38
isZero   38
log   59, 60, 62
log10   59, 62
log10p1   59, 61, 62
log2   23, 59, 62
log2   23
log2p1   59, 61, 62
logB   29, 32, 52, 53, 67
logp1   59, 61, 62
lowerFlags   39
maximum   69, 70
maximumMagnitude   70
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maximumMagnitudeNumber   70
maximumNumber   69, 70
minimum   69, 70
minimumMagnitude   70
minimumMagnitudeNumber   70
minimumNumber   69, 70
multiplication   33, 48, 52, 69, 74
negate   35, 50, 79
nextDown   31
nextUp   31
pow   59, 63, 64
powd   63
pown   59, 62-64
powr   59, 63, 64
quantize   30, 32, 50, 52
quantum   32
radix   38
raiseFlags   39, 51
remainder   31, 48, 52
restoreFlags   39, 51
restoreModes   65
rootn   59, 62, 64
rootn   62
roundToIntegralExact   30, 31, 41, 50
roundToIntegralTiesToAway   31, 41
roundToIntegralTiesToEven   31, 41
roundToIntegralTowardNegative   31, 41
roundToIntegralTowardPositive   31, 41

roundToIntegralTowardZero   31, 41
rSqrt   59, 62, 64
sameQuantum   39
saveAllFlags   39
saveModes   65
scaleB   29, 32, 66, 67
scaledProd   66, 67
scaledProdDiff   67
scaledProdSum   66, 67
setBinaryRoundingDirection   65
setDecimalRoundingDirection   65
setPayload   71
setPayloadSignaling   71
sin   60, 61
sinh   60-62
sinPi   60, 61
squareRoot   33, 48, 50, 52, 62
subtraction   33, 35, 48, 52, 68
sum   66
sumAbs   66
sumSquare   66
tan   60, 61
tanh   60-62
tanPi   60, 61
testFlags   39
testSavedFlags   39
totalOrder   38, 42, 50
totalOrderMag   38
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