Full Name: W-Number:	Full Name:
----------------------	------------

MATH 2205: CALCULUS II – SAMPLE EXAM 2 SOLUTION

Summer 2019 - Friday, June 21, 2019

Instructions:

- Show all your work and use the space provided on the exam. Correct mathematical notation is required and all partial credit is at discretion of the grader.
- Write neatly and make sure your work is organized.
- Make certain that you have written your Full Name and W-Number in the spaces provided at the top of the exam. Failure to do so may result in a loss of points.
- No aids beyond a scientific, non-graphing calculator are allowed. This means no notes, no cell phones, etc., are permitted during the exam.
- Present your Photo I.D. when turning in your exam.
- The exam has 12 pages. Please check to see that your copy has all the pages.

For Instructor Use Only

Question	1	2	3	4	5	6	7	8	9	Total
Points	15	20	10	10	10	10	10	15	10	100
Mark										

Formulae you may find useful:

•
$$\sum_{k=1}^{n} c = cn$$
, $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$, $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$, $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$.

•
$$\int x^p dx = \frac{x^{p+1}}{p+1} + C$$
, where $p \neq -1$.

$$\bullet \int x^{-1} dx = \ln|x| + C.$$

$$\bullet \int \sin x \, dx = -\cos x + C.$$

•
$$\int \cos x \, dx = \sin x + C.$$

•
$$\int \frac{1}{1+x^2} dx = \arctan x + C.$$

•
$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C.$$

•
$$\int \sec x \tan x \, dx = \sec x + C.$$

$$\bullet \int \sec^2 x \, dx = \tan x + C.$$

$$\bullet \cos^2 \theta = \frac{1 + \cos 2\theta}{2}.$$

•
$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$
.
• $\sin^2 \theta + \cos^2 \theta = 1$.

•
$$\sin^2 \theta + \cos^2 \theta = 1$$

•
$$\sin 2\theta = 2\sin \theta \cos \theta$$
.

•
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$
.

• Midpoint Rule:
$$M(n) = \sum_{k=1}^{n} f\left(\frac{x_{k-1} + x_k}{2}\right) \Delta x$$
.

• Trapezoid Rule:
$$T(n) = \left[\frac{1}{2}f(x_0) + \sum_{k=1}^{n-1} f(x_k) + \frac{1}{2}f(x_n)\right] \Delta x.$$

• Simpson's Rule:
$$S(n) = \sum_{k=0}^{n/2-1} [f(x_{2k}) + 4f(x_{2k+1}) + f(x_{2k+2})] \frac{\Delta x}{3}$$
.

- 1. (15 points) <u>Circle</u> TRUE if the statement is true or FALSE if it is not, and <u>justify</u> your choice briefly.
 - (a) TRUE or FALSE: The partial fraction decomposition of $\frac{2x^3 4x^2 + x + 3}{(x^2 + 1)(x 2)^2}$ is $\frac{1}{x 2} + \frac{x + 1}{x^2 + 1}.$ Explanation: $\frac{2x^3 4x^2 + x + 3}{(x^2 + 1)(x 2)^2} = \frac{1}{x 2} + \frac{1}{(x 2)^2} + \frac{x + 1}{x^2 + 1} \neq \frac{1}{x 2} + \frac{x + 1}{x^2 + 1}.$ Or $\frac{1}{x 2} + \frac{x + 1}{x^2 + 1} = \frac{2x^2 x 1}{(x^2 + 1)(x 2)} \neq \frac{2x^3 4x^2 + x + 3}{(x^2 + 1)(x 2)^2}.$
 - (b) TRUE or FALSE: Use integration by parts, one can show that $\int xg'(x) dx = xg(x) \int g(x) dx$.

 Explanation: By definition.
 - (c) TRUE or FALSE: The function $y = e^{2t} e^{-2t}$ is a solution of the differential equaiton y'' 4y = 0. Explanation: Since $y' = 2e^{2t} + 2e^{-2t} \implies y'' = 4e^{2t} - 4e^{-2t} = 4(e^{2t} - e^{-2t}) = 4y \implies y'' - 4y = 0$.
 - (d) TRUE or FALSE: The differential equation $y''(x) + (\ln x \cdot e^{e^x})y'(x) = y(x) + \cos x \sin e^x$ is NOT linear. Explanation: It is linear because it follows the form for second-order linear differential equation y''(x) + p(x)y'(x) + q(x)y(x) = f(x), where $p(x) = (\ln x \cdot e^{e^x})$, q(x) = -1, and $f(x) = \cos x \sin e^x$.
 - (e) TRUE or FALSE: If $a_k > 0$ and $\sum_{k=1}^{\infty} a_k$ converges, then $\sum_{k=1}^{\infty} (-1)a_k$ diverges.

 Explanation: By the property of Sigma notation, we have $\sum_{k=1}^{\infty} (-1)a_k = (-1)\sum_{k=1}^{\infty} a_k$.

 It also converges given that $\sum_{k=1}^{\infty} a_k$ converges.

2. (20 points) Evaluate the following integrals and sums.

(a)
$$\int x^2 (\ln x)^2 dx.$$

SOLUTION. It is integrating the product of x^p and $(\ln x)^q$, we pick $u = (\ln x)^q$, then apply integration by parts for this indefinite integral.

$$\int x^{2}(\ln x)^{2} dx = \int (\ln x)^{2} d\left(\frac{1}{3}x^{3}\right) \qquad [u = (\ln x)^{2}, dv = x^{2} dx \implies v = \frac{1}{3}x^{3}]$$

$$= \frac{1}{3}x^{3}(\ln x)^{2} - \int \frac{1}{3}x^{3} d(\ln x)^{2} \qquad [\int u \, dv = uv - \int v \, du]$$

$$= \frac{1}{3}x^{3}(\ln x)^{2} - \int \frac{1}{3}x^{3} \cdot 2 \ln x \cdot \frac{1}{x} \, dx$$

$$= \frac{1}{3}x^{3}(\ln x)^{2} - \frac{2}{3} \int x^{2} \ln x \, dx$$

$$= \frac{1}{3}x^{3}(\ln x)^{2} - \frac{2}{3} \int \ln x \, d\left(\frac{1}{3}x^{3}\right) \qquad [u = \ln x, dv = x^{2} \, dx \implies v = \frac{1}{3}x^{3}]$$

$$= \frac{1}{3}x^{3}(\ln x)^{2} - \frac{2}{3} \left(\frac{1}{3}x^{3} \ln x - \int \frac{1}{3}x^{3} \, d\ln x\right) \qquad [\int u \, dv = uv - \int v \, du]$$

$$= \frac{1}{3}x^{3}(\ln x)^{2} - \frac{2}{3} \left(\frac{1}{3}x^{3} \ln x - \frac{1}{3} \int x^{2} \, dx\right)$$

$$= \frac{1}{3}x^{3}(\ln x)^{2} - \frac{2}{3}x^{3} \ln x + \frac{2}{27}x^{3} + C.$$

(b)
$$\int_0^{\pi/2} \sin^3 x \cos^4 x \, dx$$
.

SOLUTION. Since the power of $\sin x$ is odd, then we split off $\sin x$, then use the identity $\sin^2 x + \cos^2 x = 1$ and then use change of variables.

$$\int_0^{\pi/2} \sin^3 x \cos^4 x \, dx = \int_0^{\pi/2} \sin x (1 - \cos^2 x) \cos^4 x \, dx \qquad [\sin^2 x = 1 - \cos^2 x]$$

$$= -\int_{u(0)=1}^{u(\pi/2)=0} (1 - u^2) u^4 \, du \qquad [u = \cos x, du = -\sin x dx]$$

$$= -\left(\int_1^0 u^4 \, du - \int_1^0 u^6 \, du\right)$$

$$= -\left(\frac{u^5}{5}\Big|_1^0 - \frac{u^7}{7}\Big|_1^0\right)$$

$$= -\left[\left(0 - \frac{1}{5}\right) - \left(0 - \frac{1}{7}\right)\right]$$

$$= \frac{2}{35}.$$

(c)
$$\sum_{k=1}^{\infty} \left(-\frac{5}{3}\right)^{-k}$$
.

SOLUTION.

$$\sum_{k=1}^{\infty} \left(-\frac{5}{3} \right)^{-k} = \sum_{k=1}^{\infty} \left[\left(-\frac{5}{3} \right)^{-1} \right]^{k} \qquad [a^{bc} = (a^{b})^{c}]$$

$$= \sum_{k=1}^{\infty} \left(-\frac{3}{5} \right)^{k} \qquad [a^{-1} = \frac{1}{a}]$$

$$= \frac{-3/5}{1 - (-3/5)} \qquad [\sum_{k=m}^{\infty} ar^{k} = \frac{ar^{m}}{1 - r}]$$

$$= \frac{-3/5}{8/5}$$

$$= -\frac{3}{8}.$$

(d)
$$\frac{1}{16} + \frac{3}{64} + \frac{9}{256} + \frac{27}{1024} + \cdots$$

SOLUTION.

$$\frac{1}{16} + \frac{3}{64} + \frac{9}{256} + \frac{27}{1024} + \dots = \sum_{k=1}^{\infty} \frac{3^{k-1}}{4^{k+1}}$$

$$= \sum_{k=1}^{\infty} \frac{3^k}{4^k} \frac{3^{-1}}{4^1}$$

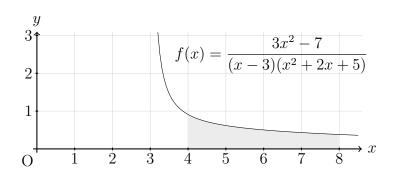
$$= \frac{1}{12} \sum_{k=1}^{\infty} \left(\frac{3}{4}\right)^k$$

$$= \frac{1}{12} \frac{3/4}{1 - 3/4} \qquad \left[\sum_{k=m}^{\infty} ar^k = \frac{ar^m}{1 - r}\right]$$

$$= \frac{1}{12} \times 3$$

$$= \frac{1}{4}.$$

3. (10 points) Compute the area of region R bounded by $f(x) = \frac{3x^2 - 7}{(x-3)(x^2 + 2x + 5)}$, x-axis, x = 4, x = 8. Indicate (by shading) the region R in the graph.



SOLUTION. The area of the region R is

$$A = \int_{a}^{b} f(x) dx = \int_{4}^{8} \frac{3x^{2} - 7}{(x - 3)(x^{2} + 2x + 5)} dx.$$

Then we apply the partial fraction decomposition to the integrand,

$$\frac{3x^2 - 7}{(x - 3)(x^2 + 2x + 5)} = \frac{A}{x - 3} + \frac{Bx + C}{x^2 + 2x + 5}.$$

Multiplying both sides by $(x-3)(x^2+2x+5)$ gives

$$3x^{2} - 7 = A(x^{2} + 2x + 5) + (Bx + C)(x - 3) = (A + B)x^{2} + (2A - 3B + C)x + (5A - 3C).$$

Equating like powers of x, we have the following linear equations,

$$\begin{cases} A+B=3\\ 2A-3B+C=0\\ 5A-3C=-7 \end{cases} \implies \begin{cases} A=1\\ B=2\\ C=4 \end{cases}$$

Then definite integral becomes

$$A = \int_{4}^{8} \frac{3x^{2} - 7}{(x - 3)(x^{2} + 2x + 5)} dx$$

$$= \int_{4}^{8} \frac{1}{x - 3} + \frac{2x + 4}{x^{2} + 2x + 5} dx$$

$$= \int_{u(4)=4-3=1}^{u(8)=8-3=5} \frac{1}{u} du + \int_{4}^{8} \frac{2x + 2}{x^{2} + 2x + 5} dx + \int_{4}^{8} \frac{2}{x^{2} + 2x + 5} dx$$

$$= \ln|u| \Big|_{1}^{5} + \int_{v(4)=29}^{v(8)=85} \frac{1}{v} dv + 2 \int_{4}^{8} \frac{1}{(x^{2} + 2x + 1) + 4} dx$$

$$= \ln 5 + \ln|v| \Big|_{29}^{85} + 2 \int_{4}^{8} \frac{1}{4 + (x + 1)^{2}} dx$$

$$= \ln 5 + \ln 85 - \ln 29 + 2 \int_{4}^{8} \frac{1}{4[1 + \frac{1}{4}(x + 1)^{2}]} dx$$

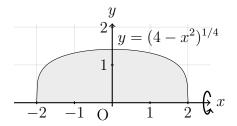
$$= \ln (5 \times 85) - \ln 29 + 2 \int_{4}^{8} \frac{1}{4[1 + (x/2 + 1/2)^{2}]} dx$$

$$= \ln \frac{425}{29} + \int_{w(4)=5/2}^{w(8)=9/2} \frac{1}{1 + w^{2}} dw$$

$$= \ln \frac{425}{29} + \arctan w \Big|_{5/2}^{9/2}$$

$$= \ln \frac{425}{29} + \arctan \frac{9}{2} - \arctan \frac{5}{2}.$$

4. (10 points) Let R be the region bounded by $y = (4 - x^2)^{1/4}$ and x-axis. Indicate (by shading) the region R in the graph. Determine the volume of the solid of revolution obtained when R is revolved about the x-axis.



SOLUTION. Disk method.

$$V = \int_{a}^{b} A(x) dx$$

$$= \int_{-2}^{2} \pi f(x)^{2} dx$$

$$= \pi \int_{-2}^{2} (4 - x^{2})^{1/2} dx$$

$$= \pi \int_{\arcsin 1 = -\pi/2}^{\arcsin 1 = \pi/2} (4 - 4 \sin^{2} \theta)^{1/2} \cos \theta d\theta \quad [x = 2 \sin \theta, dx = 2 \cos \theta d\theta, \theta = \arcsin \frac{x}{2}]$$

$$= \pi \int_{-\pi/2}^{\pi/2} 2 \cos \theta \cdot 2 \cos \theta d\theta$$

$$= \pi \int_{-\pi/2}^{\pi/2} 4 \cos^{2} \theta d\theta$$

$$= 2\pi \int_{-\pi/2}^{\pi/2} 1 + \cos 2\theta d\theta$$

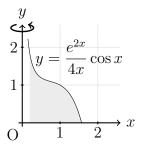
$$= 2\pi \left(\int_{-\pi/2}^{\pi/2} 1 d\theta + \int_{-\pi/2}^{\pi/2} \cos 2\theta d\theta \right)$$

$$= 2\pi \left(\theta \Big|_{-\pi/2}^{\pi/2} + \frac{1}{2} \int_{u(-\pi/2) = -\pi}^{u(\pi/2) = \pi} \cos u du \right)$$

$$= 2\pi \left(\pi + \frac{1}{2} \sin u \Big|_{-\pi}^{\pi} \right)$$

$$= 2\pi^{2}.$$

5. (10 points) Let R be the region bounded by $y = \frac{e^{2x}}{4x} \cos x$ and x-axis on $[1/5, \pi/2]$. Indicate (by shading) the region R in the graph. Determine the volume of the solid of revolution obtained when R is revolved about the y-axis.



SOLUTION. Shell method.

$$V = \int_{a}^{b} 2\pi x f(x) dx = \int_{1/5}^{\pi/2} 2\pi x \frac{e^{2x}}{4x} \cos x dx$$

$$= \frac{\pi}{2} \int_{1/5}^{\pi/2} e^{2x} d \sin x$$

$$= \frac{\pi}{2} \left(e^{2x} \sin x \Big|_{1/5}^{\pi/2} - \int_{1/5}^{\pi/2} 2 \sin x e^{2x} dx \right)$$

$$= \frac{\pi}{2} \left(e^{2x} \sin x \Big|_{1/5}^{\pi/2} + 2 \int_{1/5}^{\pi/2} e^{2x} d \cos x \right)$$

$$= \frac{\pi}{2} \left[e^{2x} \sin x \Big|_{1/5}^{\pi/2} + 2 \left(e^{2x} \cos x \Big|_{1/5}^{\pi/2} - 2 \int_{1/5}^{\pi/2} e^{2x} \cos x dx \right) \right]$$

$$= \frac{\pi}{2} e^{2x} (\sin x + 2 \cos x) \Big|_{1/5}^{\pi/2} - 2\pi \int_{1/5}^{\pi/2} e^{2x} \cos x dx.$$

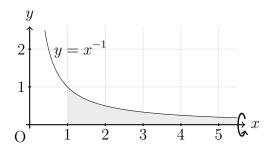
Then solve for $\frac{\pi}{2} \int_{1/5}^{\pi/2} e^{2x} \cos x \, dx$, we have the volume of the solid as follows

$$\frac{\pi}{2} \int_{1/5}^{\pi/2} e^{2x} \cos x \, dx = \frac{1}{5} \frac{\pi}{2} e^{2x} (\sin x + 2 \cos x) \Big|_{1/5}^{\pi/2}$$

$$= \frac{\pi}{10} \left[e^{\pi} \left(\sin \frac{\pi}{2} + 2 \cos \frac{\pi}{2} \right) - e^{2/5} \left(\sin \frac{1}{5} + 2 \cos \frac{1}{5} \right) \right]$$

$$= \frac{\pi}{10} \left[e^{\pi} - e^{2/5} \left(\sin \frac{1}{5} + 2 \cos \frac{1}{5} \right) \right].$$

6. (10 points) Let R be the region bounded by the graph of $y = x^{-1}$ and the x-axis, for $x \ge 1$. Indicate (by shading) the region R in the graph. What is the surface area of the solid generated when R is revolved about the x-axis?



SOLUTION. Given that $f(x) = x^{-1}$, $f'(x) = -x^{-2} \implies f'(x)^2 = x^{-4}$. The surface area of the region is

$$A = \int_{a}^{b} 2\pi f(x) \sqrt{1 + f'(x)^{2}} dx$$

$$= \int_{1}^{\infty} 2\pi x^{-1} \sqrt{1 + x^{-4}} dx$$

$$= 2\pi \int_{1}^{\infty} x^{-1} \sqrt{x^{-4}(x^{4} + 1)} dx$$

$$= 2\pi \int_{1}^{\infty} x^{-1} (x^{-4})^{1/2} [(x^{4} + 1)]^{1/2} dx$$

$$= 2\pi \int_{1}^{\infty} x^{-3} [(x^{4} + 1)]^{1/2} dx$$

$$> 2\pi \int_{1}^{\infty} x^{-3} (x^{4})^{1/2} dx$$

$$= 2\pi \int_{1}^{\infty} x^{-3} x^{2} dx$$

$$= 2\pi \int_{1}^{\infty} x^{-1} dx$$

$$= 2\pi \lim_{b \to \infty} \int_{1}^{b} x^{-1} dx$$

$$= 2\pi \lim_{b \to \infty} \ln x \Big|_{1}^{b}$$

$$= 2\pi \lim_{b \to \infty} \ln b$$

$$= \infty.$$

Therefore, the surface area of the solid diverges.

7. (10 points) Write $1.0\overline{95} = 1.095959595...$ as a geometric series and express its value as fraction.

SOLUTION.

8. (15 points) A community of hares on an island has a population of 70 when observations begin (at t = 0). The population is modeled by the initial value problem shown below.

$$\frac{dP}{dt} = 0.07P\left(1 - \frac{P}{280}\right), \quad P(0) = 70.$$

- (a) Find the solution of the initial value problem, for $t \geq 0$.
- (b) What is the steady-state population?

SOLUTION.

(a) Observe that this differential equation is separable, that is,

$$\frac{dP}{dt} = 0.07P \left(1 - \frac{P}{280} \right)$$
$$= \frac{7P}{100} \frac{280 - P}{280}$$
$$= \frac{(280 - P)P}{4000}$$
$$= f(P).$$

Then dividing both sides by f(P) and integrating with respect to t gives

$$\int \frac{1}{f(P)} \frac{dP}{dt} dt = \int 1 dt$$

$$\int \frac{1}{f(P)} dP = \int 1 dt$$

$$\int \frac{4000}{(280 - P)P} dP = \int 1 dt$$

$$\int \frac{100}{7P} + \frac{100}{7(280 - P)} dP = \int 1 dt \quad \text{[Partial Fractions Decomposition]}$$

$$\frac{100}{7} \int \frac{1}{P} dP + \frac{100}{7} \int \frac{1}{280 - P} dP = \int 1 dt$$

$$\frac{100}{7} \ln|P| - \frac{100}{7} \ln|280 - P| = t + C_1$$

$$\frac{100}{7} \ln \left| \frac{P}{280 - P} \right| = t + C_1$$

Then solve for P, we have

$$\ln \left| \frac{P}{280 - P} \right| = \frac{7}{100}t + \frac{7}{100}C_1$$

$$\frac{P}{280 - P} = e^{\frac{7}{100}t + \frac{7}{100}C_1}$$

$$\frac{P}{280 - P} = C_2 e^{\frac{7}{100}t}$$

$$\frac{280 - P}{P} = \frac{1}{C_2} e^{-\frac{7}{100}t}$$

$$\frac{280}{P} = \frac{1}{C_2} e^{-\frac{7}{100}t} + 1$$

$$P = \frac{280}{e^{-\frac{7}{100}t}/C_2 + 1}.$$

By the initial condition, we have

$$P(0) = \frac{280}{1/C_2 + 1} = 70 \implies 1/C_2 + 1 = 4 \implies C_2 = 1/3.$$

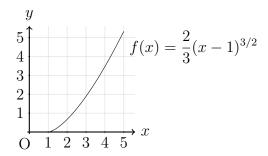
Therefore the solution of the intial value problem is

$$P = \frac{280}{3e^{-7t/100} + 1}.$$

(b) The steady-state population is obtained when $t \to \infty$, hence we have

$$\lim_{t \to \infty} P(t) = \lim_{t \to \infty} \frac{280}{3e^{-7t/100} + 1} = \frac{280}{\lim_{t \to \infty} 3e^{-7t/100} + 1} = 280.$$

9. (Bonus, 10 points) Approximate the arc length of $f(x) = \frac{2}{3}(x-1)^{3/2}$ on the interval [1, 5] using Simpson's Rule with n=4 subintervals.



SOLUTION. Given that $f(x) = \frac{2}{3}(x-1)^{3/2}$, we have $f'(x) = (x-1)^{1/2} \implies f'(x)^2 = (x-1)$. Then the arc length is

$$L = \int_{a}^{b} \sqrt{1 + f'(x)^{2}} dx$$
$$= \int_{1}^{5} \sqrt{1 + (x - 1)} dx$$
$$= \int_{1}^{5} \sqrt{x} dx.$$

Then we approximate the definite integral using Simpson's Rule as follows. First,

$$\Delta x = \frac{b-a}{n} = \frac{4}{4} = 1, x_k = x_0 + k\Delta x = 1 + k.$$

Let $g(x) = \sqrt{x}$. Then we have

$$\int_{1}^{5} \sqrt{x} \, dx = \int_{1}^{5} g(x) \, dx \approx \sum_{k=0}^{n/2-1} [g(x_{2k}) + 4g(x_{2k+1}) + g(x_{2k+2})] \frac{\Delta x}{3}$$

$$= \frac{\Delta x}{3} \sum_{k=0}^{n/2-1} [g(x_{2k}) + 4g(x_{2k+1}) + g(x_{2k+2})]$$

$$= \frac{1}{3} \sum_{k=0}^{1} [g(1+2k) + 4g(1+2k+1) + g(1+2k+2)]$$

$$= \frac{1}{3} [(\sqrt{1} + 4\sqrt{2} + \sqrt{3}) + (\sqrt{3} + 4\sqrt{4} + \sqrt{5})]$$

$$= \frac{1}{3} (1 + 4\sqrt{2} + 2\sqrt{3} + 4 \cdot 2 + \sqrt{5})$$

$$\approx 6.78567.$$