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Review for Midterm Exam 2
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Basic Approaches

Proposition (Basic Integration Formulas)

(a)
∫
k dx = kx+ C, k ∈ R (k is real).

(b)
∫
xp dx = xp+1

p+ 1 + C, p 6= −1 ∈ R.

(c)
∫
eax dx = 1

a
eax + C.

(d)
∫ 1
x
dx = ln |x|+ C.

(e)
∫ 1√

a2 − x2
dx = sin−1 x

a
+ C.

(f)
∫ 1
a2 + x2 dx = 1

a
tan−1 x

a
+ C.

(g)
∫ 1
x
√
x2 − a2

dx = 1
a

sec−1
∣∣∣x
a

∣∣∣+ C, a > 0.
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Basic Approaches

Proposition (Basic Integration Formulas (continued))

(a)
∫

cos ax dx = 1
a

sin ax+ C.

(b)
∫

sin ax dx = −1
a

cos ax+ C.

(c)
∫

sec2 ax dx = 1
a

tan ax+ C.

(d)
∫

csc2 ax dx = −1
a

cot ax+ C.

(e)
∫

sec ax tan ax dx = 1
a

sec ax+ C.

(f)
∫

csc ax cot ax dx = −1
a

csc ax+ C.
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Integration by Parts

Theorem (Integration by Parts)
Suppose that u and v are differentiable functions. Then∫

u dv = uv −
∫
vdu.

Theorem (Integration by Parts for Definite Integrals)
Let u and v be differentiable. Then

∫ b

a
u(x)v′(x) dx = u(x)v(x)

∣∣∣∣∣
b

a

−
∫ b

a
v(x)u′(x) dx.
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Powers of sin x or cos x

Procedure

Strategies for evaluating integrals of the form
∫

sinm x dx or∫
cosn x dx, where m and n are positive integers, using

trigonometric identities.

(a) Integrals involving odd powers of cosx (or sin x) are most easily
evaluated by splitting off a single factor of cosx (or sin x). For
example, rewrite cos5 x as cos4 x · cosx.

(b) With even positive powers of sin x or cosx, we use the half-angle
formulas

sin2 θ = 1− cos 2θ
2 and cos2 θ = 1 + cos 2θ

2 ,

to reduce the powers in the integrand.
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Products of Powers of sin x and cos x

Procedure

Strategies for evaluating integrals of the form
∫

sinm x cosn x dx.

(a) When m is odd and positive, n real. Split off sin x, rewrite the
resulting even power of sin x in terms of cosx, and then use
u = cosx.

(b) When n is odd and positive, m real. Split off cosx, rewrite the
resulting even power of cosx in terms of sin x, and then use
u = sin x.

(c) When m, n are both even and nonnegative. Use half-angle
formulas to transform the integrand into polynomial in cos 2x
and apply the preceding strategies once again to powers of
cos 2x greater than 1.
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Reduction Formulas

Proposition (Reduction Formulas)
Assume n is a positive integer.

(a)
∫

sinn x dx = −sinn−1 x cosx
n

+ n− 1
n

∫
sinn−2 x dx.

(b)
∫

cosn x dx = cosn−1 x sin x
n

+ n− 1
n

∫
cosn−2 x dx.

(c)
∫

tann x dx = tann−1 x

n− 1 −
∫

tann−2 x dx, n 6= 1.

(d)
∫

secn x dx = secn−2 x tan x
n− 1 + n− 2

n− 1

∫
secn−2 x dx, n 6= 1.
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Trigonometric Substitutions

Proposition (Integral contains a2 − x2)
Let x = a sin θ, −π/2 ≤ θ ≤ π/2 for |x| ≤ a. Then

a2 − x2 = a2 − a2 sin2 θ = a2(1− cos2 θ) = a2 cos2 θ.
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Partial Fractions

Procedure (Partial Fractions with Simple Linear Factors)
Suppose f(x) = p(x)/q(x), where p and q are polynomials with
no common factors and with the degree of p less than the degree
of q. Assume that q is the product of simple linear factors. The
partial fraction decomposition is obtained as follows.

(a) Factor the denominator q in the form (x−r1)(x−r2) · · · (x−rn),
where r1, . . . , rn are real numbers.

(b) Partial fraction decomposition. Form the partial fraction decom-
position by writing

p(x)
q(x) = A1

(x− r1) + A2
(x− r2) + · · ·+ An

(x− rn) .
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Partial Fractions

Procedure (Partial Fractions with Simple Linear Factors
(continued))

(c) Clear denominators. Multiply both sides of the equation in Step
(b) by q(x) = (x − r1)(x − r2) · · · (x − rn), which produces
conditions for A1, . . . , An.

(d) Solve for coefficients. Equate like powers of x in Step (c) to
solve for the undetermined coefficients A1, . . . , An.
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Partial Fractions

Procedure (Partial Fractions for Repeated Linear Factors)
Suppose the repeated linear factor (x− r)m appears in the
denominator of a proper rational function in reduced form. The
partial fraction decomposition has a partial fraction for each power
of (x− r) up to and including the mth power; that is, the partial
fraction decomposition contains the sum

A1
(x− r) + A2

(x− r)2 + · · ·+ Am

(x− r)m
,

where A1, . . . , Am are constants to be determined.
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Partial Fractions

Procedure (Partial Fractions with Simple Irreducible
Quadratic Factors)
Suppose a simple irreducible factor ax2 + bx+ c appears in the
denominator of a proper rational function in reduced form. The
partial fraction decomposition contains a term of the form

Ax+B

ax2 + bx+ c
,

where A and B are unknown coefficients to be determined.

Proposition
The quadratic polynomial ax2 + bx+ c is irreducible if and only if
its discriminant is negative, i.e.,

∆ = b2 − 4ac < 0.
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Partial Fractions

Proposition (Partial Fraction Decomposition)
Let f(x) = p(x)/q(x) be a proper rational function in reduced
form. Assume the denominator q has been factored completely
over the real numbers and m is a positive integer.

(a) Simple linear factor. A factor x− r in the denominator requires
the partial fraction A

x− r
.

(b) Repeated linear factor. A factor (x − r)m with m > 1 in the
denominator requires the partial fractions

A1
(x− r) + A2

(x− r)2 + A3
(x− r)3 + · · ·+ Am

(x− r)m
.
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Partial Fractions

Proposition (Partial Fraction Decomposition (continued))

(c) Simple irreducible quadratic factor. An irreducible factor ax2 +
bx+ c in the denominator requires the partial fraction

Ax+B

ax2 + bx+ c
.

(d) Repeated irreducible quadratic factor. An irreducible factor
(ax2 + bx + c)m with m > 1 in the denominator requires the
partial fractions

A1x+B1
ax2 + bx+ c

+ A2x+B2
(ax2 + bx+ c)2 + · · ·+ Amx+Bm

(ax2 + bx+ c)m
.
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Numerical Integration

Definition (Absolute and Relative Error)
Suppose c is a computed numerical solution to a problem having
an exact solution x. There are two common meaasures of the
error in c as an approximation to x:

absolute error = |c− x|

and
relative error = c− x

x
, (if x 6= 0).
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Numerical Integration

Definition (Midpoint Rule)
Suppose f is defined an integrable on [a, b]. The Midpoint Rule

approximation to
∫ b

a
f(x) dx using n equally spaced subintervals

on [a, b] is

M(n) = f(m1)∆x+ f(m2)∆x+ · · ·+ f(mn)∆x

=
n∑

k=1
f

(
xk−1 + xk

2

)
∆x,

where ∆x = (b− a)/n, x0 = a, xk = a+ k∆x, and
mk = (xk−1 + xk)/2 = a+ (k − 1/2)∆x is the midpoint of
[xk−1, xk], for k = 1, . . . , n.
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Numerical Integration

Definition (Trapezoid Rule)
Suppose f is defined and integrable on [a, b]. The Trapezoid Rule

approximation to
∫ b

a
f(x) dx using n equally spaced subintervals

on [a, b] is

T (n) =
[

1
2f(x0) +

n−1∑
k=1

f(xk) + 1
2f(xn)

]
∆x.

where ∆x = (b− a)/n and xk = a+ k∆x, for k = 0, 1, 2, . . . , n.
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Numerical Integration

Definition (Simpson’s Rule)
Suppose f is defined and integrable on [a, b] and n ≥ 2 is an even

integer. The Simpson’s Rule approximation to
∫ b

a
f(x) dx using n

equally spaced subintervals on [a, b] is

S(n) =
n/2−1∑

k=0
[f(x2k) + 4f(x2k+1) + f(x2k+2)]∆x3 .

where n is an even integer, ∆x = (b− a)/n, and xk = a+ k∆x,
for k = 0, 1, . . . , n.
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Improper Integrals

Definition (Improper Integrals over Infinite Intervals)

(a) If f is continuous on [a,∞), then∫ ∞
a

f(x) dx = lim
b→∞

∫ b

a
f(x) dx.

(b) If f is continuous on (−∞, b], then∫ b

−∞
f(x) dx = lim

a→−∞

∫ b

a
f(x) dx.
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Improper Integrals

Definition (Improper Integrals over Infinite Intervals
(continued))

(c) If f is continuous on (−∞,∞), then∫ ∞
−∞

f(x) dx = lim
a→−∞

∫ c

a
f(x) dx+ lim

b→∞

∫ b

c
f(x) dx,

where c is any real number.

If the limits in the above cases exist, then the improper integrals
converge; otherwise, they diverge.
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Improper Integrals

Definition (Improper Integrals with an Unbounded
Integrand)

(a) Suppose f is continous on (a, b] with lim
x→a+

f(x) = ±∞. Then

∫ b

a
f(x) dx = lim

c→a+

∫ b

c
f(x) dx.

(b) Suppose f is continuous on [a, b) with lim
x→b−

f(x) = ±∞. Then

∫ b

a
f(x) dx = lim

c→b−
f(x) dx.
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Improper Integrals

Definition (Improper Integrals with an Unbounded Integrand
(continued))

(c) Suppose f is continuous on [a, b] except at the interior point p
where f is unbounded. Then∫ b

a
f(x) dx = lim

c→p−

∫ c

a
f(x) dx+ lim

d→p+

∫ b

d
f(x) dx.

If the limits in above cases exist, then the improper integrals
converge; otherwise, they diverge.
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Introduction to Differential Equations

Definition
The order of a differential equation is the highest order appearing
on a derivative in the equation. For example, the equations
y′ + 4y = cosx and y′ = 0.1y(100− y) are first order, and
y′′ + 16y = 0 is second order.
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Introduction to Differential Equations

Definition (Linear Differential Equations)
The first-order linear differential equations have the form

y′(x) + p(x)y(x) = f(x),

and the second-order linear differential equations have the form

y′′(x) + p(x)y′(x) + q(x)y(x) = f(x),

where p, q, and f are given functions that depend only on the
independent variable x.
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Introduction to Differential Equations

Definition
A differential equation is often accompanied by initial conditions
that specify the values of y, and possibly its derivatives, at a
particular point. In general, an nth-order equation reqruires n
initial conditions.
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Introduction to Differential Equations

Definition
A differntial equation, together with the appropriate number of
initial conditions, is called an initial value problem. A typical
first-order initial value problem has the form

y′(t) = F (t, y) Differential equation
y(0) = A Initial condition

where A is given and F is a given expression that involves t
and/or y,
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Introduction to Differential Equations

Proposition (Solution of a First-Order Linear Differential
Equation)
The general solution of the first-order equation y′(t) = ky + b,
where k and b are specified real numbers, is y = Cekt − b/k,
where C is an arbitrary constant. Given an initial condition, the
value of C may be determined.
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Introduction to Differential Equations

Definition (Separable First-Order Differential Equations)
If the first-order differential equation can be written in the form
g(y)y′(t) = h(t), in which the terms that involve y appear on one
side of the equation separated from the terms that involve t, is
said to be separable. We can solve the equaiton by integrating
both sides of the equation with respect to t:∫

g(y)y′(t) dt =
∫
h(t) dt =⇒

∫
g(y) dy =

∫
h(t) dt.
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Review for Midterm Exam 2

Sequences and Infinite Series
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Sequences

Definition (Sequence)
A sequence {an} is an ordered list of numbers of the form

{a1, a2, a3, . . . , an, . . .}.

(a) A sequence may be generated by a recurrence relation of the
form an+1 = f(an), for n = 1, 2, 3, . . ., where a1 is given.

(b) A sequence may also be defined with an explicit formula of the
form an = f(n), for n = 1, 2, 3, . . ..
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Limit of a Sequence

Definition (Limit of a Sequence)
If the terms of a sequence {an} approach a unique number L as n
increases – that is, if an can be made arbitrarily close to L by
taking n sufficiently large – then we say lim

n→∞
an = L exists, and

the sequence converges to L. If the terms of the sequence do not
approach a single number as n increases, the sequence has no
limit, and the sequence diverges.

Theorem (Limits of Sequences from Limits of Functions)

Suppose f is a function such that f(n) = an for all positive
integers n. If lim

x→∞
f(x) = L, then the limit of the sequence {an}

is also L.
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Limits of Functions

Theorem (Limits of Linear Functions)
Let a, b, and m be real numbers. For linear functions
f(x) = mx+ b,

lim
x→a

f(x) = f(a) = ma+ b.
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Limits of Functions

Theorem (Limit Laws)
Assume lim

x→a
f(x) and lim

x→a
g(x) exist. The following properties

hold, where c is a real number, and m > 0 and n > 0 are integers.

(a) Sum: lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x).
(b) Difference: lim

x→a
[f(x)− g(x)] = lim

x→a
f(x)− lim

x→a
g(x).

(c) Constant multiple: lim
x→a

cf(x) = c lim
x→a

f(x).

(d) Product: lim
x→a

[f(x)g(x)] =
[
lim
x→a

f(x)
] [

lim
x→a

g(x)
]
.

(e) Quotient: lim
x→a

[
f(x)
g(x)

]
=

lim
x→a

f(x)
lim
x→a

g(x) , provided lim
x→a

g(x) 6= 0.

(f) Power: lim
x→a

[f(x)]n =
[
lim
x→a

f(x)
]n
.
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Limits of Functions

Theorem (Limits of Polynomial and Rational Functions)
Assume p and q are polynomials and a is a constant.

(a) Polynomial functions: lim
x→a

p(x) = p(a).

(b) Rational functions: lim
x→a

p(x)
q(x) = p(a)

q(a) , provided q(a) 6= 0.
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Limits of Functions

Theorem (The Squeeze Theorem)
Assume the function f , g, and h satisfy f(x) ≤ g(x) ≤ h(x) for
all values of x near a, except possibly at a. If
lim
x→a

f(x) = lim
x→a

h(x) = L, then lim
x→a

g(x) = L.
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Limits of Functions

Theorem (Limits at Infinity of Powers and Polynomials)
Let n be a positive integer and let p be the polynomial
p(x) = anx

n + an−1x
n−1 + · · ·+ a2x

2 + a1x+ a0, where an 6= 0.

(a) lim
x→±∞

xn =∞ when n is even.
(b) lim

x→∞
xn =∞ and lim

x→−∞
xn = −∞ when n is odd.

(c) lim
x→±∞

1
xn = lim

x→±∞
x−n = 0.

(d) lim
x→±∞

p(x) = lim
x→±∞

anx
n = ±∞, depending on the degree of

the polynomial and the sign of the leading coefficient an.

38



Limits of Functions

Theorem (End Behavior of ex, e−x, and ln x)
The end behavior for ex and e−x on (−∞,∞) and ln x on (0,∞)
is given by the following limits (see Figure 1):

lim
x→∞

ex =∞ lim
x→−∞

ex = 0

lim
x→∞

e−x = 0 lim
x→−∞

e−x =∞

lim
x→0+

ln x = −∞ lim
x→∞

ln x =∞.
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Limits of Functions

O
x

−4 −3 −2 −1 1 2 3 4

y

−4
−3
−2
−1

1
2
3
4

y = exy = e−x

y = ln xy = x

Figure 1:Graphs of ex, e−x, ln x: y = e−x and y = ex are symmetric
about y-axis, and y = ex and y = ln x are symmetric about y = x.
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Limits of Functions

Theorem (L’Hôpital’s Rule)
Suppose f and g are differentiable on an open interval I
containing a with g′(x) 6= 0 on I when x 6= a.

(a) If lim
x→a

f(x) = lim
x→a

g(x) = 0, then

lim
x→a

f(x)
g(x) = lim

x→a

f ′(x)
g′(x) ,

provided the limit on the right exists (or is ±∞). The rule also
applies if x→ a is repaced with x→ ±∞, x→ a+, x→ a−.

(b) If lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞, then

lim
x→a

f(x)
g(x) = lim

x→a

f ′(x)
g′(x) ,

provided the limit on the right exists (or is ±∞). The rule also
applies if x→ a is repaced with x→ ±∞, x→ a+, x→ a−.
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Limit of a Sequence

Theorem (Limit Laws for Sequences)
Assume that the sequences {an} and {bn} have limits A and B,
respectively. Then

(a) lim
n→∞

(an ± bn) = A±B.
(b) lim

n→∞
can = cA, where c is a real number.

(c) lim
n→∞

anbn = AB.

(d) lim
n→∞

an

bn
= A

B
provided B 6= 0.
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Terminology for Sequences

Definition

(a) {an} is increasing if an+1 > an; for example, {0, 1, 2, 3, . . .}.
(b) {an} is nondecreasing if an+1 ≥ an; for example,
{0, 1, 1, 1, 2, 2, 3, . . .}.

(c) {an} is decreasing if an+1 < an; for example, {2, 1, 0,−2, . . .}.
(d) {an} is nonincreasing if an+1 ≤ an; for example,
{2, 1, 1, 0,−2,−2,−3, . . .}.

(e) {an} is monotonic if it is either nonincreasing or nondecreasing
(it moves in one direction).

(f) {an} is bounded if there is number M such that |an| ≤M , for
all relevant values of n.
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Squeeze Theorem for Sequences

Theorem (Squeeze Theorem for Sequences)

Let {an}, {bn}, and {cn} be sequences with an ≤ bn ≤ cn for all
integers n greater than some index N . If lim

n→∞
an = lim

n→∞
cn = L,

then lim
n→∞

bn = L.

Theorem (Bounded Monotonic Sequences)
A bounded monotonic sequence converges.
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Growth Rates of Sequences

Theorem (Growth Rates of Sequences)
The following sequences are ordered according to increasing
growth rates as n→∞; that is, if {an} appears before {bn} in
the list, then lim

n→∞
an

bn
= 0 and lim

n→∞
bn

an
=∞:

{lnq n} � {np} � {np lnr n} � {np+s} � {bn} � {n!} � {nn}.

The ordering applies for positive real numbers p, q, r, s and b > 1.
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Infinite Series

Definition (Infinite series)
Given a sequence {a1, a2, a3, . . . , }, the sum of its terms

a1 + a2 + a3 + · · · =
∞∑

k=1
ak

is called an infinite series.
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Sequence of Partial Sums

Definition (Sequence of Partial Sums)
The sequence of partial sums {Sn} associated with this series has
the terms

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3

...

Sn = a1 + a2 + a3 + · · ·+ an =
n∑

k=1
ak, for n = 1, 2, 3, . . .
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Sequence of Partial Sums and Infinite Series

Proposition
If the sequence of partial sums {Sn} has a limit L, the infinite
series converges to that limit, and we write

∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak = lim
n→∞

Sn = L.

If the sequence of partial sums diverges, the infinite series also
diverges.
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Geometric Sequences

Definition (Geometric Sequences)
A sequence has the form {rn} or {arn}, where the ratio r, a are
real numbers, is called a geometric sequence.

Theorem (Geometric Sequences)
Let r be a real number. Then

lim
n→∞

rn =


0 if |r| < 1,
1 if r = 1,
does not exist if r ≤ −1 or r > 1.

If r > 0, then {rn} is a monotonic sequence. If r < 0, then {rn}
oscillates.
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Geometric Series

Theorem (Geometric Series)

Let a 6= 0 and r be real numbers. If |r| < 1, then
∞∑

k=0
ark = a

1− r .

If |r| ≥ 1, then the series diverges. More generally,

∞∑
k=m

ark = arm

1− r .
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Algebra
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Exponents and Radicals

(a) 1
xa

= x−a.

(b) n
√
x = x1/n.

(c) xa+b = xaxb.
(d) xa−b = xa

xb
.

(e) xab = (xa)b.
(f) xm/n = n

√
xm = ( n

√
x)m.

(g) (xy)a = xaya.
(h)

(
x

y

)a

= xa

ya
.
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Logarithm

(a) y = ax =⇒ x = loga y.
(b) loge x = ln x.
(c) logb(xy) = logb x+ logb y.
(d) logb

x

y
= logb x− logb y.

(e) logb(xp) = p logb x.
(f) logb(x1/p) = 1

p
logb x.

(g) logb x = logk x

logk b
.
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Factoring Formulas

(a) a2 − b2 = (a− b)(a+ b).
(b) a3 − b3 = (a− b)(a2 + ab+ b2).
(c) an− bn = (a− b)(an−1 +an−2b+an−3b2 + · · ·+abn−2 + bn−1).
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Binomials

(a) (a± b)2 = a2 ± 2ab+ b2.
(b) (a± b)3 = a3 ± 3a2b+ 3ab2 ± b3.
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Completing the Square: x2 ± bx + c

Given that (x± p)2 = x2 ± 2px+ p2.

x2 ± bx+ c = x2 ± 2 b2x+ c

= x2 ± 2 b2x+
(
b

2

)2
+ c−

(
b

2

)2

=
(
x± b

2

)2
+ c− b2

4 .
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Completing the Square: ax2 ± bx + c

ax2 ± bx+ c = a

(
x2 ± b

a
x

)
+ c

= a

(
x2 ± 2 b

2ax
)

+ c

= a

[
x2 ± 2 b

2ax+
(
b

2a

)2]
+ c− a

(
b

2a

)2

= a

(
x± b

2a

)2
+ c− b2

4a

= (
√
a)2

(
x± b

2a

)2
+ c− b2

4a

=
(
√
ax±

√
ab

2a

)2

+ c− b2

4a

=
(√

ax± b

2
√
a

)2
+ c− b2

4a. 57



Quadratic Formula

The solutions of ax2 + bx+ c = 0 are

x = −b±
√
b2 − 4ac

2a .
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