MATH 2205: Calculus II

Libao Jin June 20, 2019

University of Wyoming

Review for Midterm Exam 2

Review for Midterm Exam 2

Integration Techniques

Basic Approaches

Proposition (Basic Integration Formulas)

(a)
$$\int k \, dx = kx + C, \ k \in \mathbb{R}$$
 (k is real).
(b) $\int x^p \, dx = \frac{x^{p+1}}{p+1} + C, \ p \neq -1 \in \mathbb{R}.$
(c) $\int e^{ax} \, dx = \frac{1}{a} e^{ax} + C.$
(d) $\int \frac{1}{x} \, dx = \ln |x| + C.$
(e) $\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a} + C.$
(f) $\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C.$
(g) $\int \frac{1}{x\sqrt{x^2 - a^2}} \, dx = \frac{1}{a} \sec^{-1} \left| \frac{x}{a} \right| + C, \ a > 0.$

Proposition (Basic Integration Formulas (continued))

(a)
$$\int \cos ax \, dx = \frac{1}{a} \sin ax + C.$$

(b)
$$\int \sin ax \, dx = -\frac{1}{a} \cos ax + C.$$

(c)
$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax + C.$$

(d)
$$\int \csc^2 ax \, dx = -\frac{1}{a} \cot ax + C.$$

(e)
$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax + C.$$

(f)
$$\int \csc ax \cot ax \, dx = -\frac{1}{a} \csc ax + C.$$

Integration by Parts

Theorem (Integration by Parts)

Suppose that u and v are differentiable functions. Then

$$\int u\,dv = uv - \int v\,du.$$

Theorem (Integration by Parts for Definite Integrals)

Let u and v be differentiable. Then

$$\int_{a}^{b} u(x)v'(x) \, dx = u(x)v(x) \Big|_{a}^{b} - \int_{a}^{b} v(x)u'(x) \, dx.$$

Powers of $\sin x$ or $\cos x$

Procedure

Strategies for evaluating integrals of the form $\int \sin^m x \, dx$ or

 $\int \cos^n x \, dx$, where m and n are positive integers, using trigonometric identities.

- (a) Integrals involving odd powers of $\cos x$ (or $\sin x$) are most easily evaluated by splitting off a single factor of $\cos x$ (or $\sin x$). For example, rewrite $\cos^5 x$ as $\cos^4 x \cdot \cos x$.
- (b) With even positive powers of $\sin x$ or $\cos x$, we use the half-angle formulas

$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$
 and $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$,

to reduce the powers in the integrand.

Products of Powers of $\sin x$ and $\cos x$

Procedure

Strategies for evaluating integrals of the form $\int \sin^m x \cos^n x \, dx$.

- (a) When m is odd and positive, n real. Split off $\sin x$, rewrite the resulting even power of $\sin x$ in terms of $\cos x$, and then use $u = \cos x$.
- (b) When n is odd and positive, m real. Split off $\cos x$, rewrite the resulting even power of $\cos x$ in terms of $\sin x$, and then use $u = \sin x$.
- (c) When m, n are both even and nonnegative. Use half-angle formulas to transform the integrand into polynomial in $\cos 2x$ and apply the preceding strategies once again to powers of $\cos 2x$ greater than 1.

Proposition (Reduction Formulas)

Assume n is a positive integer.

(a)
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx.$$

(b) $\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx.$
(c) $\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, n \neq 1.$
(d) $\int \sec^n x \, dx = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, n \neq 1.$

Proposition (Integral contains $a^2 - x^2$ **)**

Let $x = a \sin \theta$, $-\pi/2 \le \theta \le \pi/2$ for $|x| \le a$. Then

$$a^{2} - x^{2} = a^{2} - a^{2} \sin^{2} \theta = a^{2} (1 - \cos^{2} \theta) = a^{2} \cos^{2} \theta.$$

Partial Fractions

Procedure (Partial Fractions with Simple Linear Factors)

Suppose f(x) = p(x)/q(x), where p and q are polynomials with no common factors and with the degree of p less than the degree of q. Assume that q is the product of simple linear factors. The partial fraction decomposition is obtained as follows.

- (a) Factor the denominator q in the form $(x-r_1)(x-r_2)\cdots(x-r_n)$, where r_1,\ldots,r_n are real numbers.
- (b) *Partial fraction decomposition*. Form the partial fraction decomposition by writing

$$\frac{p(x)}{q(x)} = \frac{A_1}{(x-r_1)} + \frac{A_2}{(x-r_2)} + \dots + \frac{A_n}{(x-r_n)}.$$

Procedure (Partial Fractions with Simple Linear Factors (continued))

- (c) Clear denominators. Multiply both sides of the equation in Step
 (b) by q(x) = (x r₁)(x r₂) ··· (x r_n), which produces conditions for A₁,..., A_n.
- (d) Solve for coefficients. Equate like powers of x in Step (c) to solve for the undetermined coefficients A₁,..., A_n.

Procedure (Partial Fractions for Repeated Linear Factors)

Suppose the repeated linear factor $(x - r)^m$ appears in the denominator of a proper rational function in reduced form. The partial fraction decomposition has a partial fraction for each power of (x - r) up to and including the *m*th power; that is, the partial fraction decomposition contains the sum

$$\frac{A_1}{(x-r)} + \frac{A_2}{(x-r)^2} + \dots + \frac{A_m}{(x-r)^m}$$

where A_1, \ldots, A_m are constants to be determined.

Partial Fractions

Procedure (Partial Fractions with Simple Irreducible Quadratic Factors)

Suppose a simple irreducible factor $ax^2 + bx + c$ appears in the denominator of a proper rational function in reduced form. The partial fraction decomposition contains a term of the form

 $\frac{Ax+B}{ax^2+bx+c},$

where A and B are unknown coefficients to be determined.

Proposition

The quadratic polynomial $ax^2 + bx + c$ is irreducible if and only if its discriminant is negative, i.e.,

$$\Delta = b^2 - 4ac < 0.$$

Partial Fractions

Proposition (Partial Fraction Decomposition)

Let f(x) = p(x)/q(x) be a proper rational function in reduced form. Assume the denominator q has been factored completely over the real numbers and m is a positive integer.

- (a) Simple linear factor. A factor x r in the denominator requires the partial fraction $\frac{A}{x r}$.
- (b) Repeated linear factor. A factor $(x r)^m$ with m > 1 in the denominator requires the partial fractions

$$\frac{A_1}{(x-r)} + \frac{A_2}{(x-r)^2} + \frac{A_3}{(x-r)^3} + \dots + \frac{A_m}{(x-r)^m}$$

Proposition (Partial Fraction Decomposition (continued))

(c) Simple irreducible quadratic factor. An irreducible factor $ax^2 + bx + c$ in the denominator requires the partial fraction

$$\frac{Ax+B}{ax^2+bx+c}$$

(d) Repeated irreducible quadratic factor. An irreducible factor $(ax^2 + bx + c)^m$ with m > 1 in the denominator requires the partial fractions

$$\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \dots + \frac{A_mx + B_m}{(ax^2 + bx + c)^m}$$

Definition (Absolute and Relative Error)

Suppose c is a computed numerical solution to a problem having an exact solution x. There are two common meaasures of the error in c as an approximation to x:

absolute error =
$$|c - x|$$

and

relative error
$$=\frac{c-x}{x}$$
, (if $x \neq 0$).

Definition (Midpoint Rule)

Suppose f is defined an integrable on [a, b]. The *Midpoint Rule approximation* to $\int_a^b f(x) \, dx$ using n equally spaced subintervals on [a, b] is

$$M(n) = f(m_1)\Delta x + f(m_2)\Delta x + \dots + f(m_n)\Delta x$$
$$= \sum_{k=1}^n f\left(\frac{x_{k-1} + x_k}{2}\right)\Delta x,$$

where $\Delta x = (b-a)/n$, $x_0 = a$, $x_k = a + k\Delta x$, and $m_k = (x_{k-1} + x_k)/2 = a + (k - 1/2)\Delta x$ is the midpoint of $[x_{k-1}, x_k]$, for $k = 1, \dots, n$.

Definition (Trapezoid Rule)

Suppose f is defined and integrable on [a,b]. The Trapezoid Rule approximation to $\int_a^b f(x)\,dx$ using n equally spaced subintervals on [a,b] is

$$T(n) = \left[\frac{1}{2}f(x_0) + \sum_{k=1}^{n-1}f(x_k) + \frac{1}{2}f(x_n)\right]\Delta x.$$

where $\Delta x = (b-a)/n$ and $x_k = a + k\Delta x$, for $k = 0, 1, 2, \dots, n$.

Definition (Simpson's Rule)

Suppose f is defined and integrable on [a, b] and $n \ge 2$ is an even integer. The Simpson's Rule approximation to $\int_a^b f(x) dx$ using n equally spaced subintervals on [a, b] is

$$S(n) = \sum_{k=0}^{n/2-1} [f(x_{2k}) + 4f(x_{2k+1}) + f(x_{2k+2})] \frac{\Delta x}{3}$$

where n is an even integer, $\Delta x = (b-a)/n$, and $x_k = a + k\Delta x$, for $k = 0, 1, \ldots, n$.

Definition (Improper Integrals over Infinite Intervals)

(a) If f is continuous on $[a,\infty),$ then

$$\int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \, dx.$$

(b) If f is continuous on $(-\infty, b]$, then

$$\int_{-\infty}^{b} f(x) \, dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) \, dx.$$

Definition (Improper Integrals over Infinite Intervals (continued))

(c) If f is continuous on $(-\infty,\infty),$ then

$$\int_{-\infty}^{\infty} f(x) \, dx = \lim_{a \to -\infty} \int_{a}^{c} f(x) \, dx + \lim_{b \to \infty} \int_{c}^{b} f(x) \, dx,$$

where c is any real number.

If the limits in the above cases exist, then the improper integrals *converge*; otherwise, they *diverge*.

Definition (Improper Integrals with an Unbounded Integrand)

(a) Suppose f is continous on (a,b] with $\lim_{x \to a^+} f(x) = \pm \infty$. Then

$$\int_{a}^{b} f(x) \, dx = \lim_{c \to a^{+}} \int_{c}^{b} f(x) \, dx.$$

(b) Suppose f is continuous on [a,b) with $\lim_{x\to b^-} f(x) = \pm \infty$. Then

$$\int_{a}^{b} f(x) \, dx = \lim_{c \to b^{-}} f(x) \, dx.$$

Definition (Improper Integrals with an Unbounded Integrand (continued))

(c) Suppose f is continuous on [a, b] except at the interior point p where f is unbounded. Then

$$\int_{a}^{b} f(x) \, dx = \lim_{c \to p^{-}} \int_{a}^{c} f(x) \, dx + \lim_{d \to p^{+}} \int_{d}^{b} f(x) \, dx.$$

If the limits in above cases exist, then the improper integrals *converge*; otherwise, they *diverge*.

Introduction to Differential Equations

Definition

The order of a differential equation is the highest order appearing on a derivative in the equation. For example, the equations $y' + 4y = \cos x$ and y' = 0.1y(100 - y) are first order, and y'' + 16y = 0 is second order.

Definition (Linear Differential Equations)

The first-order linear differential equations have the form

$$y'(x) + p(x)y(x) = f(x),$$

and the second-order linear differential equations have the form

$$y''(x) + p(x)y'(x) + q(x)y(x) = f(x),$$

where p, q, and f are given functions that depend only on the independent variable x.

Introduction to Differential Equations

Definition

A differential equation is often accompanied by *initial conditions* that specify the values of y, and possibly its derivatives, at a particular point. In general, an *n*th-order equation reqruires n initial conditions.

Definition

A differntial equation, together with the appropriate number of initial conditions, is called an *initial value problem*. A typical first-order initial value problem has the form

y'(t) = F(t, y)	Differential equation
y(0) = A	Initial condition

where A is given and F is a given expression that involves t and/or $\boldsymbol{y}_{\text{r}}$

Proposition (Solution of a First-Order Linear Differential Equation)

The general solution of the first-order equation y'(t) = ky + b, where k and b are specified real numbers, is $y = Ce^{kt} - b/k$, where C is an arbitrary constant. Given an initial condition, the value of C may be determined.

Definition (Separable First-Order Differential Equations)

If the first-order differential equation can be written in the form g(y)y'(t) = h(t), in which the terms that involve y appear on one side of the equation *separated* from the terms that involve t, is said to be *separable*. We can solve the equation by integrating both sides of the equation with respect to t:

$$\int g(y)y'(t)\,dt = \int h(t)\,dt \implies \int g(y)\,dy = \int h(t)\,dt.$$

Review for Midterm Exam 2

Sequences and Infinite Series

Definition (Sequence)

A sequence $\{a_n\}$ is an ordered list of numbers of the form

 $\{a_1, a_2, a_3, \ldots, a_n, \ldots\}.$

- (a) A sequence may be generated by a *recurrence relation* of the form $a_{n+1} = f(a_n)$, for $n = 1, 2, 3, \ldots$, where a_1 is given.
- (b) A sequence may also be defined with an *explicit formula* of the form $a_n = f(n)$, for n = 1, 2, 3, ...

Definition (Limit of a Sequence)

If the terms of a sequence $\{a_n\}$ approach a unique number L as n increases – that is, if a_n can be made arbitrarily close to L by taking n sufficiently large – then we say $\lim_{n\to\infty} a_n = L$ exists, and the sequence *converges* to L. If the terms of the sequence do not approach a single number as n increases, the sequence has no limit, and the sequence *diverges*.

Theorem (Limits of Sequences from Limits of Functions)

Suppose f is a function such that $f(n) = a_n$ for all positive integers n. If $\lim_{x\to\infty} f(x) = L$, then the limit of the sequence $\{a_n\}$ is also L.

Theorem (Limits of Linear Functions)

Let a, b, and m be real numbers. For linear functions f(x) = mx + b,

$$\lim_{x \to a} f(x) = f(a) = ma + b.$$

Theorem (Limit Laws)

Assume $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. The following properties hold, where c is a real number, and m > 0 and n > 0 are integers.

$$\begin{array}{l} \text{(a) } Sum: \lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x). \\ \text{(b) } Difference: \lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x). \\ \text{(c) } Constant multiple: \lim_{x \to a} cf(x) = c \lim_{x \to a} f(x). \\ \text{(d) } Product: \lim_{x \to a} [f(x)g(x)] = \left[\lim_{x \to a} f(x)\right] \left[\lim_{x \to a} g(x)\right]. \\ \text{(e) } Quotient: \lim_{x \to a} \left[\frac{f(x)}{g(x)}\right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \text{ provided } \lim_{x \to a} g(x) \neq 0. \\ \text{(f) } Power: \lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n. \end{array}$$

Theorem (Limits of Polynomial and Rational Functions)

Assume p and q are polynomials and a is a constant.

(a) Polynomial functions: $\lim_{x \to a} p(x) = p(a)$. (b) Rational functions: $\lim_{x \to a} \frac{p(x)}{q(x)} = \frac{p(a)}{q(a)}$, provided $q(a) \neq 0$.

Theorem (The Squeeze Theorem)

Assume the function f, g, and h satisfy $f(x) \le g(x) \le h(x)$ for all values of x near a, except possibly at a. If $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} g(x) = L$.

Theorem (Limits at Infinity of Powers and Polynomials) Let n be a positive integer and let p be the polynomial $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$, where $a_n \neq 0$. (a) $\lim_{x \to +\infty} x^n = \infty$ when n is even. (b) $\lim_{x\to\infty} x^n = \infty$ and $\lim_{x\to-\infty} x^n = -\infty$ when n is odd. (c) $\lim_{x \to \pm \infty} \frac{1}{x^n} = \lim_{x \to \pm \infty} x^{-n} = 0.$ (d) $\lim_{x \to +\infty} p(x) = \lim_{x \to +\infty} a_n x^n = \pm \infty$, depending on the degree of the polynomial and the sign of the leading coefficient a_n .

Theorem (End Behavior of e^x , e^{-x} , and $\ln x$)

The end behavior for e^x and e^{-x} on $(-\infty, \infty)$ and $\ln x$ on $(0, \infty)$ is given by the following limits (see Figure 1):

$\lim_{x \to \infty} e^x = \infty$	$\lim_{x \to -\infty} e^x = 0$
$\lim_{x \to \infty} e^{-x} = 0$	$\lim_{x \to -\infty} e^{-x} = \infty$
$\lim_{x \to 0^+} \ln x = -\infty$	$\lim_{x \to \infty} \ln x = \infty.$

Limits of Functions

Figure 1:Graphs of e^x , e^{-x} , $\ln x$: $y = e^{-x}$ and $y = e^x$ are symmetric about y-axis, and $y = e^x$ and $y = \ln x$ are symmetric about y = x.

Limits of Functions

Theorem (L'Hôpital's Rule)

Suppose f and g are differentiable on an open interval I containing a with $g'(x) \neq 0$ on I when $x \neq a$.

(a) If
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

provided the limit on the right exists (or is $\pm \infty$). The rule also applies if $x \to a$ is repaced with $x \to \pm \infty$, $x \to a^+$, $x \to a^-$. (b) If $\lim_{x \to a} f(x) = \pm \infty$ and $\lim_{x \to a} g(x) = \pm \infty$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

provided the limit on the right exists (or is $\pm \infty$). The rule also applies if $x \to a$ is represed with $x \to \pm \infty$, $x \to a^+$, $x \to a^-$

Theorem (Limit Laws for Sequences)

Assume that the sequences $\{a_n\}$ and $\{b_n\}$ have limits A and B, respectively. Then

(a)
$$\lim_{n \to \infty} (a_n \pm b_n) = A \pm B.$$

(b) $\lim_{n \to \infty} ca_n = cA$, where c is a real number
(c) $\lim_{n \to \infty} a_n b_n = AB.$
(d) $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}$ provided $B \neq 0.$

Definition

- (a) $\{a_n\}$ is *increasing* if $a_{n+1} > a_n$; for example, $\{0, 1, 2, 3, ...\}$.
- (b) $\{a_n\}$ is *nondecreasing* if $a_{n+1} \ge a_n$; for example, $\{0, 1, 1, 1, 2, 2, 3, ...\}$.
- (c) $\{a_n\}$ is *decreasing* if $a_{n+1} < a_n$; for example, $\{2, 1, 0, -2, ...\}$.
- (d) $\{a_n\}$ is *nonincreasing* if $a_{n+1} \leq a_n$; for example, $\{2, 1, 1, 0, -2, -2, -3, \ldots\}$.
- (e) {a_n} is *monotonic* if it is either nonincreasing or nondecreasing (it moves in one direction).
- (f) $\{a_n\}$ is *bounded* if there is number M such that $|a_n| \leq M$, for all relevant values of n.

Theorem (Squeeze Theorem for Sequences)

Let $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$ be sequences with $a_n \leq b_n \leq c_n$ for all integers n greater than some index N. If $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

Theorem (Bounded Monotonic Sequences)

A bounded monotonic sequence converges.

Theorem (Growth Rates of Sequences)

The following sequences are ordered according to increasing growth rates as $n \to \infty$; that is, if $\{a_n\}$ appears before $\{b_n\}$ in the list, then $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\lim_{n\to\infty} \frac{b_n}{a_n} = \infty$:

 $\{\ln^q n\} \ll \{n^p\} \ll \{n^p \ln^r n\} \ll \{n^{p+s}\} \ll \{b^n\} \ll \{n!\} \ll \{n^n\}.$

The ordering applies for positive real numbers p, q, r, s and b > 1.

Definition (Infinite series)

Given a sequence $\{a_1, a_2, a_3, \ldots, \}$, the sum of its terms

$$a_1 + a_2 + a_3 + \dots = \sum_{k=1}^{\infty} a_k$$

is called an *infinite series*.

Sequence of Partial Sums

Definition (Sequence of Partial Sums)

The sequence of partial sums $\{S_n\}$ associated with this series has the terms

$$S_{1} = a_{1}$$

$$S_{2} = a_{1} + a_{2}$$

$$S_{3} = a_{1} + a_{2} + a_{3}$$

$$\vdots$$

$$S_{n} = a_{1} + a_{2} + a_{3} + \dots + a_{n} = \sum_{k=1}^{n} a_{k}, \text{ for } n = 1, 2, 3, \dots$$

Proposition

If the sequence of partial sums $\{S_n\}$ has a limit L, the infinite series *converges* to that limit, and we write

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=1}^n a_k = \lim_{n \to \infty} S_n = L.$$

If the sequence of partial sums diverges, the infinite series also *diverges*.

Definition (Geometric Sequences)

A sequence has the form $\{r^n\}$ or $\{ar^n\}$, where the ratio r, a are real numbers, is called a geometric sequence.

Theorem (Geometric Sequences)

Let r be a real number. Then

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } |r| < 1, \\ 1 & \text{if } r = 1, \\ \text{does not exist} & \text{if } r \le -1 \text{ or } r > 1. \end{cases}$$

If r > 0, then $\{r^n\}$ is a monotonic sequence. If r < 0, then $\{r^n\}$ oscillates.

Theorem (Geometric Series)

Let $a \neq 0$ and r be real numbers. If |r| < 1, then $\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$. If $|r| \ge 1$, then the series diverges. More generally,

$$\sum_{k=m}^{\infty} ar^k = \frac{ar^m}{1-r}.$$

Review for Midterm Exam 2

Exponents and Radicals

(a)
$$\frac{1}{x^a} = x^{-a}$$
.
(b) $\sqrt[n]{x} = x^{1/n}$.
(c) $x^{a+b} = x^a x^b$.
(d) $x^{a-b} = \frac{x^a}{x^b}$.
(e) $x^{ab} = (x^a)^b$.
(f) $x^{m/n} = \sqrt[n]{x^m} = (\sqrt[n]{x})^m$.
(g) $(xy)^a = x^a y^a$.
(h) $\left(\frac{x}{y}\right)^a = \frac{x^a}{y^a}$.

(a)
$$y = a^x \implies x = \log_a y.$$

(b) $\log_e x = \ln x.$
(c) $\log_b(xy) = \log_b x + \log_b y.$
(d) $\log_b \frac{x}{y} = \log_b x - \log_b y.$
(e) $\log_b(x^p) = p \log_b x.$
(f) $\log_b(x^{1/p}) = \frac{1}{p} \log_b x.$
(g) $\log_b x = \frac{\log_k x}{\log_k b}.$

Factoring Formulas

(a)
$$a^2 - b^2 = (a - b)(a + b).$$

(b) $a^3 - b^3 = (a - b)(a^2 + ab + b^2).$
(c) $a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \dots + ab^{n-2} + b^{n-1}).$

Binomials

(a) $(a \pm b)^2 = a^2 \pm 2ab + b^2$. (b) $(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$.

Completing the Square: $x^2 \pm bx + c$

Given that $(x \pm p)^2 = x^2 \pm 2px + p^2$.

$$x^{2} \pm bx + c = x^{2} \pm 2\frac{b}{2}x + c$$

= $x^{2} \pm 2\frac{b}{2}x + \left(\frac{b}{2}\right)^{2} + c - \left(\frac{b}{2}\right)^{2}$
= $\left(x \pm \frac{b}{2}\right)^{2} + c - \frac{b^{2}}{4}.$

Completing the Square: $ax^2 \pm bx + c$

$$ax^{2} \pm bx + c = a\left(x^{2} \pm \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} \pm 2\frac{b}{2a}x\right) + c$$

$$= a\left[x^{2} \pm 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2}\right] + c - a\left(\frac{b}{2a}\right)^{2}$$

$$= a\left(x \pm \frac{b}{2a}\right)^{2} + c - \frac{b^{2}}{4a}$$

$$= \left(\sqrt{a}\right)^{2}\left(x \pm \frac{b}{2a}\right)^{2} + c - \frac{b^{2}}{4a}$$

$$= \left(\sqrt{a}x \pm \frac{\sqrt{a}b}{2a}\right)^{2} + c - \frac{b^{2}}{4a}$$

$$= \left(\sqrt{a}x \pm \frac{\sqrt{a}b}{2a}\right)^{2} + c - \frac{b^{2}}{4a}$$

The solutions of $ax^2 + bx + c = 0$ are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$