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1 Sequences and Infinite Series

1.1 Sequences
Definition 1.1 (Sequence). A sequence {an} is an ordered list of numbers of the form

{a1, a2, a3, . . . , an, . . .}.

A sequence may be generated by a recurrence relation of the form an+1 = f(an), for n = 1, 2, 3, . . .,
where a1 is given. A sequence may also be defined with an explicit formula of the form an = f(n),
for n = 1, 2, 3, . . ..

Definition 1.2 (Limit of a Sequence). If the terms of a sequence {an} approach a unique number
L as n increases – that is, if an can be made arbitrarily close to L by taking n sufficiently large –
then we say lim

n→∞
an = L exists, and the sequence converges to L. If the terms of the sequence do

not approach a single number as n increases, the sequence has no limit, and the sequence diverges.

Theorem 1.1 (Limits of Sequences from Limits of Functions). Suppose f is a function such that
f(n) = an for all positive integers n. If lim

x→∞
f(x) = L, then the limit of the sequence {an} is also

L.

Theorem 1.2 (Limit Laws for Sequences). Assume that the sequences {an} and {bn} have limits
A and B, respectively. Then

(a) lim
n→∞

(an ± bn) = A±B.
(b) lim

n→∞
can = cA, where c is a real number.

(c) lim
n→∞

anbn = AB.

(d) lim
n→∞

an
bn

=
A

B
provided B ̸= 0.

Definition 1.3 (Terminology for Sequences).

(a) {an} is increasing if an+1 > an; for example, {0, 1, 2, 3, . . .}.
(b) {an} is nondecreasing if an+1 ≥ an; for example, {0, 1, 1, 1, 2, 2, 3, . . .}.
(c) {an} is decreasing if an+1 < an; for example, {2, 1, 0,−2, . . .}.
(d) {an} is nonincreasing if an+1 ≤ an; for example, {2, 1, 1, 0,−2,−2,−3, . . .}.
(e) {an} is monotonic if it is either nonincreasing or nondecreasing (it moves in one direction).
(f) {an} is bounded if there is number M such that |an|≤ M , for all relevant values of n.

Theorem 1.3 (Squeeze Theorem for Sequences). Let {an}, {bn}, and {cn} be sequences with
an ≤ bn ≤ cn for all integers n greater than some index N . If lim

n→∞
an = lim

n→∞
cn = L, then

lim
n→∞

bn = L.

Theorem 1.4 (Bounded Monotonic Sequences). A bounded monotonic sequence converges.
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Theorem 1.5 (Growth Rates of Sequences). The following sequences are ordered according to
increasing growth rates as n → ∞; that is, if {an} appears before {bn} in the list, then lim

n→∞

an
bn

= 0

and lim
n→∞

bn
an

= ∞:

{lnq n} ≪ {np} ≪ {np lnr n} ≪ {np+s} ≪ {bn} ≪ {n! } ≪ {nn}.

The ordering applies for positive real numbers p, q, r, s and b > 1.

1.2 Limits of Functions

Theorem 1.6 (Limits of Linear Functions). Let a, b, and m be real numbers. For linear functions
f(x) = mx+ b,

lim
x→a

f(x) = f(a) = ma+ b.

Theorem 1.7 (Limit Laws). Assume lim
x→a

f(x) and lim
x→a

g(x) exist. The following properties hold,
where c is a real number, and m > 0 and n > 0 are integers.

(a) Sum: lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x).
(b) Difference: lim

x→a
[f(x)− g(x)] = lim

x→a
f(x)− lim

x→a
g(x).

(c) Constant multiple: lim
x→a

cf(x) = c lim
x→a

f(x).

(d) Product: lim
x→a

[f(x)g(x)] =
[
lim
x→a

f(x)
] [

lim
x→a

g(x)
]
.

(e) Quotient: lim
x→a

[
f(x)

g(x)

]
=

lim
x→a

f(x)

lim
x→a

g(x)
, provided lim

x→a
g(x) ̸= 0.

(f) Power: lim
x→a

[f(x)]n =
[
lim
x→a

f(x)
]n

.

Theorem 1.8 (Limits of Polynomial and Rational Functions). Assume p and q are polynomials
and a is a constant.

(a) Polynomial functions: lim
x→a

p(x) = p(a).

(b) Rational functions: lim
x→a

p(x)

q(x)
=

p(a)

q(a)
, provided q(a) ̸= 0.

Theorem 1.9 (The Squeeze Theorem). Assume the function f , g, and h satisfy f(x) ≤ g(x) ≤ h(x)
for all values of x near a, except possibly at a. If lim

x→a
f(x) = lim

x→a
h(x) = L, then lim

x→a
g(x) = L.

Theorem 1.10 (Limits at Infinity of Powers and Polynomials). Let n be a positive integer and let
p be the polynomial p(x) = anx

n + an−1x
n−1 + · · ·+ a2x

2 + a1x+ a0, where an ̸= 0.

(a) lim
x→±∞

xn = ∞ when n is even.
(b) lim

x→∞
xn = ∞ and lim

x→−∞
xn = −∞ when n is odd.

(c) lim
x→±∞

1
xn = lim

x→±∞
x−n = 0.

(d) lim
x→±∞

p(x) = lim
x→±∞

anx
n = ±∞, depending on the degree of the polynomial and the sign of

the leading coefficient an.
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Theorem 1.11 (End Behavior of ex, e−x, and lnx). The end behavior for ex and e−x on (−∞,∞)
and lnx on (0,∞) is given by the following limits (see Figure 1):

lim
x→∞

ex = ∞ lim
x→−∞

ex = 0

lim
x→∞

e−x = 0 lim
x→−∞

e−x = ∞

lim
x→0+

lnx = −∞ lim
x→∞

lnx = ∞.

O
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y = exy = e−x

y = lnxy = x

Figure 1: Graphs of ex, e−x, lnx: y = e−x and y = ex are symmetric about y-axis,
and y = ex and y = lnx are symmetric about y = x.

Theorem 1.12 (L’Hôpital’s Rule). Suppose f and g are differentiable on an open interval I
containing a with g′(x) ̸= 0 on I when x ̸= a.

(a) If lim
x→a

f(x) = lim
x→a

g(x) = 0, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

provided the limit on the right exists (or is ±∞). The rule also applies if x → a is repaced
with x → ±∞, x → a+, x → a−.

(b) If lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

provided the limit on the right exists (or is ±∞). The rule also applies if x → a is repaced
with x → ±∞, x → a+, x → a−.
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1.3 Infinite Series
Definition 1.4 (Infinite series). Given a sequence {a1, a2, a3, . . . , }, the sum of its terms

a1 + a2 + a3 + · · · =
∞∑
k=1

ak

is called an infinite series. The sequence of partial sums {Sn} associated with this series has the
terms

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3
...

Sn = a1 + a2 + a3 + · · ·+ an =

n∑
k=1

ak, for n = 1, 2, 3, . . .

If the sequence of partial sums {Sn} has a limit L, the infinite series converges to that limit, and
we write

∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak = lim
n→∞

Sn = L.

If the sequence of partial sums diverges, the infinite series also diverges.

1.4 Convergent Series
Theorem 1.13 (Properties of Convergent Series).

(a) Suppose
∑

ak converges to A and c is a real number. The series
∑

cak converges, and∑
cak = c

∑
ak = cA.

(b) Suppose
∑

ak converges to A and
∑

bk converges to B. The series
∑

(ak ± bk) converges,
and

∑
(ak ± bk) =

∑
ak ±

∑
bk = A±B.

(c) If M is a positive integer, then
∞∑
k=1

ak and
∞∑

k=M

ak either both converge or both diverge. In

general, whether a series converges does not depend on a finite number of terms added to or
removed from the series. However, the value of a convergent series does change if nonzero
terms are added or removed.

Definition 1.5 (Absolute and Conditional Convergence). If
∑

|ak| converges, then
∑

ak converges
absolutely. If

∑
|ak| diverges and

∑
ak converges, then

∑
ak converges conditionally.

Theorem 1.14 (Absolute Convergence Implies Convergence). If
∑

|ak| converges, then
∑

ak con-
verges (absolute convergence implies convergence). Equivalently, if

∑
ak diverges, then

∑
|ak|

diverges.

1.5 Harmonic Series, Alternating Harmonic Series, and p-Series

Theorem 1.15 (Harmonic Series). The harmonic series
∞∑
k=1

1

k
= 1 +

1

2
+

1

3
+ · · · diverges – even

though the terms of the series approach zero.
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Proposition 1.1.
n∑

k=1

1

k
= 1 +

1

2
+

1

3
+ · · · ≈ lnn+ γ,

where γ ≈ 0.57721 . . ..

Theorem 1.16 (Alternating Harmonic Series). The alternating harmonic series
∞∑
k=1

(−1)k+1

k
= 1− 1

2
+

1

3
− 1

4
+ · · ·

converges (even though the harmonic series
∞∑
k=1

1

k
= 1 +

1

2
+

1

3
+ · · · diverges).

Theorem 1.17 (Convergence of the p-Series). The p-series
∞∑
k=1

1

kp
converges for p > 1 and diverges

for p ≤ 1.

1.6 Geometric Sequences and Geometric Series
Definition 1.6 (Geometric Sequences). A sequence has the form {rn} or {arn}, where the ratio
r, a are real numbers, is called a geometric sequence.

Theorem 1.18 (Geometric Sequences). Let r be a real number. Then

lim
n→∞

rn =


0 if |r|< 1,

1 if r = 1,

does not exist if r ≤ −1 or r > 1.

If r > 0, then {rn} is a monotonic sequence. If r < 0, then {rn} oscillates.

Theorem 1.19 (Geometric Series). Let a ̸= 0 and r be real numbers. If |r|< 1, then
∞∑
k=0

ark =

a

1− r
. If |r|≥ 1, then the series diverges. More generally,

∞∑
k=m

ark =
arm

1− r
.

1.7 Power Series
Definition 1.7 (Power Series). A power series has the general form

∞∑
k=0

ck(x− a)k = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · · ,

where a and ck are real numbers, and x is a variable. The ck’s are the coefficients of the power
series and a is the center of the power series. The set of values of x for which the series converges
is its interval of convergence. The radius of convergence of the power series, denoted R, is the
distance from the center of the series to the boundary of the interval of convergence.
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Definition 1.8 (Taylor Polynomials). Let f be a function with f ′, f ′′, . . . , f (n) defined at a. Then
nth-order Taylor polynomial for f with its center at a, denoted pn, has the property that it matches
f in value, slope, and all derivatives up to the nth derivative at a; that is,

pn = f(a), p′n(a) = f ′(a), . . . , p(n)(a) = f (n)(a).

The nth-order Taylor polynomial centered at a is

pn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n =

n∑
k=0

ck(x− a)k,

where the coefficients are

ck =
f (k)(a)

k!
, for k = 0, 1, 2, . . . .

Definition 1.9 (Taylor/MacLaurin Series for a Function). Suppose the function f has derivatives
of all orders on an interval centered at the point a. The Taylor series for f centered at a is

f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f (3)

3!
(x− a)3 + · · · =

∞∑
k=0

f (k)(a)

k!
(x− a)k.

A Taylor series centered at 0 is called a MacLaurin series.

Proposition 1.2 (MacLaurin series).

(a) sinx =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
, for |x|< ∞.

(b) cosx =
∞∑
k=0

(−1)kx2k

(2k)!
, for |x|< ∞.

(c) ex =
∞∑
k=0

xk

k!
, for |x|< ∞.

(d) 1

1− x
=

∞∑
k=0

xk, for |x|< 1.

(e) 1

1 + x
=

∞∑
k=0

(−x)k =
∞∑
k=0

(−1)kxk, for |x|< 1.

(f) ln (1 + x) =

∞∑
k=0

(−1)kxk+1

k + 1
, for − 1 < x ≤ 1.

(g) − ln (1− x) =

∞∑
k=0

xk+1

k + 1
, for − 1 ≤ x < 1.

Theorem 1.20 (Convergence of Power Series). A power series
∞∑
k=0

ck(x−a)k centered at a converges

in one of three ways:

(a) The series converges for all x, in which case the interval of convergence is (−∞,∞) and the
radius of convergence is R = ∞.

(b) There is a real number R > 0 such that the series converges for |x− a|< R and diverges for
|x− a|> R, in which case the radius of convergence is R.
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(c) The series converges only at a, in which case the radius of convergence is R = 0.

Theorem 1.21 (Combining Power Series). Suppose the power series
∑

ckx
k and

∑
dkx

k converge
to f(x) and g(x), respectively, on an interval I.

(a) Sum and difference: The power series
∑

(ck ± dk)x
k converges to f(x)± g(x) on I.

(b) Multiplication by a power: Suppose m is an integer such that k +m ≥ 0 for all terms of the
power series xm

∑
ckx

k =
∑

ckx
k+m. This series converges to xmf(x) for all x ̸= 0 in I.

When x = 0, the series converges to lim
x→0

xmf(x).
(c) Composition: If h(x) = bxm, where m is a positive integer and b is a nonzero real number,

the power series
∑

ck(h(x))
k converges to the composite function f(h(x)), for all x such that

h(x) is in I.

Theorem 1.22 (Differentiating and Integrating Power Series). Suppose the power series
∑

ck(x−
a)k converges for |x− a|< R and defines a function f on that interval.

(a) Then f is differentiable (which implies continuous) for |x− a|< R, and f ′ is found by differ-
entiating the power series for f term by term: that is,

f ′(x) =
d

dx
f(x) =

d

dx

∑
ck(x− a)k =

∑ d

dx
ck(x− a)k =

∑
kck(x− a)k−1,

for |x− a|< R.
(b) The indefinite integral of f is found by integrating the power series for f term by term: that

is, ∫
f(x) dx =

∫ ∑
ck(x− a)k dx =

∑∫
ck(x− a)k dx =

∑
ck

(x− a)k+1

k + 1
+ C,

for |x− a|< R, where C is an arbitrary constant.

1.8 The Divergence, Integral, Ratio, Root, Comparison, Limit Comparison,
Alternating Series Tests

Theorem 1.23 (Contrapositive and Converse). If the statement “if p, then q” (i.e., p =⇒ q) is
true, then its contrapositive, “if (not q), then (not p)” (i.e., ¬q =⇒ ¬p), is also true. However its
converse, “if q, then p” (i.e., q =⇒ p), is not necessary true. In short,

p =⇒ q ≡ ¬q =⇒ ¬p,
p =⇒ q ̸≡ q =⇒ p,

where A ≡ B means A and B are equivalent.

Example 1.1. Assume that Laramie is one of the cities in Wyoming, and both Laramie and
Wyoming are unique in our universe.
Statement: If I live in Laramie, then I live in Wyoming. (true)
Contrapositive: If I don’t live in Wyoming, then I don’t live in Laramie. (true)
Converse: If I live in Wyoming, then I live in Laramie. (false)

Theorem 1.24 (Divergence Test). If
∑

ak converges, then lim
k→∞

ak = 0. Equivalently, if lim
k→∞

ak ̸=
0, then the series diverges.
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Note: The converse of the above statement, if lim
k→∞

ak = 0, then the series converges, might not be
true.

Theorem 1.25 (Integral Test). Suppose f is a continuous, positive, decreasing function, for x ≥ 1,
and let ak = f(k), for k = 1, 2, 3, . . .. Then

∞∑
k=1

ak and
∫ ∞

1
f(x) dx

either both converge or both diverge. In the case of convergence, the value of the integral is not
equal to the value of the series.

Theorem 1.26 (Ratio Test). Let
∑

ak be an infinite series with positive terms and let r =

lim
k→∞

ak+1

ak
.

(a) If 0 ≤ r < 1, the series converges.
(b) If r > 1 (including r = ∞), the series diverges.
(c) If r = 1, the test is inconclusive.

Theorem 1.27 (Root Test). Let
∑

ak be an infinite series with nonnegative terms and let ρ =
lim
k→∞

k
√
ak.

(a) If 0 ≤ ρ < 1, the series converges.
(b) If ρ > 1 (including ρ = ∞), the series diverges.
(c) If ρ = 1, the test is inconclusive.

Theorem 1.28 (Comparison Test). Let
∑

ak and
∑

bk be series with positive terms.

(a) If 0 < ak ≤ bk and
∑

bk converges, then
∑

ak converges.
(b) If 0 < bk ≤ ak and

∑
bk diverges, then

∑
ak diverges.

Theorem 1.29 (Limit Comparison Test). Let
∑

ak and
∑

bk be series with positive terms and
let

lim
k→∞

ak
bk

= L.

(a) If 0 < L < ∞ (that is, L is a finite positive number), then
∑

ak and
∑

bk either both converge
or both diverge.

(b) If L = 0 and
∑

bk converges, then
∑

ak converges.
(c) If L = ∞ and

∑
bk diverges, then

∑
ak diverges.

Theorem 1.30 (Alternating Series Test). The alternating series
∑

(−1)k+1ak converges provided

(a) the terms of the series are nonincreasing in magnitude (0 < ak+1 ≤ ak), for k greater than
some index N) and

(b) lim
k→∞

ak = 0.

Procedure 1.1 (Guidelines for Choosing a Test).

(a) Begin with Divergence Test. If you show that lim
k→∞

ak ̸= 0, then the series diverges and your
work is finished. The order of growth rates of sequences is useful for evaluating lim

k→∞
ak.

(b) • Geometric series:
∑

ark converges for |r|< 1 and diverges for |r|≥ 1(a ̸= 0).
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• p-series:
∑ 1

kp converges for p > 1 and diverges for p ≤ 1.
• Check also for a telescoping series.

(c) If the genearl kth term of the series looks like a function you can integrate, then try the
Integral Test.

(d) If the general kth term of the series involves k!, kk, ak, where a is a constant, the Ratio Test
is advisable. Series with k in an exponent may yield to the Root Test.

(e) If the general kth term of the series is a rational function of k (or a root of a rational function),
use the Comparison or the Limit Comparison Test.

(f) If the sign of the terms is alternating, use the Alternating Series Test.

1.9 Remainder and Approximation of Series
Definition 1.10 (Remainder). The remainder is the error in approximating a convergent series
by the sum of its first n terms, that is,

Rn =

∞∑
k=1

ak −
n∑

k=1

ak =

∞∑
k=n+1

ak = an+1 + an+2 + an+3 + · · · .

Theorem 1.31 (Estimating Series with Positive Terms). Let f be a continuous, positive, decreasing

function, for x ≥ 1, and let ak = f(k), for k = 1, 2, 3, . . .. Let S =

∞∑
k=1

ak be a convergent series and

let Sn =

n∑
k=1

ak be the sum of the first n terms of the series. The remainder Rn = S − Sn satisfies

Rn <

∫ ∞

n
f(x) dx.

Furthermore, the exact value of the series is bounded as follows:

Sn +

∫ ∞

n+1
f(x) dx <

∞∑
k=1

ak < Sn +

∫ ∞

n
f(x) dx.

Theorem 1.32 (Remainder in Alternating Series). Let
∞∑
k=1

(−1)k+1ak be a convergent alternating

series with terms that are nonincreasing in magnitude. Let Rn = S − Sn be the remainder in
approximating the value of that series by the sum of its first n terms. Then |Rn|≤ an+1. In other
words, the magnitude of the remainder is less than or equal to the magnitude of the first neglected
term.

2 Algebra

2.1 Exponents and Radicals

(a) 1

xa
= x−a.

(b) n
√
x = x1/n.

(c) xa+b = xaxb.
(d) xa−b =

xa

xb
.
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(e) xab = (xa)b.
(f) xm/n = n

√
xm = ( n

√
x)m.

(g) (xy)a = xaya.

(h)
(
x

y

)a

=
xa

ya
.

2.2 Logarithm

(a) y = ax =⇒ x = loga y.
(b) loge x = lnx.
(c) logb(xy) = logb x+ logb y.
(d) logb

x

y
= logb x− logb y.

(e) logb(x
p) = p logb x.

(f) logb(x
1/p) =

1

p
logb x.

(g) logb x =
logk x

logk b
.

2.3 Factoring Formulas

(a) a2 − b2 = (a− b)(a+ b).
(b) a3 − b3 = (a− b)(a2 + ab+ b2).
(c) an − bn = (a− b)(an−1 + an−2b+ an−3b2 + · · ·+ abn−2 + bn−1).

2.4 Binomials

(a) (a± b)2 = a2 ± 2ab+ b2.
(b) (a± b)3 = a3 ± 3a2b+ 3ab2 ± b3.

2.5 Completing the Square

(a) (x± p)2 = x2 ± 2px+ p2.
(b)

x2 ± bx+ c = x2 ± 2
b

2
x+ c

= x2 ± 2
b

2
x+

(
b

2

)2

+ c−
(
b

2

)2

=

(
x± b

2

)2

+ c− b2

4
.
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(c)

ax2 ± bx+ c = a

(
x2 ± b

a
x

)
+ c

= a

(
x2 ± 2

b

2a
x

)
+ c

= a

[
x2 ± 2

b

2a
x+

(
b

2a

)2
]
+ c− a

(
b

2a

)2

= a

(
x± b

2a

)2

+ c− b2

4a

= (
√
a)2

(
x± b

2a

)2

+ c− b2

4a

=

(√
ax±

√
ab

2a

)2

+ c− b2

4a

=

(√
ax± b

2
√
a

)2

+ c− b2

4a
.

2.6 Quadratic Formula
The solutions of ax2 + bx+ c = 0 are

x =
−b±

√
b2 − 4ac

2a
.
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