Last update: July 2, 2019

1 Power Series

1.1 Review of Taylor Polynomials, Taylor/MacLaurin Series

Definition 1.1 (Taylor Polynomials). Let f be a function with $f', f'', \ldots, f^{(n)}$ defined at a. Then *n*th-order Taylor polynomial for f with its center at a, denoted p_n , has the property that it matches f in value, slope, and all derivatives up to the *n*th derivative at a; that is,

$$p_n = f(a), p'_n(a) = f'(a), \dots, p^{(n)}(a) = f^{(n)}(a).$$

The *n*th-order Taylor polynomial centered at a is

$$p_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n = \sum_{k=0}^n c_k(x-a)^k,$$

where the *coefficients* are

$$c_k = \frac{f^{(k)}(a)}{k!}$$
, for $k = 0, 1, 2, \dots$

Definition 1.2 (Taylor/MacLaurin Series for a Function). Suppose the function f has derivatives of all orders on an interval centered at the point a. The Taylor series for f centered at a is

$$f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f^{(3)}}{3!}(x-a)^3 + \dots = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^k.$$

A Taylor series centered at 0 is called a *MacLaurin series*.

Example 1.1 (MacLaurin series for $\sin x$). Find the MacLaurin series for $f(x) = \sin x$, $g(x) = \cos x$, and find their intervals of convergence.

SOLUTION.

(a)

$$f'(x) = \frac{d}{dx}f(x) = \frac{d}{dx}\sin x = \cos x,$$

$$f''(x) = \frac{d}{dx}f'(x) = \frac{d}{dx}\cos x = -\sin x,$$

$$f^{(3)}(x) = \frac{d}{dx}f''(x) = \frac{d}{dx}(-\sin x) = -\frac{d}{dx}\sin x = -\cos x,$$

$$f^{(4)}(x) = \frac{d}{dx}f^{(3)}(x) = \frac{d}{dx}(-\cos x) = -\frac{d}{dx}\cos x = -(-\sin x) = \sin x$$

Observe that $f^{(4)}(x) = f(x) = \sin(x)$, then $f^{(5)}(x) = f'(x) = \cos x$, $f^{(6)}(x) = f''(x) = -\sin x$, and $f^{(7)}(x) = f^{(3)}(x) = -\cos x$. More generally, $f^{(4n+j)}(x) = f^{(j)}(x)$, j = 0, 1, 2, 3; n = 0, 1, 2, ... Then by definition, the MacLaurin series for $f(x) = \sin x$ is

$$\sin x = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} (x-0)^k = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k$$

= $\sin 0 + \frac{\cos 0}{1!} x + \frac{-\sin 0}{2!} x^2 + \frac{-\cos 0}{3!} x^3 + \frac{\sin 0}{4!} x^4 + \frac{\cos 0}{5!} x^5 + \cdots$
= $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$
= $\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$

Then we apply the Ratio Test to $\sum_{k=0}^{\infty} |a_k| = \sum_{k=0}^{\infty} \left| \frac{(-1)^k x^{2k+1}}{(2k+1)!} \right| = \sum_{k=0}^{\infty} \frac{|x|^{2k+1}}{(2k+1)!}$ to test for absolute convergence:

$$r = \lim_{k \to \infty} \frac{a_{k+1}}{a_k}$$

= $\lim_{k \to \infty} \frac{|x|^{2k+3}/(2k+3)!}{|x|^{2k+1}/(2k+1)!}$
= $\lim_{k \to \infty} \frac{|x|^2(2k+1)!}{(2k+1)! \cdot (2k+2)(2k+3)}$
= $|x|^2 \lim_{k \to \infty} \frac{1}{(2k+2)(2k+3)}$
= 0.

In this case, r < 1 for all x, so the MacLaurin series converges absolutely for all x, which implies that the series converges for all x. We conclude that the interval of convergence is $(-\infty, \infty)$.

(b)

$$g'(x) = \frac{d}{dx}g(x) = \frac{d}{dx}\cos x = -\sin x,$$

$$g''(x) = \frac{d}{dx}g'(x) = \frac{d}{dx}(-\sin x) = -\frac{d}{dx}\sin x = -\cos x,$$

$$g^{(3)}(x) = \frac{d}{dx}g''(x) = \frac{d}{dx}(-\cos x) = -\frac{d}{dx}\cos x = -(-\sin x) = \sin x,$$

$$g^{(4)}(x) = \frac{d}{dx}g^{(3)}(x) = \frac{d}{dx}\sin x = \cos x,$$

Observe that $g^{(4)}(x) = g(x) = \cos(x)$, then $g^{(5)}(x) = g'(x) = -\sin x$, $g^{(6)}(x) = g''(x) = -\cos x$, and $g^{(7)}(x) = g^{(3)}(x) = \sin x$. More generally, $g^{(4n+j)}(x) = g^{(j)}(x)$, $j = 0, 1, 2, 3; n = -\cos x$, and $g^{(5)}(x) = g^{(3)}(x) = \sin x$.

3 of 7

 $0, 1, 2, \ldots$ Then by definition, the MacLaurin series for $g(x) = \cos x$ is

$$\cos x = \sum_{k=0}^{\infty} \frac{g^{(k)}(0)}{k!} (x-0)^k = \sum_{k=0}^{\infty} \frac{g^{(k)}(0)}{k!} x^k$$

= $\cos 0 + \frac{-\sin 0}{1!} x + \frac{-\cos 0}{2!} x^2 + \frac{\sin 0}{3!} x^3 + \frac{\cos 0}{4!} x^4 + \frac{-\sin 0}{5!} x^5 + \cdots$
= $1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$
= $\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$

Or we can observe that $\cos x = \frac{d}{dx} \sin x$, then

$$\cos x = \frac{d}{dx}\sin x = \frac{d}{dx}\sum_{k=0}^{\infty}\frac{(-1)^k x^{2k+1}}{(2k+1)!} = \sum_{k=0}^{\infty}\frac{d}{dx}\frac{(-1)^k x^{2k+1}}{(2k+1)!} = \sum_{k=0}^{\infty}\frac{(-1)^k (2k+1)x^{2k}}{(2k)! \cdot (2k+1)} = \sum_{k=0}^{\infty}\frac{(-1)^k x^{2k}}{(2k)!}$$

Then we apply the Ratio Test to $\sum_{k=0}^{\infty} |a_k| = \sum_{k=0}^{\infty} \left| \frac{(-1)^k x^{2k}}{(2k)!} \right| = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$ to test for absolute convergence:

$$r = \lim_{k \to \infty} \frac{a_{k+1}}{a_k}$$

= $\lim_{k \to \infty} \frac{x^{2(k+1)}/[2(k+1)]!}{x^{2k}/(2k)!}$
= $\lim_{k \to \infty} \frac{x^{2k+2}}{x^{2k}} \frac{(2k)!}{(2k+2)!}$
= $\lim_{k \to \infty} \frac{x^{2k} \cdot x^2}{x^{2k}} \frac{(2k)!}{(2k)!(2k+1)(2k+2)!}$
= $x^2 \lim_{k \to \infty} \frac{1}{(2k+1)(2k+2)!}$
= 0.

In this case, r < 1 for all x, so the MacLaurin series converges absolutely for all x, which implies that the series converges for all x. We conclude that the interval of convergence is $(-\infty, \infty)$.

Example 1.2 (Manipulating MacLaurin series). Let $f(x) = e^x$.

- (a) Find the MacLaurin series for f.
- (b) Find its interval of convergence.
- (c) Use the MacLaurin series for e^x to find the MacLaurin series for the functions x^4e^x , e^{-2x} , and e^{-x^2} .

SOLUTION.

$$e^{x} = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} (x-0)^{k} = \sum_{k=0}^{\infty} \frac{e^{0}}{k!} x^{k} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

(b) Then we apply the Ratio Test to $\sum_{k=0}^{\infty} |a_k| = \sum_{k=0}^{\infty} \left| \frac{x^k}{k!} \right| = \sum_{k=0}^{\infty} \frac{|x|^k}{k!}$ to test for absolute convergence:

$$r = \lim_{k \to \infty} \frac{a_{k+1}}{a_k}$$
$$= \lim_{k \to \infty} \frac{|x|^{k+1}/(k+1)!}{|x|^k/k!}$$
$$= \lim_{k \to \infty} |x| \frac{k!}{k! \cdot (k+1)}$$
$$= |x| \lim_{k \to \infty} \frac{1}{k+1}$$
$$= 0.$$

In this case, r < 1 for all x, so the MacLaurin series converges absolutely for all x, which implies that the series converges for all x. We conclude that the interval of convergence is $(-\infty, \infty)$.

(c) Apply the Theorem of Combining Power Series, we have the following

$$\begin{aligned} x^4 e^x &= x^4 \sum_{k=0}^{\infty} \frac{x^k}{k!} = \sum_{k=0}^{\infty} \frac{x^k x^4}{k!} = \sum_{k=0}^{\infty} \frac{x^{k+4}}{k!}, \\ e^{-2x} &= \sum_{k=0}^{\infty} \frac{(-2x)^k}{k!} = \sum_{k=0}^{\infty} \frac{(-1)^k (2x)^k}{k!}, \\ e^{-x^2} &= \sum_{k=0}^{\infty} \frac{(-x^2)^k}{k!} = \sum_{k=0}^{\infty} \frac{(-1)^k (x^2)^k}{k!} = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{k!} \end{aligned}$$

Proposition 1.1 (MacLaurin series).

(a)
$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$
, for $|x| < \infty$.
(b) $\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$, for $|x| < \infty$.
(c) $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$, for $|x| < \infty$.
(d) $\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$, for $|x| < 1$.
(e) $\frac{1}{1+x} = \sum_{k=0}^{\infty} (-x)^k = \sum_{k=0}^{\infty} (-1)^k x^k$, for $|x| < 1$.

(f)
$$\ln(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{k+1}}{k+1}$$
, for $-1 < x \le 1$.
(g) $-\ln(1-x) = \sum_{k=0}^{\infty} \frac{x^{k+1}}{k+1}$, for $-1 \le x < 1$.

1.2 Remainder and Approximation of Series

Definition 1.3 (Remainder). The *remainder* is the error in approximating a convergent series by the sum of its first n terms, that is,

$$R_n = \sum_{k=1}^{\infty} a_k - \sum_{k=1}^{n} a_k = \sum_{k=n+1}^{\infty} a_k = a_{n+1} + a_{n+2} + a_{n+3} + \cdots$$

Theorem 1.1 (Estimating Series with Positive Terms). Let f be a continuous, positive, decreasing function, for $x \ge 1$, and let $a_k = f(k)$, for $k = 1, 2, 3, \ldots$ Let $S = \sum_{k=1}^{\infty} a_k$ be a convergent series and

let $S_n = \sum_{k=1}^{n} a_k$ be the sum of the first *n* terms of the series. The remainder $R_n = S - S_n$ satisfies

$$R_n < \int_n^\infty f(x) \, dx.$$

Furthermore, the exact value of the series is bounded as follows:

$$S_n + \int_{n+1}^{\infty} f(x) \, dx < \sum_{k=1}^{\infty} a_k < S_n + \int_n^{\infty} f(x) \, dx.$$

Example 1.3 (Approximating a *p*-series).

(a) How many terms of the convergent *p*-series $\sum_{k=1}^{\infty} \frac{1}{k^2}$ must be summed to obtain an approxima-

tion that is within 10^{-3} of the exact value of the series?

(b) Find an approximation to the series using 50 terms of the series.

SOLUTION. The function associated with this series is $f(x) = \frac{1}{x^2}$.

(a) Using the bound on the remainder, we have

$$R_n < \int_n^\infty f(x) \, dx = \int_n^\infty \frac{dx}{x^2}$$
$$= \lim_{b \to \infty} \int_n^b \frac{dx}{x^2}$$
$$= \lim_{b \to \infty} -\frac{1}{x} \Big|_n^b$$
$$= \lim_{b \to \infty} -\left(\frac{1}{b} - \frac{1}{n}\right)$$
$$= \frac{1}{n}.$$

- (b) To ensure that $R_n < 10^{-3}$, we must choose *n* so that $\frac{1}{n} < 10^{-3}$, which implies n > 1000. In otherwords, we must sum at least 1001 terms of the series to be sure that the remainder is less than 10^{-3} .
- (c) Using the bounds on the series, we have $L_m < S < U_m$, where S is the exact value of the series, and

$$L_n = S_n + \int_{n+1}^{\infty} \frac{dx}{x^2} = S_n + \frac{1}{n+1}$$
 and $U_n = S_n + \int_n^{\infty} \frac{dx}{x^2} = S_n + \frac{1}{n}$.

Therefore, the series is bounded as follows,

$$S_n + \frac{1}{n+1} < S < S_n + \frac{1}{n},$$

where S_n is the sum of the first *n* terms. Using a calculator to sum the first 50 terms of the series, we find $S_{50} \approx 1.625133$. The exact value of the series is in the interval

$$S_{50} + \frac{1}{51} < S < S_{50} + \frac{1}{50}$$

or 1.644741 < S < 1.645133. Taking the average of these two bounds as out approximation of S, we find that $S \approx 1.644937$.

Theorem 1.2 (Remainder in Alternating Series). Let $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$ be a convergent alternating series with terms that are nonincreasing in magnitude. Let $R_n = S - S_n$ be the remainder in approximating the value of that series by the sum of its first *n* terms. Then $|R_n| \leq a_{n+1}$. In other words, the magnitude of the remainder is less than or equal to the magnitude of the first neglected term.

Example 1.4 (Remainder in an alternating series).

(a) In turns out that $\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln(1+x) \Big|_{x=1} = \sum_{k=0}^{\infty} \frac{(-1)^k 1^{k+1}}{k+1} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1}.$

How many terms of the series are required to approximate $\ln 2$ with an error less than 10^{-6} ? The exact value of the series is given but is not needed to answer the question.

(b) Consider the series $-1 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \cdots = \sum_{k=1}^{\infty} \frac{(-1)^k}{k!}$. Find an upper bound for the magnitude of the error in approximating the value of the series (which is $e^{-1} - 1$) with n = 9 terms.

SOLUTION.

(a) The series is expressed as the sum of the first n terms plus the remainder:

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^n}{n+1} + \frac{(-1)^{n+1}}{n+2} + \dots$$

In magnitude, the remainder is less than or equal to the magnitude of the (n + 1)st term:

$$|R_n| = |S - S_n| \le a_{n+1} = \frac{1}{n+2}.$$

To ensure that the error is less than 10^{-6} , we require that

$$a_{n+1} = \frac{1}{n+2} < 10^{-6} \implies n+2 > 10^{6} \implies n > 10^{6} - 2.$$

Therefore, it takes 1 million terms of the series to approximate $\ln 2$ with an error less than 10^{-6} .

(b) The series may be expressed as the sum of the first nine terms plus the remainder:

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k!} = -1 + \frac{1}{2!} - \frac{1}{3!} + \dots - \frac{1}{9!} + \frac{1}{10!} - \dots$$

The error committed when using the first nine terms to approximate the value of the series satisfies

$$|R_9| = |S - S_9| \le a_{10} = \frac{1}{10!} \approx 2.8 \times 10^{-7}.$$

Therefore, the error is no greater than 2.8×10^{-7} . As a check, the difference between the sum of the first nine terms, $\sum_{k=1}^{9} \frac{(-1)^k}{k!} \approx -0.632120811$, and the exact value, $S = e^{-1} - 1 \approx -0.632120559$, is approximately 2.5×10^{-7} .