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1 Power Series

1.1 Review of Taylor Polynomials, Taylor/MacLaurin Series

Definition 1.1 (Taylor Polynomials). Let f be a function with f ′, f ′′, . . . , f (n) defined at a. Then
nth-order Taylor polynomial for f with its center at a, denoted pn, has the property that it matches
f in value, slope, and all derivatives up to the nth derivative at a; that is,

pn = f(a), p′n(a) = f ′(a), . . . , p(n)(a) = f (n)(a).

The nth-order Taylor polynomial centered at a is

pn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n =

n∑
k=0

ck(x− a)k,

where the coefficients are

ck =
f (k)(a)

k!
, for k = 0, 1, 2, . . . .

Definition 1.2 (Taylor/MacLaurin Series for a Function). Suppose the function f has derivatives
of all orders on an interval centered at the point a. The Taylor series for f centered at a is

f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f (3)

3!
(x− a)3 + · · · =

∞∑
k=0

f (k)(a)

k!
(x− a)k.

A Taylor series centered at 0 is called a MacLaurin series.

Example 1.1 (MacLaurin series for sinx). Find the MacLaurin series for f(x) = sinx, g(x) =
cosx, and find their intervals of convergence.

Solution.

(a)

f ′(x) =
d

dx
f(x) =

d

dx
sinx = cosx,

f ′′(x) =
d

dx
f ′(x) =

d

dx
cosx = − sinx,

f (3)(x) =
d

dx
f ′′(x) =

d

dx
(− sinx) = − d

dx
sinx = − cosx,

f (4)(x) =
d

dx
f (3)(x) =

d

dx
(− cosx) = − d

dx
cosx = −(− sinx) = sinx.

1



2 of 7 MATH 2205 - Calculus II Lecture Notes 24 Summer 2019

Observe that f (4)(x) = f(x) = sin(x), then f (5)(x) = f ′(x) = cosx, f (6)(x) = f ′′(x) = − sinx,
and f (7)(x) = f (3)(x) = − cosx. More generally, f (4n+j)(x) = f (j)(x), j = 0, 1, 2, 3;n =
0, 1, 2, . . .. Then by definition, the MacLaurin series for f(x) = sinx is

sinx =
∞∑
k=0

f (k)(0)

k!
(x− 0)k =

∞∑
k=0

f (k)(0)

k!
xk

= sin 0 +
cos 0

1!
x+

− sin 0

2!
x2 +

− cos 0

3!
x3 +

sin 0

4!
x4 +

cos 0

5!
x5 + · · ·

= x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

=

∞∑
k=0

(−1)kx2k+1

(2k + 1)!

Then we apply the Ratio Test to
∞∑
k=0

|ak|=
∞∑
k=0

∣∣∣∣(−1)kx2k+1

(2k + 1)!

∣∣∣∣ =

∞∑
k=0

|x|2k+1

(2k + 1)!
to test for

absolute convergence:

r = lim
k→∞

ak+1

ak

= lim
k→∞

|x|2k+3/(2k + 3)!

|x|2k+1/(2k + 1)!

= lim
k→∞

|x|2(2k + 1)!

(2k + 1)! ·(2k + 2)(2k + 3)

= |x|2 lim
k→∞

1

(2k + 2)(2k + 3)

= 0.

In this case, r < 1 for all x, so the MacLaurin series converges absolutely for all x, which
implies that the series converges for all x. We conclude that the interval of convergence is
(−∞,∞).

(b)

g′(x) =
d

dx
g(x) =

d

dx
cosx = − sinx,

g′′(x) =
d

dx
g′(x) =

d

dx
(− sinx) = − d

dx
sinx = − cosx,

g(3)(x) =
d

dx
g′′(x) =

d

dx
(− cosx) = − d

dx
cosx = −(− sinx) = sinx,

g(4)(x) =
d

dx
g(3)(x) =

d

dx
sinx = cosx,

Observe that g(4)(x) = g(x) = cos(x), then g(5)(x) = g′(x) = − sinx, g(6)(x) = g′′(x) =
− cosx, and g(7)(x) = g(3)(x) = sinx. More generally, g(4n+j)(x) = g(j)(x), j = 0, 1, 2, 3;n =
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0, 1, 2, . . .. Then by definition, the MacLaurin series for g(x) = cosx is

cosx =
∞∑
k=0

g(k)(0)

k!
(x− 0)k =

∞∑
k=0

g(k)(0)

k!
xk

= cos 0 +
− sin 0

1!
x+

− cos 0

2!
x2 +

sin 0

3!
x3 +

cos 0

4!
x4 +

− sin 0

5!
x5 + · · ·

= 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

=

∞∑
k=0

(−1)kx2k

(2k)!

Or we can observe that cosx = d
dx sinx, then

cosx =
d

dx
sinx =

d

dx

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
=

∞∑
k=0

d

dx

(−1)kx2k+1

(2k + 1)!
=

∞∑
k=0

(−1)k(2k + 1)x2k

(2k)! ·(2k + 1)
=

∞∑
k=0

(−1)kx2k

(2k)!
.

Then we apply the Ratio Test to
∞∑
k=0

|ak|=
∞∑
k=0

∣∣∣∣(−1)kx2k

(2k)!

∣∣∣∣ = ∞∑
k=0

x2k

(2k)!
to test for absolute

convergence:

r = lim
k→∞

ak+1

ak

= lim
k→∞

x2(k+1)/[2(k + 1)]!

x2k/(2k)!

= lim
k→∞

x2k+2

x2k
(2k)!

(2k + 2)!

= lim
k→∞

x2k · x2

x2k
(2k)!

(2k)! (2k + 1)(2k + 2)

= x2 lim
k→∞

1

(2k + 1)(2k + 2)

= 0.

In this case, r < 1 for all x, so the MacLaurin series converges absolutely for all x, which
implies that the series converges for all x. We conclude that the interval of convergence is
(−∞,∞).

Example 1.2 (Manipulating MacLaurin series). Let f(x) = ex.

(a) Find the MacLaurin series for f .
(b) Find its interval of convergence.
(c) Use the MacLaurin series for ex to find the MacLaurin series for the functions x4ex, e−2x,

and e−x2 .

Solution.
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(a) If f(x) = ex, then f (k)(x) = f (k−1)(x) = · · · = f ′′(x) = f ′(x) = f(x) = ex. Hence f (k)(0) =
f (k−1)(0) = · · · = f ′′(0) = f ′(0) = f(0) = e0 = 1. Given center a = 0, we have

ex =

∞∑
k=0

f (k)(0)

k!
(x− 0)k =

∞∑
k=0

e0

k!
xk =

∞∑
k=0

xk

k!
= 1 + x+

x2

2!
+

x3

3!
+

x4

4!
+ · · · .

(b) Then we apply the Ratio Test to
∞∑
k=0

|ak|=
∞∑
k=0

∣∣∣∣xkk!
∣∣∣∣ = ∞∑

k=0

|x|k

k!
to test for absolute convergence:

r = lim
k→∞

ak+1

ak

= lim
k→∞

|x|k+1/(k + 1)!

|x|k/k!

= lim
k→∞

|x| k!

k! ·(k + 1)

= |x| lim
k→∞

1

k + 1

= 0.

In this case, r < 1 for all x, so the MacLaurin series converges absolutely for all x, which
implies that the series converges for all x. We conclude that the interval of convergence is
(−∞,∞).

(c) Apply the Theorem of Combining Power Series, we have the following

x4ex = x4
∞∑
k=0

xk

k!
=

∞∑
k=0

xkx4

k!
=

∞∑
k=0

xk+4

k!
,

e−2x =
∞∑
k=0

(−2x)k

k!
=

∞∑
k=0

(−1)k(2x)k

k!
,

e−x2
=

∞∑
k=0

(−x2)k

k!
=

∞∑
k=0

(−1)k(x2)k

k!
=

∞∑
k=0

(−1)kx2k

k!
.

Proposition 1.1 (MacLaurin series).

(a) sinx =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
, for |x|< ∞.

(b) cosx =
∞∑
k=0

(−1)kx2k

(2k)!
, for |x|< ∞.

(c) ex =
∞∑
k=0

xk

k!
, for |x|< ∞.

(d) 1

1− x
=

∞∑
k=0

xk, for |x|< 1.

(e) 1

1 + x
=

∞∑
k=0

(−x)k =
∞∑
k=0

(−1)kxk, for |x|< 1.
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(f) ln (1 + x) =

∞∑
k=0

(−1)kxk+1

k + 1
, for − 1 < x ≤ 1.

(g) − ln (1− x) =
∞∑
k=0

xk+1

k + 1
, for − 1 ≤ x < 1.

1.2 Remainder and Approximation of Series
Definition 1.3 (Remainder). The remainder is the error in approximating a convergent series by
the sum of its first n terms, that is,

Rn =
∞∑
k=1

ak −
n∑

k=1

ak =
∞∑

k=n+1

ak = an+1 + an+2 + an+3 + · · · .

Theorem 1.1 (Estimating Series with Positive Terms). Let f be a continuous, positive, decreasing

function, for x ≥ 1, and let ak = f(k), for k = 1, 2, 3, . . .. Let S =
∞∑
k=1

ak be a convergent series and

let Sn =
n∑

k=1

ak be the sum of the first n terms of the series. The remainder Rn = S − Sn satisfies

Rn <

∫ ∞

n
f(x) dx.

Furthermore, the exact value of the series is bounded as follows:

Sn +

∫ ∞

n+1
f(x) dx <

∞∑
k=1

ak < Sn +

∫ ∞

n
f(x) dx.

Example 1.3 (Approximating a p-series).

(a) How many terms of the convergent p-series
∞∑
k=1

1

k2
must be summed to obtain an approxima-

tion that is within 10−3 of the exact value of the series?
(b) Find an approximation to the series using 50 terms of the series.

Solution. The function associated with this series is f(x) =
1

x2
.

(a) Using the bound on the remainder, we have

Rn <

∫ ∞

n
f(x) dx =

∫ ∞

n

dx

x2

= lim
b→∞

∫ b

n

dx

x2

= lim
b→∞

−1

x

∣∣∣∣∣
b

n

= lim
b→∞

−
(
1

b
− 1

n
)

=
1

n
.
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(b) To ensure that Rn < 10−3, we must choose n so that 1

n
< 10−3, which implies n > 1000. In

otherwords, we must sum at least 1001 terms of the series to be sure that the remainder is
less than 10−3.

(c) Using the bounds on the series, we have Lm < S < Um, where S is the exact value of the
series, and

Ln = Sn +

∫ ∞

n+1

dx

x2
= Sn +

1

n+ 1
and Un = Sn +

∫ ∞

n

dx

x2
= Sn +

1

n
.

Therefore, the series is bounded as follows,

Sn +
1

n+ 1
< S < Sn +

1

n
,

where Sn is the sum of the first n terms. Usinga a calculator to sum the first 50 terms of the
series, we find S50 ≈ 1.625133. The exact value of the series is in the interval

S50 +
1

51
< S < S50 +

1

50
.

or 1.644741 < S < 1.645133. Taking the average of these two bounds as out approximation
of S, we find that S ≈ 1.644937.

Theorem 1.2 (Remainder in Alternating Series). Let
∞∑
k=1

(−1)k+1ak be a convergent alternating

series with terms that are nonincreasing in magnitude. Let Rn = S − Sn be the remainder in
approximating the value of that series by the sum of its first n terms. Then |Rn|≤ an+1. In other
words, the magnitude of the remainder is less than or equal to the magnitude of the first neglected
term.

Example 1.4 (Remainder in an alternating series).

(a) In turns out that ln 2 = 1− 1

2
+

1

3
− 1

4
+ · · · = ln (1 + x)

∣∣∣∣∣
x=1

=
∞∑
k=0

(−1)k1k+1

k + 1
=

∞∑
k=0

(−1)k

k + 1
.

How many terms of the series are required to approximate ln 2 with an error less than 10−6?
The exact value of the series is given but is not needed to answer the question.

(b) Consider the series −1 +
1

2!
− 1

3!
+

1

4!
− · · · =

∞∑
k=1

(−1)k

k!
. Find an upper bound for the

magnitude of the error in approximating the value of the series (which is e−1 − 1) with n = 9
terms.

Solution.

(a) The series is expressed as the sum of the first n terms plus the remainder:
∞∑
k=0

(−1)k

k + 1
= 1− 1

2
+

1

3
− 1

4
+ · · ·+ (−1)n

n+ 1
+

(−1)n+1

n+ 2
+ · · · .

In magnitude, the remainder is less than or equal to the magnitude of the (n+ 1)st term:

|Rn|= |S − Sn|≤ an+1 =
1

n+ 2
.
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To ensure that the error is less than 10−6, we require that

an+1 =
1

n+ 2
< 10−6 =⇒ n+ 2 > 106 =⇒ n > 106 − 2.

Therefore, it takes 1 million terms of the series to approximate ln 2 with an error less than
10−6.

(b) The series may be expressed as the sum of the first nine terms plus the remainder:
∞∑
k=1

(−1)k

k!
= −1 +

1

2!
− 1

3!
+ · · · − 1

9!
+

1

10!
− · · · .

The error committed when using the first nine terms to approximate the value of the series
satisfies

|R9|= |S − S9|≤ a10 =
1

10!
≈ 2.8× 10−7.

Therefore, the error is no greater than 2.8 × 10−7. As a check, the difference between the

sum of the first nine terms,
9∑

k=1

(−1)k

k!
≈ −0.632120811, and the exact value, S = e−1 − 1 ≈

−0.632120559, is approximately 2.5× 10−7.
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