Last update: June 20, 2019

1 Differential Equations and Sequences

1.1 Review of Separable First-Order Differential Equations, Sequences

Definition 1.1 (Separable First-Order Differential Equations). If the first-order differential equation can be written in the form g(y)y'(t) = h(t), in which the terms that involve y appear on one side of the equation *separated* from the terms that involve t, is said to be *separable*. We can solve the equation by integrating both sides of the equation with respect to t:

$$\int g(y)y'(t)\,dt = \int h(t)\,dt \implies \int g(y)\,dy = \int h(t)\,dt.$$

Definition 1.2 (Sequence). A sequence $\{a_n\}$ is an ordered list of numbers of the form

 $\{a_1, a_2, a_3, \ldots, a_n, \ldots\}.$

A sequence may be generated by a *recurrence relation* of the form $a_{n+1} = f(a_n)$, for n = 1, 2, 3, ..., where a_1 is given. A sequence may also be defined with an *explicit formula* of the form $a_n = f(n)$, for n = 1, 2, 3, ...

Definition 1.3 (Limit of a Sequence). If the terms of a sequence $\{a_n\}$ approach a unique number L as n increases – that is, if a_n can be made arbitrarily close to L by taking n sufficiently large – then we say $\lim_{n\to\infty} a_n = L$ exists, and the sequence *converges* to L. If the terms of the sequence do not approach a single number as n increases, the sequence has no limit, and the sequence *diverges*.

Example 1.1 (Limits of Sequences). Write the first four terms of each sequence. If you believe the sequence converges, make a conjecture about its limit. If the sequence appears to diverge, explain why.

(a)
$$\left\{ \frac{(-1)^n}{n^2 + 1} \right\}_{n=1}^{\infty}$$
.
(b) $\{\cos n\pi\}_{n=1}^{\infty}$.
(c) $\{a_n\}_{n=1}^{\infty}$, where $a_{n+1} = -2a_n, a_1 = 1$.

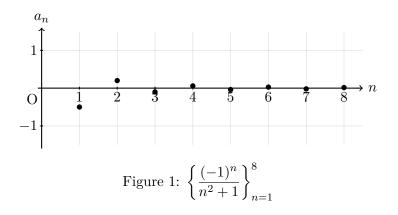
SOLUTION.

(a) The first four terms of the sequence are

$$\left\{\frac{(-1)^1}{1^2+1}, \frac{(-1)^2}{2^2+1}, \frac{(-1)^3}{3^2+1}, \frac{(-1)^4}{4^2+1}, \dots\right\} = \left\{-\frac{1}{2}, \frac{1}{5}, -\frac{1}{10}, \frac{1}{17}, \dots\right\}$$

Observe that
$$-\frac{1}{n^2} < \frac{(-1)^n}{n^2+1} < \frac{1}{n^2}$$
, and
$$\lim_{n \to \infty} -\frac{1}{n^2} = 0 \text{ and } \lim_{n \to \infty} \frac{1}{n^2} = 0 \implies \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{(-1)^n}{n^2+1} = 0.$$

We can also graph the sequence (see Figure 1).



(b) The first four terms of the sequence are

$$\{\cos 1\pi, \cos 2\pi, \cos 3\pi, \cos 4\pi, \ldots\} = \{-1, 1, -1, 1, \ldots\}.$$

In this case, the terms of the sequence alternate between -1 and +1, and never approach a single value. Therefore, the sequence diverges. We can also graph the sequence (see Figure 2).

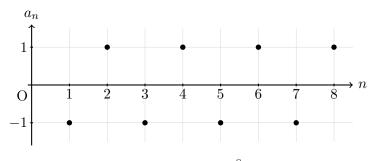


Figure 2: $\{\cos n\pi\}_{n=1}^{8}$

(c) First let us derive the explicit formula for the sequence using the recurrence relation $a_{n+1} = -2a_n, a_1 = 1$, apply the relation to a_n (n-1) times we have

$$a_n = -2a_{n-1} = -2(-2a_{n-2}) = (-2)^2 a_{n-2} = (-2)^3 a_{n-3} = \dots = (-2)^{n-1} a_1 = (-2)^{n-1}.$$

Then the first four terms of the sequence are

$$\{a_1, a_2, a_3, a_4, \ldots\} = \{(-2)^{1-1}, (-2)^{2-1}, (-2)^{3-1}, (-2)^{4-1}, \ldots\}$$
$$= \{(-2)^0, (-2)^1, (-2)^2, (-2)^3, \ldots\}$$
$$= \{1, -2, 4, -8, \ldots\}.$$

The magnitude of the terms increase without bound, the sequence thus diverges.

1.2 Sequences

Theorem 1.1 (Limits of Sequences from Limits of Functions). Suppose f is a function such that $f(n) = a_n$ for all positive integers n. If $\lim_{x \to \infty} f(x) = L$, then the limit of the sequence $\{a_n\}$ is also L.

Theorem 1.2 (Limit Laws for Sequences). Assume that the sequences $\{a_n\}$ and $\{b_n\}$ have limits A and B, respectively. Then

- (a) $\lim_{n \to \infty} (a_n \pm b_n) = A \pm B.$ (b) $\lim_{n \to \infty} ca_n = cA$, where c is a real number. (c) $\lim_{n \to \infty} a_n b_n = AB.$
- (d) $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}$ provided $B \neq 0$.

Example 1.2 (Limits of sequences). Determine the limits of the following sequences.

(a)
$$a_n = \frac{3n^3}{n^3 + 1}$$
.
(b) $b_n = \left(\frac{n+5}{n}\right)^n$.
(c) $c_n = n^{1/n}$.

SOLUTION.

(a)

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{3n^3}{n^3 + 1}$$
$$= \lim_{n \to \infty} \frac{3}{1 + 1/n^3}$$
$$= \frac{\lim_{n \to \infty} 3}{\lim_{n \to \infty} (1 + 1/n^3)}$$
$$= \frac{3}{1}$$
$$= 3.$$

[divide both top and bottom by n^3]

(b)

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \left(\frac{n+5}{n}\right)^n$$
$$= \lim_{n \to \infty} e^{\ln\left(\frac{n+5}{n}\right)^n} \qquad [a = e^{\ln a}]$$
$$= e^{\lim_{n \to \infty} n \ln\left(1+5/n\right)} \qquad [\ln a^b = b \ln a]$$

Next, let's calculate $\lim_{n \to \infty} n \ln (1 + 5/n)$,

$$\lim_{n \to \infty} n \ln (1+5/n) = \lim_{n \to \infty} \frac{\ln (1+5/n)}{1/n}$$
$$= \lim_{x \to \infty} \frac{\ln (1+5/x)}{1/x}$$
$$= \lim_{x \to \infty} \frac{\frac{1}{1+5/x} \left(-\frac{5}{x^2}\right)}{-\frac{1}{x^2}}$$
$$= 5 \lim_{x \to \infty} \frac{1}{1+5/x}$$
$$= 5.$$

[By Theorem 1.1, Indeterminate form 0/0]

[L'Hôpital's Rule]

Therefore,
$$\lim_{n \to \infty} b_n = e^5$$
.

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} n^{1/n}$$

$$= \lim_{n \to \infty} e^{\ln n^{1/n}} \qquad [a = e^{\ln a}]$$

$$= \lim_{n \to \infty} e^{\frac{1}{n} \ln n} \qquad [\ln a^b = b \ln a]$$

$$= e^{\lim_{n \to \infty} \frac{1}{n} \ln n}.$$

Then let us compute $\lim_{n\to\infty} \frac{1}{n} \ln n$ as follows

$$\lim_{n \to \infty} \frac{1}{n} \ln n = \lim_{n \to \infty} \frac{1}{x} \ln x$$

$$= \lim_{n \to \infty} \frac{\ln x}{x}$$

$$= \lim_{n \to \infty} \frac{\frac{1}{x}}{1}$$

$$= \lim_{n \to \infty} \frac{1}{x}$$

$$= 0.$$
If the probability of the probabili

Therefore, $\lim_{n \to \infty} c_n = e^0 = 1.$

Definition 1.4 (Terminology for Sequences).

- (a) $\{a_n\}$ is *increasing* if $a_{n+1} > a_n$; for example, $\{0, 1, 2, 3, ...\}$.
- (b) $\{a_n\}$ is nondecreasing if $a_{n+1} \ge a_n$; for example, $\{0, 1, 1, 1, 2, 2, 3, \ldots\}$.
- (c) $\{a_n\}$ is decreasing if $a_{n+1} < a_n$; for example, $\{2, 1, 0, -2, ...\}$.
- (d) $\{a_n\}$ is nonincreasing if $a_{n+1} \leq a_n$; for example, $\{2, 1, 1, 0, -2, -2, -3, \ldots\}$.
- (e) $\{a_n\}$ is monotonic if it is either nonincreasing or nondecreasing (it moves in one direction).
- (f) $\{a_n\}$ is bounded if there is number M such that $|a_n| \leq M$, for all relevant values of n.

Theorem 1.3 (Squeeze Theorem for Sequences). Let $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$ be sequences with $a_n \leq b_n \leq c_n$ for all integers n greater than some index N. If $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

Example 1.3 (Squeeze Theorem). Find the limit of the sequence $b_n = \frac{\cos n}{n^2 + 1}$.

Solution. Note that $-1 \le \cos n \le 1$ for all n. It follows that

$$-\frac{1}{n^2+1} \le \frac{\cos n}{n^2+1} \le \frac{1}{n^2+1}.$$

Let $a_n = -\frac{1}{n^2 + 1}$ and $c_n = \frac{1}{n^2 + 1}$, we have $a_n \le b_n \le c_n$ for $n \ge 1$. Furthermore, $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = 0$. By Theorem 1.3, we have $\lim_{n \to \infty} b_n = 0$.

Theorem 1.4 (Bounded Monotonic Sequences). A bounded monotonic sequence converges.

(c)

and $\lim_{n \to \infty} \frac{b_n}{a_n} = \infty$:

$$\{\ln^q n\} \ll \{n^p\} \ll \{n^p \ln^r n\} \ll \{n^{p+s}\} \ll \{b^n\} \ll \{n!\} \ll \{n^n\}.$$

The ordering applies for positive real numbers p, q, r, s and b > 1.

1.3 Infinite Series

Definition 1.5 (Infinite series). Given a sequence $\{a_1, a_2, a_3, \ldots, \}$, the sum of its terms

$$a_1 + a_2 + a_3 + \dots = \sum_{k=1}^{\infty} a_k$$

is called an *infinite series*. The sequence of partial sums $\{S_n\}$ associated with this series has the terms

$$S_{1} = a_{1}$$

$$S_{2} = a_{1} + a_{2}$$

$$S_{3} = a_{1} + a_{2} + a_{3}$$

$$\vdots$$

$$S_{n} = a_{1} + a_{2} + a_{3} + \dots + a_{n} = \sum_{k=1}^{n} a_{k}, \text{ for } n = 1, 2, 3, \dots$$

If the sequence of partial sums $\{S_n\}$ has a limit L, the infinite series *converges* to that limit, and we write

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=1}^n a_k = \lim_{n \to \infty} S_n = L.$$

If the sequence of partial sums diverges, the infinite series also *diverges*.

Definition 1.6 (Geometric Sequences). A sequence has the form $\{r^n\}$ or $\{ar^n\}$, where the ratio r, a are real numbers, is called a geometric sequence.

Theorem 1.6 (Geometric Sequences). Let r be a real number. Then

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } |r| < 1, \\ 1 & \text{if } r = 1, \\ \text{does not exist} & \text{if } r \le -1 \text{ or } r > 1. \end{cases}$$

If r > 0, then $\{r^n\}$ is a monotonic sequence. If r < 0, then $\{r^n\}$ oscillates.

Theorem 1.7 (Geometric Series). Let $a \neq 0$ and r be real numbers. If |r| < 1, then $\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$. If $|r| \ge 1$, then the series diverges.

Proof. Assume that |r| < 1, then consider the partial sum $S_n = \sum_{k=m}^n ar^k$, where $m \le n$ then

$$S_{n} - rS_{n} = (1 - r)S_{n}$$

$$= \sum_{k=m}^{n} ar^{k} - r \sum_{k=m}^{n} ar^{k}$$

$$= \sum_{k=m}^{n} ar^{k} - \sum_{k=m}^{n} arr^{k}$$

$$= \sum_{k=m}^{n} ar^{k} - \sum_{k=m}^{n} ar^{k+1}$$

$$= \sum_{k=m}^{n} ar^{k} - \sum_{k=m+1}^{n+1} ar^{k}$$

$$= \left(ar^{m} + \sum_{k=m+1}^{n} ar^{k}\right) - \left(\sum_{k=m+1}^{n} ar^{k} + ar^{n+1}\right)$$

$$= ar^{m} + \sum_{k=m+1}^{n} ar^{k} - \sum_{k=m+1}^{n} ar^{k} - ar^{n+1}$$

$$= ar^{m} - ar^{n+1}.$$

Then solve for S_n , we have

$$S_n = \frac{ar^m - ar^{n+1}}{1-r}.$$

Then the geometric series becomes

$$\sum_{k=m}^{\infty} ar^k = \lim_{n \to \infty} S_n$$
$$= \lim_{n \to \infty} \frac{ar^m - ar^{n+1}}{1 - r}$$
$$= \frac{ar^m}{1 - r}.$$

Let m = 0, then we have

$$\sum_{k=0}^{\infty} ar^{k} = \frac{ar^{m}}{1-r} \bigg|_{m=0} = \frac{a}{1-r}.$$

Example 1.4. Evaluate the following geometric series or state that the series diverges.

(a)
$$\sum_{k=0}^{\infty} 1.1^k$$
.
(b) $\sum_{k=0}^{\infty} e^{-k}$.
(c) $\sum_{k=2}^{\infty} 3(-0.75)^k$.

SOLUTION.

- (a) The ratio of this geometric series is r = 1.1. Because $|r| \ge 1$, the series diverges.
- (b) Note that $e^{-k} = (e^{-1})^k = (\frac{1}{e})^k$. The ratio of this geometric series is $r = \frac{1}{e} < 1$, and its first term a = 1. Because |r| < 1, the series converges and its value is

$$\sum_{k=0}^{\infty} e^{-k} = \frac{a}{1-r} = \frac{1}{1-1/e} = \frac{e}{e-1}.$$

(c) Note that a = 3, r = -0.75 and |r| = 0.75 < 1, then the geometric series converges. Therefore,

$$\sum_{k=2}^{\infty} 3(-0.75)^k = \frac{ar^2}{1-r} \qquad \qquad [\sum_{k=m}^{\infty} ar^k = \frac{ar^m}{1-r}]$$
$$= \frac{3(-0.75)^2}{1-(-0.75)}$$
$$= \frac{27/16}{7/4}$$
$$= \frac{27}{28}.$$

Example 1.5 (Decimal expansion as geometric series). Write $1.0\overline{35} = 1.035353535...$ as a geometric series and express its value as a fraction.

SOLUTION.

$$\begin{split} 1.0\overline{35} &= 1.035353535\ldots \\ &= 1 + 0.035 + 0.00035 + 0.0000035 + 0.00000035 + \cdots \\ &= 1 + \sum_{k=0}^{\infty} 0.035 \cdot 0.01^k \qquad [a = 0.035, r = 0.01, |r| < 1] \\ &= 1 + \frac{0.035}{1 - 0.01} \qquad [\sum_{k=m}^{\infty} ar^k = \frac{ar^m}{1 - r}] \\ &= 1 + \frac{35}{1000 - 10} \\ &= 1 + \frac{35}{990} \\ &= \frac{990 + 35}{990} \\ &= \frac{1025}{990} \\ &= \frac{205}{198}. \end{split}$$