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1 Integration Techniques

1.1 Review of Improper Integrals

Definition 1.1 (Improper Integrals over Infinite Intervals).

(a) If f is continuous on [a, c0), then

00 b
/ flx)dx = blim f(x)dx

(b) If f is continuous on (—o0,b], then

b b
/_ f@yde= tim [ fa)ds

a——00

(c) If f is continuous on (—o0, 00), then

e b
/ f(x)dz = lim f( ) dx + blim f(x) dx,

a——00
where c¢ is any real number.
If the limits in the above cases exist, then the improper integrals converge; otherwise, they diverge.
Definition 1.2 (Improper Integrals with an Unbounded Integrand).
(a) Suppose f is continous on (a,b] with lim,_,,+ f(z) = +00. Then
b
/ f(z)dx = hm f () dz
cﬁa

(b) Suppose f is continuous on [a,b) with lim, ;- f(:c) = +00. Then

(c) Suppose f is continuous on [a, b] except at the interior point p where f is unbounded. Then

bf( dr = lim f Ydx + lim [ f(x
s RE

c—=p~ Ja d—pt

If the limits in above cases exist, then the improper integrals converge; otherwise, they diverge.

1

Example 1.1 (Solids of revolution). Let R be the region bounded by the graph of y = 27" and

the z-axis, for z > 1.

(a) What is the volume of the solid generated when R is revolved about the z-axis?
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(b) What is the volume of the solid generated when R is revolved about the y-axis?

SOLUTION.

(a) Disk method.

oo
—7r/ x 2 dx
1

=7 lim 2 dx
b—o00 1

=7 lim (—2~ )
b—o0

= —7 lim 27!
b—o00

= —7 lim (b~! = 1)

b—o0

= —n(-1)

The volume of the solid when R is revolved about the z-axis is .
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(b) Shell method.

V= /27rxf
/ onrr ' dx
1
—27r/ 1dz
1

b
= 27 lim 1dx

b—oo 1
b

=27 lim x
b—00

1
=27 lim (b — 1)
b—o0

= OQ.

In this case, the volume of the solid when R is revolved about the y-axis diverges.

1.2 Review for Computing Limits

Theorem 1.1 (Limits of Linear Functions). Let a, b, and m be real numbers. For linear functions
flx) =mz +0b,

lim f(z) = f(a) = ma+0.

Tr—a
Theorem 1.2 (Limit Laws). Assume lim,_,, f(z) and lim,_,, g(x) exist. The following properties
hold, where c is a real number, and m > 0 and n > 0 are integers.

(a) Sum: lim|[f(z) +g(x)] = lim /(@) + lim g(z).
(b) Difference: lim[(z) — g(2)] — lim f{z) — lim g(a).
(c) Constant multiple: lim cf(a:) = cilgé f(x).

(d) Product: lim [f(x)g(x)] = Dig(ll f(gc)} Dig}t g(x)].

, provided lim,_,, g(z) # 0.

)9
(e) Quotient: ili}l}l g(m)

| —
S~

SL’):| lim, ., f(2)
hmx%ag( )

(f) Power: iﬂlg}l[f(x)]" = [hm f(z )}

(g) Fractional power: ilgé[f(a:)]"/m = [lim f(a:)] n/m, provided f(x) > 0, for = near a, if m is

r—a
even and n/m is reduced to lowest terms.

Theorem 1.3 (Limits of Polynomial and Rational Functions). Assume p and ¢ are polynomials
and a is a constant.

(a) Polynomial functions: lim,_,, p(z) = p(a).
(b) Rational functoins: ;1_1)% zémg (Z) provided ¢(a) # 0.
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Theorem 1.4 (The Squeeze Theorem). Assume the function f, g, and h satisfy f(z) < g(z)
h(zx) for all values of = near a, except possibly at a. If lim,_,, f(z) = lim,,, h(x) = L, then
lim, 4 g(z) = L.

Theorem 1.5 (Limits at Infinity of Powers and Polynomials). Let n be a positive integer and let
p be the polynomial p(z) = a,z"™ + ap_12" 1 + - - + a2 + a12 + ag, where a,, # 0.

(a) limy_y400 2" = 00 when n is even.

(b) limg—00 2™ = 00 and lim,_, o 2™ = —oo when n is odd.

(¢) limg—s 100 %n =limg 40z ™ =0.

(d) limg—s 100 p(z) = limy— 400 anx™ = +00, depending on the degree of the polynomial and the
sign of the leading coefficient a,,.

n m
Example 1.2. Let p(z) = Zakxk = ap2" + ap 12"+ - F a1z + ag and ¢(z) = Zbkmk =
k=0 k=0
bnZ™ 4 byp_12™ 4 - + by + by. What is lim @?
z—y00 q(x)
ifn>0
SOLUTION. It is known that lim,_ .., 2" = > 1 " .
0 ifn<0
p(z) CoaprFap 1z -+ az+ag

lim 2% —
60 q(x) 300 b ™ + by—1x™ 1 + -+ + bz + by

. an + ap_1z7 V4 a4 gz
= lim I 1
z—300 by ™™ + by x™ L oo byl 4 b
limy oo Gp + Gp_12" 4+ -+ a1z " + agz™™

- limg o0 b @™ + byp_1zm =1 4 oo £ bzl 4 por—n
Qan

- limy yoo O™ ™ + byp_1xz™ 1 4. L bzl bz

[divide both top and bottom by z"]

[Quotient rule]

an /by, if m=n,
=< 00 if m <n,

0 if m > n.
O

Theorem 1.6 (End Behavior of e*, e™*, and Inx). The end behavior for ¢* and e on (—o0, 00)
and Inz on (0,00) is given by the following limits (see Figure 1):

lim e* = 0o lim e =0
Tr—r00 r—r—00
lim e =0 lim e =00
Tr—r00 r—r—00
lim Inz = —o0 lim Inz = oo.
z—0t+ T—00

Theorem 1.7 (L’Hopital’s Rule). Suppose f and g are differentiable on an open interval I con-
taining a with ¢’(z) # 0 on I when z # a.
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T

Figure 1: Graphs of e*, e, Inz: y = 7% and y = €® are symmetric about y-axis,

and y = e® and y = Inx are symmetric about y = .

(a) If limy—yq f(x) = limg_yq g(x) = 0, then

o @) L f@)

wa g(x)  za g'(x)

)

provided the limit on the right exists (or is £00). The rule also applies if z — a is repaced
with 2 — *o0, z = at, 2 — a”.
(b) If limy—, f(z) = o0 and lim,—4 g(z) = +00, then
@) fa)

W o) 2 (o)

9

provided the limit on the right exists (or is +00). The rule also applies if x — a is repaced
with x — +o00, 2z - a™, 2z = a™.

1.3 Introduction to Differential Equations
Example 1.3 (Differential Equations). Examples of differential equations:
(a) y'(x) + 16y = 0.
dy
(b) I + 4y = cos .
(c) ¥/'(t) = 0.1y(100 — y).

In each case, the goal is to find solution of the equation — that is, functions y that satisfy the
equation.

Definition 1.3.
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(a) The order of a differential equation is the highest order appearing on a derivative in the
equation. For example, the equations y' + 4y = cosz and y' = 0.1y(100 — y) are first order,
and 3" + 16y = 0 is second order.

(b) Linear differential equations (first- and second-order) have the form

y'(x) +p()y(x) = f(z) and y"(z) + p(x)y () + ¢(z)y(z) = f(2),

where p, ¢, and f are given functions that depend only on the independent variable x.

(c¢) A differential equation is often accompanied by initial conditions that specify the values of v,
and possibly its derivatives, at a particular point. In general, an nth-order equation reqruires
n initial conditions.

(d) A differntial equation, together with the appropriate number of initial conditions, is called
an initial value problem. A typical first-order initial value problem has the form

y'(t) = F(t,y) Differential equation
y(0)=A4 Initial condition

where A is given and F is a given expression that involves ¢ and/or v,
Example 1.4 (An initial value problem). Solve the initial value problem
y'(t) = 10e~2, y(0) = 4.
SOLUTION. Notice that the right side of the equation depends only on t. The solution is found by
integrating both sides of the differential equation with respect to ¢:

/y’(t) dt = /1Oet/2dt — y=—-20e""2+C.

We have found the general solution, which involves one arbitrary constant. To determine its value,
we use the initial condition by substituting ¢t = 0 and y = 4 into the general solution:

y(0) = (=20 2+ )| =-204C=4 = C=24.

t=0

Therefore, the solution of the initial value problem is y = —20e~t/2 + 24. O

Proposition 1.1 (Solution of a First-Order Linear Differential Equation). The general solution of
the first-order equation 3/ (t) = ky + b, where k and b are specified real numbers, is y = Ce** —b/k,
where C' is an arbitrary constant. Given an initial condition, the value of C' may be determined.

Proof. Given that y'(t) = ky + b, we begin by dividing both sides of the equation y/(t) = ky + b by
ky + b, which gives
y'(t)

=1
ky+b
Integrating both sides od this equation with respect to t,

- a o [t
/ky+bdt_ dt — k:y—l—bdy_ dt.

Using change of variable (u-substitution) we have

1
Eln]ky—kb\:t%—D.
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Assume that ky + b > 0, solving for y gives

b b b
_ kD+kt _ 2 _ kDokt _ 0 _ ookt D

y k k K

kD

where C' = e is a constant. O
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