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1 Introduction
Definition 1.1 (Algorithm). Algorithm is procedure for solving a problem that is precise, unambiguous,
mechanical, and corret.

We are most interested in efficient algorithms.

1.1 What is efficient?
The two most basic computational resources are time and space:

• time: number of computation steps.
• space: amount of memory used during the computation.

Usually measured in terms of the input size. Formally, the size of an object is the number of bits needed to
represent it as a binary string. Often we take a simpler approach and use some parameter of the input as
the size.

• A graph on n vertices has size. Sometimes, we identify two parameters: a graph with n vertices and
m edges.

• An array of size n.
• An n× n matrix has size nm.

Using bits

• An integer is represented in binary the number n has size ≈ logn.

2 Overview of Some Topics
• Preliminaries (Chapter 0)
• Divide-and-conquer

– Sorting (# of comparisons)
∗ Merge Sort: O(n logn) time.
∗ Quick Sort: O(n2) worst-case time, O(n logn) average-case time.
∗ Randomized Quick Sort: O(n logn) expected time.

– Finding the median (# of comparisons)
∗ O(n) randomized algorithm - Quick Select
∗ O(n) deterministic algorithm - Median-of-Medians

– Matrix Multiplication (# of multiplications & additions)
∗ Multiply two n× n matrices
∗ Standard algorithm is O(n3) time (three nested for loops)
∗ Strassen’s algorithm: O(nlog2 7) ≈ O(n2.81) time
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∗ O(n2.37) time is achievable (some researchers conjecture that O(n2) or O(n2+ε) is achievable)
– Integer multiplication (multiply two n-bit numbers)

∗ Standard (grade school) algorithm is O(n2)
∗ Karasuba’s algorithms: O(nlog2 3) ≈ O(n1.6)
∗ Strassen & Soloway: O(n logn log logn)

– Fast Fourier Transform (many applications)
∗ Convolution of vectors
∗ Product of Polynomials
∗ Application multiplying integers: O(n logn) time
∗ Standard algorithm is O(n2)

• Dynamical Programming (bottom-up vs. top-down: powerful variation of divide-and-conquer)

– Longest common sequence (applications in computation biology)
– Edit distance (applications in computation biology)
– Knapsack
– All-pairs shortest paths
– Maximum flow problems

• Greedy Algorithms

– Locally optimal choices lead to a globally optimal solution
– Minimum spanning trees

∗ Kruskal’s algorithm (Union-find data structure)
∗ Prim’s algorithm

– Huffman encoding

• Linear Programming (many applications)

– Simplex algorithm
– LP-duality
– Applications to approximation algorithms

• Computational Intractability

– Shortest paths (easy, polynomial time algorithm) vs. Longest paths (hard, NP-complete)
– Eulerian cycle vs. Hamiltonian cycle
– 2-SAT vs. 3-SAT

• NP-completeness

– Traveling salesman problem
– Knapsack
– Clique vertex cover
– Subset sum

• Other Hard Problems (conjectured to be hard but not NP-complete)

– Factoring
– Discrete logarithm
– Graph isomorphism

• Coping with Intractability

– Search techniques and heuristics (no provable guarantee but can work well in practice)
∗ Backtracking
∗ branch-and-bound
∗ local search
∗ simulated annealing
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– Approximation algorithms with provable guarantees
∗ (3/2) 2-approximation algorithm for TSP with triangle inequality (minimal spanning tree
algorithm)

∗ PTAS (Polynomial Time Approximation Solution) for Euclidean TSP (divide-and-conquer)
∗ 2-approximation algorithm for vertex cover (greedy algorithm)
∗ FPTAS for knapsack (dynamic programming)

– Cryptography
∗ Using computational intractability to our advantage
∗ Hardness of factoring -> RSA cryptosystem (public-key cryptography)
∗ Discrete logarithm based cryptosystem
∗ Quantum algorithms for factoring and discrete logarithm

2.1 Asymptotic Notation
Let f : Z+ → R+ and g : Z+ → R+.

1. We say f(n) = O(g(n)) if (∃c)(∃n0)(∀n ≥ n0)f(n) ≤ c · g(n). Read “f(n) is big-oh of g(n)”. f(n) =
O(g(n)) means “f(n) grows no faster than g(n)”.

2. We say f(n) = Ω(g(n)) if g(n) = O(f(n)). Read “f(n) is omega of g(n)”. f(n) = Ω(g(n)) means “f(n)
grows at least as fast as g(n)”.

3. We say f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)). Read “f(n) is theta of g(n)”.
f(n) = Θ(g(n)) means “f(n) and g(n) have the same growth rate”.

4. We say f(n) = o(g(n)) if limn→∞
f(n)
g(n) = 0. Read “f(n) is little-oh of g(n)”, “f(n) is asymptotically

smaller than g(n)”.

Example 2.1.

1) 3n = O(n): f(n) = 3n, g(n) = n, c = 3, n0 = 1.

2) 5n+ 8 = O(n): c = 6, n0 = 8.

3) 3n2 + 4n+ 2 = O(n2).

4) 100n2 + 1000n+ 50000 = O(n2).

5) n = O(n2).

6) n3 ̸= O(n2).

7) n2 = Ω(n).

8) 1
2n

3 − n2 + 6 = Ω(n3).

9) 3n2 = Θ(n2).

10) 5n3 + 8n2 − n = Θ(n3).

11) n = o(n2), since limn→∞
n
n2 = limn→∞ frac1n = 0.

12) 4n2 + 5n+ 3 = o(n3), since limn→∞
4n2+5n+3

n3 = limn→∞
4
n + 5

n2 + 3
n3 = 0.

13) 2n = o(n logn), since 2n
n log n = 2

log n → 0 as n→∞.

Note: f(n) = o(g(n)) implies f(n) = O(g(n)). Analogies:
Asymptotic notation captures how well algorithms scale.

• O(n) time algorithm: double the input size =⇒ roughly twice as much computation time.
• O(n2) time algorithm: double the input size =⇒ roughly four times as much computation time.
• O(n3) time algorithm: double the input size =⇒ roughly eight times as much computation time.
• O(2n) time algorithm: double the input size =⇒ exponential increase in computation time, i.e.,

f(n) = 2n, f(2n) = 22n, f(2n)/f(n) = 22n−n = 2n.
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Notation Analogy
O ≤
Ω ≥
Θ =
o <
ω >

2.2 Multiplying Two Numbers
Example 2.2.

(1) 35 = 1000112

(2) 26 = 110102

2.2.1 “Grade School” Algorithm

100011× 11010 = 1110001110, O(n2) time for two n-bit numbers, where there would be n2 bit operations.
Note: Does not matter if we use another base. As for number N , we have

N →≈ log2 N bits, binary
N →≈ log10 N digits, decimal

Hence we have

log2 x = (log2 10) log10 x,
log10 x = (log10 2) log2 x,
log2 x = Θ(log10 x).

2.2.2 Recursive Approach

Can we do better than O(n2)?
Idea: use recursion. Recursively multiply two n-bit numbers x and y. Split each number into two numbers
with n/2 bits.

x = xLxR = 2n/2xL + xR,

y = yLyR = 2n/2yL + yR,

where x, y are n-bit binary numbers, and xL, xR, yL, yR are n/2 bit numbers.

x · y =
(
2n/2xL + xR

)(
2n/2yL + yR

)
= 2nxLyL + 2n/2xLyR + 2n/2xRyL + xRyR

= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR.
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Algorithm 1: Standard recursive algorithm for multiplying two n-bits numbers
Function multiply(x, y):

Input: x and y are two n-bit numbers (assume n is a power of 2)
Output: The product of x and y
if n == 1 then

return x · y;
end
xL = leftmost n/2 bits of x;
xR = rightmost n/2 bits of x;
yL = leftmost n/2 bits of y;
yR = rightmost n/2 bits of y;
p1 = multiply(xL, yL);
p2 = multiply(xL, yR);
p3 = multiply(xR, yL);
p4 = multiply(xR, yR);
p = 2np1 + 2n/2(p2 + p3) + p4;
return p;

end

Let T (n) = overall runtime on inputs of size n, then

T (n) = T (n/2) + T (n/2) + T (n/2) + T (n/2) +O(n) = 4T (n/2) +O(n)

...
T (1) = O(1).

where the runtimes for p1, p2, p3, p4 are T (n/2), O(1) is constant time.

Proposition 2.1.
T (n) = O(n2).

2.2.3 Backward Substitution

T (n) = 4T (n/2) + cn

= 4[4T (n/4) + cn/2] + cn

= 16T (n/4) + 2cn+ cn

= 16[4T (n/8) + cn/4] + 2cn+ cn

= 64T (n/8) + 4cn+ 2cn+ cn

= 256T (n/8) + 8cn+ 4cn+ 2cn+ cn

...

= 4kT (n/2k) + cn

k−1∑
i=0

2i

= 4kT (n/2k) + cn(2k − 1).

Choose k such that n/2k = 1, 2k = n, k = log2 n. Suppose n = 2k, k = log2 n then

T (n) = 4kT (n/2k) + (2k − 1)cn

= 4log2 nT (1) + (n− 1)cn

= n2O(1) +O(n2)

= O(n2).
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On inputs of size n, the recursion tree has log2 n levels. Branching factor is 4.
n

n
2

...

1 1

...

n
2

...
...

n
2

...
...

n
2

...
...

1 1 = 4kT (1) + 2k−1cn

...

4T (n/2) + 2cn

T (n) + cn

+ + +

=

=

2.2.4 Better Approach: Karatsuba’s Algorithm

Recall that x · y = 2n(xLyL) + 2n/2(xLyR + xRyL) + xRyR.
Idea: xLyR + xRyL = (xL + xR)(yL + yR)− xLyL − xRyR. Compute

p1 = xLyL,

p2 = xRyR,

p3 = (xL + xR)(yL + yR).

Then (xLyR + xRyL) = p3 − p1 − p2, therefore, x · y = 2np1 + 2n/2(p3 − p1 − p2) + p2.
Algorithm 2: Karatsuba’s algorithm for multiplying two n-bits numbers

Function multiply(x, y):
Input: x and y are two n-bit numbers (assume n is a power of 2)
Output: The product of x and y
if n == 1 then

return x · y;
end
xL = leftmost n/2 bits of x;
xR = rightmost n/2 bits of x;
yL = leftmost n/2 bits of y;
yR = rightmost n/2 bits of y;
p1 = multiply(xL, yL);
p2 = multiply(xR, yR);
p3 = multiply(xL + xR, yL + yR);
p = 2np1 + 2n/2(p3 − p1 − p2) + p2;
return p;

end

Overall runtime: T (n) = 3T (n/2) +O(n).

T (n) = 3T (n/2) + cn

= 3[3T (n/4) + cn/2] + cn

= 9T (n/4) + 3/2cn+ cn

= 9[3T (n/8) + cn/4] + 3/2cn+ cn

= 27T (n/8) + 9/4cn+ 3/2cn+ cn

= 81T (n/16) + 27/8cn+ 9/4cn+ 3/2cn+ cn

...

ljin1@uwyo.edu


Libao Jin (ljin1@uwyo.edu) COSC 5110 - Analysis of Algorithms Lecture Note 1 7

= 3kT (n/2k) + cn

k−1∑
i=0

(3/2)i

= 3kT (n/2k) + cn[2(3/2)k − 2].

= 3log2 nT (1) +O((3/2)log2 n · n)
= nlog2 3O(1) +O(nlog2 3)

= O(nlog2 3).

2.2.5 Summary

• Standard algorithm (first recursive algorithm): O(n2).
• Karatsuba’s algorithm (1961): O(nlog2 3) ≈ O(n1.58).
• Schöhage-Strassen using Fast Fourier Transform (1971): O(n · logn · log logn).
• Fürer (2007): O(n · logn · 2log∗ n), where log∗ is the number of recursively taking logarithm to get to 1.
• Open problem: Is there on O(n logn) time algorithm?

2.2.6 Master Theorem for Recurrence Relations

Suppose that

T (n) =

{
aT (n/b) +O(nd), n > 1

O(1), n = 1,

where a > 0 (recursive calls), b > 1 (input size reduction factor), and d > 0 (O(nd) is local work) are
constants. Then

T (n) =


O(nd), if d > logb a,
O(nd logn), if d = logb a,
O(nlogb a), if d < logb a.

Recursion tree has branching factor a =⇒ the kth level of the recursion tree has ak subproblems.

Subproblems are a factor b smaller at each level

1. =⇒ subproblems at level k have size n/bk.

2. =⇒ depth of recursion tree is logb n (n/bk = 1 =⇒ bk = n =⇒ k = logb n)

Total work:
logb n∑
k=0

( a

bd

)k
cnd = cnd

logb n∑
k=0

( a

bd

)k
• Geometric series:

S =

l∑
k=0

αk =

{
αl+1−1
α−1 , if α ̸= 1

l + 1, if α = 1

* If $\alpha > 1$, this is $\Theta(\alpha^l)$.
* If $\alpha < 1$, this is $\Theta(1)$.
* If $\alpha = 1$, this is $\Theta(l)$.

Let α = a
bd
. So

S =


Θ(
(

a
bd

)logb n
), if a > bd,

Θ(1), ifa < bd,

Θ(logb n) ifa = bd.
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Then it becomes

cnd

logb n∑
k=0

( a

bd

)k
=


O(nd

(
a
bd

)logb n
), if a > bd,

Θ(nd), ifa < bd,

Θ(nd logb n) ifa = bd.

=


O(nd

(
nlogb a

)
, if d < logb a, (work done at bottom dominates : O(1) · nlogb a)

Θ(nd), ifd > logb a, (work done at top dominates : O(nd))

Θ(nd logb n) ifd = logb a.(about the same amount of work done at each level : O(logn) levels,O(nd) at each level)

Example 2.3. 1. MergeSort: T (n) = 2T (n/2) +O(n): T (n) = O(n logn) since a = 2, b = 2, d = 1.

2. T (n) = 4T (n/2) +O(n): T (n) = O(n2) since a = 4, b = 2, d = 1.

3. Karatsuba’s algorithm: T (n) = 3T (n/2) +O(n): T (n) = O(nlog2 3) since a = 3, b = 2, d = 1.

4. T (n) = 2T (n/4) +O(n): T (n) = O(n) since a = 2, b = 4, d = 1.

2.2.7 Matrix Multiplication

Given two n× n matrices X and Y , compute the product Z = X · Y .

X =


x11 x12 · · · x1n

x21 x22 · · · x2n

...
... . . . ...

xn1 xn2 · · · xnn

 , Y =


y11 y12 · · · y1n
y21 y22 · · · y2n
...

... . . . ...
yn1 yn2 · · · ynn

Z =


z11 z12 · · · z1n
z21 z22 · · · z2n
...

... . . . ...
zn1 zn2 · · · znn

 .

• Standard Matrix Multiplication (Θ(n3))

zij =

n∑
k=1

xik · ykj .

for i = 1 to n
for j = 1 to n

$z_{ij}$ = 0
for k = 1 to n

$z_{ij} = z_{ij} + x_{ik} \cdot y_{kj}, O(1)

2.2.8 Divide-and-Conquer Approach

Divide each matrix into 4 matrices n/2-by-n/2.

X =

[
A B
C D

]
, Y =

[
E F
G H

]
, =⇒ X · Y =

[
AE +BG AF +BH
CE +DG CF +DH

]
Reduce multiplying a pair of n × n matrices to multiplying 8 pairs of n/2 × n/2 matrices, which leads to
the recursive algorithm: T (n) = 8T (n/2) + O(n2) =⇒ T (n) = O(n3), since a = 8, b = 2, d = 2. (No
improvement over standard algorithm)

RecursiveMultiply(X, Y) // $n \times n$ matrices
if ($u = 1$) return $X \cdot Y$
Form A, B, C, D, E, F, G, H (O(n^2))
U_1 = RecusiveMultiply(A, E) + RecusiveMultiply(B, G) (T(n/2) + T(n/2) + O(n^2 / 4))
U_2 = RecusiveMultiply(A, F) + RecusiveMultiply(B, H) (T(n/2) + T(n/2) + O(n^2 / 4))
L_1 = RecusiveMultiply(C, E) + RecusiveMultiply(D, G) (T(n/2) + T(n/2) + O(n^2 / 4))
L_2 = RecusiveMultiply(C, F) + RecusiveMultiply(D, H) (T(n/2) + T(n/2) + O(n^2 / 4))
P = [U_1 & U_2 \\ L_1 & L_2] (O(n^2))
return P

T (n) = 8T (n/2) +O(n2) = O(n3), a = 8, b = 2, c = 2.
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2.2.9 Strassen’s Algorithm T (n) = 7T (n/2) +O(n2), a = 7, b = 2, c = 2..

X =

[
A B
C D

]
, Y =

[
E F
G H

]
as before.
Compute

P1 = A(F −H)

P2 = (A+B)H

P3 = (C +D)E

P4 = D(G− E)

P5 = (A+D)(E +H)

P6 = (B −D)(G+H)

P7 = (A− C)(E + F )

Then

XY =

[
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P1 + P5 − P3 − P7

]
=

[
AE +BG AF +BH
CE +DG CF +DH

]
Strassen(X, Y) // $n \times n$ matrices
if ($u = 1$) return $X \cdot Y$
Form A, B, C, D, E, F, G, H (O(n^2))
P_1 = Strassen(A, F - H) (T(n/2) + T(n/2) + O(n^2 / 4))
P_2 = Strassen(A + B, F) (T(n/2) + T(n/2) + O(n^2 / 4))
P_3 = Strassen(C + D, E) (T(n/2) + T(n/2) + O(n^2 / 4))
P_4 = Strassen(D, G - E) (T(n/2) + T(n/2) + O(n^2 / 4))
P_5 = Strassen(A + D, E + H) (T(n/2) + T(n/2) + O(n^2 / 4))
P_6 = Strassen(B - D, G + H) (T(n/2) + T(n/2) + O(n^2 / 4))
P_7 = Strassen(A - C, E + F) (T(n/2) + T(n/2) + O(n^2 / 4))
P = [U_1 & U_2 \\ L_1 & L_2] (O(n^2))
return P

Algorithm 3: Karatsuba’s algorithm for multiplying two n-bits numbers
Function Strassen(x, y):

Input: X and Y are two n× n matrices (assume n is a power of 2)
Output: The product of X and Y
if n == 1 then

return X · Y ;
end
P1 = Strassen(A,F −H)(T (n/2) + T (n/2) +O(n2/4));
P2 = Strassen(A+B,F )(T (n/2) + T (n/2) +O(n2/4));
P3 = Strassen(C +D,E)(T (n/2) + T (n/2) +O(n2/4));
P4 = Strassen(D,G− E)(T (n/2) + T (n/2) +O(n2/4));
P5 = Strassen(A+D,E +H)(T (n/2) + T (n/2) +O(n2/4));
P6 = Strassen(B −D,G+H)(T (n/2) + T (n/2) +O(n2/4));
P7 = Strassen(A− C,E + F )(T (n/2) + T (n/2) +O(n2/4));

P =

[
U1 U2

L1 L2

]
(O(n2));

return P ;
end
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• Summary

– Strassen (1961): O(n2.81...).
– Cooper Smith and Winograd (1990): O(n2.375477...).
– Current best (2014): O(2.3728).
– O(n2+ε) for ε > 0 is conjectured by some researchers. Obvious Ω(n2) is the lower bound. ω is

the infimum of all w such that there is an O(nw) algorithm.
– Conjecture: ω = 2, known 2 ≤ ω < 2.3728 . . ..

• Why might we expect that ω = 2? While it is unknown how to multiply matrices in O(n2) time, it is
possible to check that the answer in O(n2) randomized time.

2.3 Verifying Matrix Multiplication
• Given: n× n matrices X, Y and Z.
• Question: XY = Z?
• Simpliest approach: multiply X · Y and check if it equals Z.
• O(nω) +O(n2) = O(nω).

2.3.1 Better Approach for Verifying Matrix Multiplication

Choose a vector r⃗ ∈ {0, 1}n uniformly at random (n independent fair coin flips). * If X · Y = Z, then for
every r⃗,

XY r⃗ = Zr⃗.

Theorem 2.1. If X · Y ̸= Z, then

Prr⃗∈{0,1}n [XY r⃗ = Zr⃗] ≤ 1

2
=⇒ Prr⃗∈{0,1}n [XY r⃗ ̸= Zr⃗] ≥ 1

2
.

How does this help? Zr⃗ is O(n2) time, (XY )r⃗ = X(Y r⃗)

2.3.2 Randomized Algorithm for Verifying Matrix Multiplication

Choose r⃗ ∈ {0, 1}n uniformly at random. Compute

b⃗ = Y · r⃗ ← O(n2)⃗a = X · b⃗← O(n2)c⃗ = Z · r⃗ ← O(n2)

If a⃗ == c⃗, return true; If a⃗ ̸= c⃗, return false.

• Correctness of the algorithm.

– If XY = Z, then Pr[algorithm outputs true] = 1.
– If XY ̸= Z, then Pr[algorithm outputs true] ≤ 1/2.
– Equivalently, If XY ̸= Z, then Pr[algorithm outputs false] ≥ 1/2.
– No false negatives. Whenever the algorithm outputs false, that is the correct answer.
– There are false positives. If the algorithm outputs true, this is possibly the wrong answer (should

be false). XY ̸= Z, but XY r⃗ = Zr⃗ for the chosen vector r⃗. (Happens at most half of the time.)

2.3.3 Improving the success probability

• Run the algorithm k times, where k ≥ 2, each run is independent, different random vector each time.
• If true is output every time, then output true.
• If false is ever output, then output false.

– If XY = Z, output true every time, so algorithm outputs true…
– IfXY ̸= Z, Pr[algorithm outputs true] ≤ 1/2k, so Pr[algorithm output true] ≤ 2−k, Pr[algorithm output false] ≥

1− 2−k
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• Take k = 2, then Pr[incorrect answer] ≤ 1
4 .

• Take k = 10, then Pr[incorrect answer] ≤ 1
210 .

• Take k = 100, then Pr[incorrect answer] ≤ 1
2100 .

• One-sided error algorithm, CORP algorithm (computation complexity theory).
• P ⊂ RP ⊂ NP and P ⊂ coRP ⊂ coNP .

2.3.4 Proof

X, Y , and Z are n× n matrices. Choose r⃗ ∈ {0, 1}n uniformly at random. If XY = Z, then XY r⃗ = Zr⃗ for
all r⃗ ∈ {0, 1}n.

Theorem 2.2. If XY ̸= Z,
Prr⃗∈{0,1}n [XY r⃗ = Zr⃗] ≤ 1

2
.

Equivalently, Pr[XY r⃗ ̸= Zr⃗] ≥ 1
2 .

Proof. Assume XY ̸= Z. Let D = XY − Z. Then D ̸= 0 (the all zero’s matrix). So D has at least
one nonzero entry - WLOG, suppose it is d1n. Suppose XY r⃗ = Zr⃗ for a vector r⃗ ∈ {0, 1}n. Then Dr⃗ =
(XY − Z)r⃗ = XY r⃗ − Zr⃗ = 0⃗. In particular, the first component of the vector Dr⃗ is 0:

n∑
j=1

d1jrj = 0.

Equivalently,

rn =
−
∑n−1

j=1 d1jrj

d1n
. (1)

Thought experiment: assume r1, · · · , rn−1 ∈ {0, 1} have been chosen at random. Choose rn ∈ {0, 1}. What
is the probability that (1) is true. There are two choices for rn: 0 and 1. At most one is correct. That
implies probability is at most 1/2.

• If RHS = 0, then Pr[rn = RHS] = 1
2 .

• If RHS = 1, then Pr[rn = RHS] = 1
2 .

• If RHS /∈ {0, 1}, then Pr[rn = RHS] = 0.

In any case, Pr[rn = RHS] ≤ 1
2 . Then,

Pr[XY r⃗ = Zr⃗] ≤ Pr[rn =
−
∑n−1

j=1 d1jrj

d1n
] ≤ 1

2
.

2.4 Evaluating Polynomials
Given a degree n polynomial p(x) = a0 + a1x+ a2x

2 + · · ·+ anx
n =

∑n
i=0 aix

i, where ai are the coefficients
of xi. Given x, evaluate p(x)

total = 0
for i = 0 to n

val = a_i
for j = 1 to i

val = val x
total = total + val

return total
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Count # of multiplications:
n∑

i=0

i∑
j=1

1 =

n∑
i=0

i =

n∑
i=1

i =
n(n− 1)

2
.

Therefore, the time complexity Θ(n2).

2.4.1 Optimized algorithm: Θ(n)

total = a_0
xpow = 1 // = x^0
for i = 1 to n

xpow = xpow * x // xpow
total = total + xpow * a_i

return total

Count # of multiplications:
n∑

i=1

2 = 2n = Θ(n).

2.5 Evaluating:

A(x) = 3 + 4x+ 6x2 + 2x3 + 4x4 + 10x5 + 8x6 + 9x7 = x(4 + 2x2 + 10x4 + 9x6) + (3 + 6x2 + 4x4 + 8x6) = x ·A0(x
2) +Ae(x

2),

where A0(x) = 4 + 2x+ 10x2 + 9x3, Ae(x) = 3 + 6x+ 4x2 + 8x3. Recursively evaluate A0, Ae.

A0(x) = x(2 + 9x2) + (4 + 10x2) = x ·A00(x
2) +A0e(x

2),

where A00(x) = 2 + 9x, A0e(x) = 4 + 10x.

2.6 Multiplying Polynomials
p(x) =

∑n
i=0 aix

i, q(x) =
∑n

j=0 bix
i. r(x) = p(x) · q(x) is a degree 2n polynomial.

r(x) =

(
n∑

i=0

aix
i

) n∑
j=0

bjx
j


=

2n∑
k=0

ckx
k,

where ck =
∑k

i=0 aibk−i. Takes Θ(k) time to compute ck using this formula. Total time to compute all
coefficients of r(x) is Θ(n2).

• Is there a faster way?

2.6.1 Fast Fourier Transform O(n logn) time.

Polynomial → Convolution → multiplication of convolutions → product polynomial.
HAHA: Fourier Transform = make it “four”ier by changing things to 4’s.

• Basic idea: A degree d polynomial is determined by its values at any d + 1 distinct points. Can
interpolate to recover the polynomial. Have p of degree n, q of degree n, want r = p · q of degree 2n.
We could evaluate p and q at 2n+1 points x1, x2, · · · , x2n+1. Then we can compute r at 2n+1 points:
r(xi) = p(xi) · q(xi)→ r(x1), r(x2), r(x3), . . . , r(x2n+1)→ interpret to recover r.
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2.6.2 Steps:

• Evaluate p, q at 2n+ 1 points. (Θ(n2))
• Compute r at these 2n+ 1 points by multiplying values of p and q. (Θ(n))
• Interpolate to recover r. (Θ(n2))

Θ(n2) time - no improvement over standard approach. FFT evaluates the polynomials at 2n + 1 specially
chosen points in O(n logn) time. (Complex numbers: roots of unity).

2.6.3 Roots

Complex numbers a + bi, where i =
√
−1 or i2 = −1. There are two square roots of unity: 1,−1. Can be

written as eiθ = cosθ+ i sin θ for θ = 0, π. Hence the fourth roots of unity is 1,−1, i,−i. In general, the nth
roots of unity are given by

e
2πi
n k, for k = 0, 1, 2, . . . , n− 1.

n evenly spaced points around the unit circle in the complex plane. e
2πi
n is the principal nth root of unity.

Denote ω = e
2πi
n = cos 2π

n + i sin 2π
n .

2.6.4 Euler’s Formula

eπi = −1, and e2πi = 1. For any θ,
eiθ = cos θ + i sin θ.

Why is this true? We take a look at the Taylor Series of ex:

exp(x) = ex =

∞∑
k=0

xk

k!
= 1 + x+

x2

2!
+

x3

3!
+

x4

4!
+ · · · .

Also the Taylor Series for sin(x) and cos(x) are as follows:

sin(x) =
∞∑
k=0

(−1)k x2k+1

(2k + 1)!
=

∞∑
k=0

x4k+1

(4k + 1)!
− x4k+3

(4k + 3)!

cos(x) =
∞∑
k=0

(−1)k x2k

(2k)!
=

∞∑
k=0

x4k

(4k)!
− x4k+2

(4k + 2)!

Therefore, plugging in x = iθ to the Taylor Series of exp(x) gives

exp(iθ) =
∞∑
k=0

(iθ)k

k!

=

∞∑
k=0

(iθ)4k

(4k)!
+

(iθ)4k+1

(4k + 1)!
+

(iθ)4k+2

(4k + 2)!
+

(iθ)4k+3

(4k + 3)!

=

∞∑
k=0

θ4k

(4k)!
+

iθ4k+1

(4k + 1)!
+
−θ4k+2

(4k + 2)!
+
−iθ4k+3

(4k + 3)!

=

∞∑
k=0

θ4k

(4k)!
− θ4k+2

(4k + 2)!
+

iθ4k+1

(4k + 1)!
− iθ4k+3

(4k + 3)!

=

( ∞∑
k=0

θ4k

(4k)!
− θ4k+2

(4k + 2)!

)
+ i

( ∞∑
k=0

θ4k+1

(4k + 1)!
− θ4k+3

(4k + 3)!

)
= cos θ + i sin θ.
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2.6.5 FFT:

• Given polynomial A of degree ≤ n− 1 (assume n is a power of 2), ω is a principal nth root of unity.
• Output: A(ω0), A(ω1), A(ω2), A(ω3), · · · , A(ωn−1) (values of A at nth roots of unity)
• Time: O(n logn) time.

Algorithm 4: FFT
Function FFT(A,ω, n):

Input: A is a polynomial of degree ≤ n− 1, n is a power of 2, ω is a principal nth root of unity.
Output: A(ω0), · · · , A(ωn−1)
if ω == 1 then /* base case */

return A(1);
end
express A(x) as Ae(x

2) + xA0(x
2) /* Ae and A0 have degree < n/2. */

FFT(Ae, ω
2, n/2) /* result: Ae(ω

0), Ae(ω
2), Ae(ω

4), · · · , Ae(ω
n−2) */

FFT(A0, ω
2, n/2) /* result: A0(ω

0), A0(ω
2), A0(ω

4), · · · , A0(ω
n−2) */

for j ← 0 to n− 1 do
A(ωj) = Ae(ω

2j) + ωjA0(ω
2j) ;

end
return A(ω0), A(ω1), A(ω2), · · ·A(ωn−1);

end

Example 2.4. Evaluate A(x) = 3x3 + x2 + 2x + 4. Given that n = 4, ω = i, evaluate A at ω0 = 1, ω1 =
i, ω2 = −1, ω3 = −i. Let Ae(x) = x+4, A0(x) = 3x+2, then A(x) = Ae(x

2) + xA0(x
2). Then evaluate Ae,

A0 at ω0, ω2. We have Ae(ω
0) = 5, Ae(ω

2) = 3, A0(ω
0) = 5, A0(ω

2) = −1. Therefore,

A(ω0) = Ae(ω
0) + ω0A0(ω

0) = 10.

A(ω1) = Ae(ω
2) + ω1A0(ω

2) = 3− i.

A(ω2) = Ae(ω
4) + ω2A0(ω

4) = 0.

A(ω3) = Ae(ω
6) + ω3A0(ω

6) = 3 + i.

2.6.6 Recursion tree

• a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x
1 + a0x

0, evaluate at ω0, ω1, ω2, · · · , ω7, 8th roots of
unity.

– a6x
3 + a4x

2 + a2x
1 + a0, evaluate at ω0, ω2, ω4, ω6, 4th roots of unity

∗ a4x+ a0, evaluate at ω0, ω4, 2nd roots of unity
· a4, evaluate at ω0

· a0, evaluate at ω0

∗ a6x+ a2, evaluate at ω0, ω4, 2nd roots of unity
· a6, evaluate at ω0

· a2, evaluate at ω0

– a7x
3 + a5x

2 + a3x
1 + a1, evaluate at ω0, ω2, ω4, ω6

∗ a5x+ a1, evaluate at ω0, ω4, 2nd roots of unity
· a5, evaluate at ω0

· a1, evaluate at ω0

∗ a7x+ a3, evaluate at ω0, ω4, 2nd roots of unity
· a7, evaluate at ω0

· a3, evaluate at ω0

ljin1@uwyo.edu


Libao Jin (ljin1@uwyo.edu) COSC 5110 - Analysis of Algorithms Lecture Note 1 15

Let A(x) = an−1x
n−1 + · · ·+ a1x1 + a0 be a polynomial of degree n− 1, evaluate at x0, x1, . . . , xn−1.

A⃗ =


A(x0)
A(x1)
A(x2)

...
A(xn−1)

 =


1 x0 x2

0 · · · xn−1
0

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
... . . . ...

1 xn−1 x2
n−1 · · · xn−1

n−1




a0
a1
a2
...

an−1

 = M ∗ a⃗,

where M is the Vandermonde matrix - invertible assuming x0, . . . , xn−1 are all distinct, i.e., M−1 exists.
Therefore,

a⃗ = M−1A⃗ =⇒ M−1A⃗ = M−1Ma⃗ = Ia⃗.

Define

Mn(ω) =


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

... . . . ...
1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)


FFF “multiplies” Mn(ω) and the coefficient vector.

A(1)
A(ω)
A(ω2)

...
A(ωn−1)

 = Mn(ω)


a0
a1
a2
...

an−1


M−1

n (ω) exists, that implies, can recover coefficients from values by multiplying by M−1
n (ω) (can be done by

FFT).

Proposition 2.2.

M−1
n (ω) =

1

n
Mn(ω

−1), i.e.,M−1
n (ω) =

1

n


1 1 1 · · · 1
1 ω−1 ω−2 · · · ω−(n−1)

1 ω−2 ω−4 · · · ω−2(n−1)

...
...

... . . . ...
1 ω−(n−1) ω−2(n−1) · · · ω−(n−1)(n−1)


Proof. Let

Mn(ω) ·Mn(ω
−1) =


x11 x12 · · · x1n

x21 x22 · · · x2n

...
... . . . ...

xn1 xn2 · · · xnn


Now look at xij , we have

xij =
[
1 ωi ω2i · · · ω(n−1)i

]


1
ωj

ω2j

...
ω(n−1)j

 =

n−1∑
k=0

ωkiω−kj =

n−1∑
k=0

ωk(i−j) =

{
n if i = j

0 otherwise
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As for ω = e
2πi
n , we have

ω−1ω = 1 =⇒ ω−1 = e−
2πi
n , e

2πi
n (n−1)

So 
a0
a1
a2
...

an−1

 =
1

n
Mn(ω

−1)


A(1)
A(ω)
A(ω2)

...
A(ωn−1)

 .

2.6.7 Multiplication Algorithm

Algorithm 5: Calculate the product of two polynomials
Function PolynomialMultiplication(A,B):

Input: A(x) = a0 + a1x+ a2x+ · · · am−1x
m−1 and B(x) = b0 + b1x+ b2x+ · · · bl−1x

l−1 are two
polynomials of degree m− 1 and l − 1, respectively.

Output: The product C of A ·B.
Choose n > m+ l so that n is a power of 2, where n ≤ 2 ·max(m, l);
ω ← e

2πi
n , where e

2πi
n is the principle nth root of unity;

Call FFT(A,ω, n) and FFT(B,ω, n) to obtain values A(ω0), A(ω1), . . . , A(ωn−1) and
B(ω0), B(ω1), . . . , B(ωn−1);

Compute C(ωi) = A(ωi) ·B(ωi) for i = 0, 1, . . . , n− 1;
Call FFT(D,ω−1, n), where di = C(ωi);
ci ← 1

nD(ω−1) for i = 0, 1, . . . , n− 1;
return c0, c1, . . . , cn−1;

end

Running time: 3 FFT calls (O(n logn)) and O(n) additional work, in total, O(n logn) time. Recall: standard
algorithm is O(n2).
FFT → Sch ohage - Strassen fast integer multiplication O(n logn log logn) time. a = an−1an−2 · · · a0 =∑n−1

i=0 ai2
i = A(2)

2.6.8 Quicksort

Algorithm 6: Quick sort
Function Quicksort(A[1 . . . n]):

Input: A is a array, of which all elements are distinct.
Output: Sorted A
if n ≤ 1 then

return A;
end
Choose an element p of A as a pivot;
Compare every other element of A to p and divide them into two subarrays: A1 has the elements
of A that are less than p;

A2 has the elements of A that are greater than p;
Use Quicksort to sort A1 and A2;
return the array A1, p, A2;

end

Suppse p has rank k in A (kth smallest element). Then |A1| = k − 1, and |A2| = n − k. Number of
comparisons:

(n− 1) + # done by Quicksort(A1) + # done by Quicksort(A2).

Then
C(n) = n− 1 + C(k − 1) + C(n− k),

ljin1@uwyo.edu


Libao Jin (ljin1@uwyo.edu) COSC 5110 - Analysis of Algorithms Lecture Note 1 17

where C(n) = # of comparisons on an array of size n.

• Worst case: k = 1 every time.

C(n) = n− 1 + C(0) + C(n− 1)

= n− 1 + C(n− 1)

= (n− 1) + (n− 2) + C(0) + C(n− 2)

...
= (n− 1) + (n− 2) + · · ·+ 1

=

n−1∑
i=1

i

=

(
n

2

)
=

n(n− 1)

2

= Θ(n2).

Note: k = largest every time is also worst case –
(
n
2

)
comparisons.

• Best case: k = n/2

C(n) = (n− 1) + C(
n

2
) + C(

n

2
)

= 2C(
n

2
) + (n− 1)

= Θ(n logn)
≈ 2n logn.

This is optimal: lower bound – any comparison-based sorting algorithm requires Ω(n logn) compar-
isons.

• Average case analysis. Suppose
n

4
≤ k ≤ 3n

4
,

that is, pivot in middle half. And

C(n) ≤ n− 1 + C(
n

4
) + C(

3n

4
) = O(n logn).

Intuitively: get pivot in the middle half about half of the time, so performance should be about the
same. Let (y1, y2, . . . , yN ) be the sorted order of A, where yi is the element of rank i. Define a random
variable

Xij =

{
1 if yi and yj are compared,
0 otherwise.

for each i and j. Let X be the number of comparisons performed,

X =

n−1∑
i=1

n∑
j=i+1

Xij .

and Yij = (yi, yi+1, . . . , yj), yi and yj are compared ⇐⇒ the first pivot selected from Yij is yi or yj .
So

Pr[Xij = 1] =
2

j − i+ 1
.
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since Yij = (yi, yi+1, . . . , yj). That implies the expectation

E[Xij ] = Pr[Xij = 1] =
2

j − i+ 1
.

Note: If Z ∈ {0, 1} is 0− 1 valued, then Z is called an indicator random variable. Then Pr[Z = 1] = p
and Pr[Z = 0] = 1− p, therefore E[Z] = 1 · Pr[Z = 1] + 0 · Pr[Z = 0] = Pr[Z = 1]. Then

E[X] = E

n−1∑
i=1

n∑
j=i+1

Xij


=

n−1∑
i=1

n∑
j=i+1

E[Xij ]

=

n−1∑
i=1

n∑
j=i+1

2

j − i+ 1

= 2

n−1∑
i=1

n−i+1∑
k=2

1

k

= 2

n∑
k=2

n−k+1∑
i=1

1

k

= 2

n∑
k=2

n− k + 1

k

= 2

n∑
k=2

(
n+ 1

k
− 1

)

= 2

[
(n+ 1)

n∑
k=2

1

k
− (n− 1)

]

= 2

[
(n+ 1)

n∑
k=1

1

k
− (n− 1)− (n+ 1)

]
= 2 [(n+ 1)Hn − 2n]

= 2(n+ 1)Hn − 4n

= 2(n+ 1)Θ(logn)− 4n

= Θ(n logn).

• A different proof: Probablistic recurrence relation:

C(n) =
1

n

n∑
k=1

[(n− 1) + C(k − 1) + C(n− k)]. = (n− 1) +
2

n

n−1∑
k=1

C(k). (2)

nC(n) = n(n− 1) + 2

n−1∑
k=1

C(k) (3)

(n− 1)C(n− 1) = (n− 1)(n− 2) + 2

n−2∑
k=1

C(k) (4)

Then (3) - (4) gives

nC(n)− (n− 1)C(n− 1) = n(n− 1)− (n− 2)(n− 1)− 2

n−2∑
k=1

C(k) + 2

n−1∑
k=1

C(k)
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= 2(n− 1) + 2C(n− 1)

=⇒ nC(n) = 2(n− 1) + (n+ 1)C(n− 1)

=⇒ C(n) =
2(n− 1)

n
+

(n+ 1)C(n− 1)

n

=⇒ C(n)

n+ 1
=

2(n− 1)

n(n+ 1)
+

C(n− 1)

n

=
2(n− 1)

n(n+ 1)
+

2(n− 2)

n(n− 1)
+

C(n− 2)

n− 1

= 2

n∑
k=2

k − 1

k(k + 1)

= 2

n∑
k=2

(
1

k + 1
− 1

k(k + 1)

)

= 2

(
n∑

k=2

1

k + 1
−

n∑
k=2

1

k(k + 1)

)

= 2

[
n∑

k=2

1

k + 1
−

n∑
k=2

(
1

k
− 1

k + 1

)]

= 2

[
n+1∑
k=3

1

k
−
(
1

2
− 1

n+ 1

)]

= 2

[
n∑

k=1

1

k
+

1

n+ 1
− 1− 1

2
−
(
1

2
− 1

n+ 1

)]

= 2Hn −
4n

n+ 1

=⇒ C(n) = 2(n+ 1)Hn − 4n.

2.6.9 Finding Medians and Order Statistics

Let S be an (unsorted) array of n elements with no duplicates.

• If |S| is odd, then the median of S is the middle element of S when sorted.
• If |S| is even, then there are two medians, |S| = n = 2k =⇒ elements of ranks k and k + 1 are

medians.

In any case, an element of rank ⌊n2 ⌋+1 is a median. More generally, the ith-order statistic is the element of
rank i.

• Sort S, select middle element (or desired rank).
– Θ(n logn) time: MergeSort.
– Expected Θ(n logn) time: QuickSort.

• QuickSelect (randomized algorithm)
– O(n) exptected time
– O(n2) worst case time

• Deterministic divide-and-conquer algorithm:
– O(n) time with large constants.

Example 2.5. n = 8 and k = 5, 5th order statistic.

S = [4, 12, 3, 8, 2, 6, 15, 5]
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S = [3, 2, 4, 12, 8, 6, 15, 5]

S = [12, 8, 6, 15, 5]

S = [8, 6, 5, 12, 15]

S = [8, 6, 5]

S = [6, 5, 8]

S = [6, 5]

S = [5, 6]

Algorithm 7: Quick Select
Function QuickSelect(S[1 . . . n], k):

Input: Select the kth order statistic from S
Output: Return the k the order statistic
if n = 1 then

return S[1];
end
Choose a pivot p from S;
/* Partition into two subarrays: */
S1 = elements of S that are < p;
S2 = elements of S that are > p;
r ← |S1|+ 1;
/* the rank of p */
if r = k then

return p;
else if k < r then

return QuickSelect(S1, k);
else

return QuickSelect(S2, k − r);
end

end

• Worst case:
(
n
2

)
= Θ(n2) comparisons. Elements of ranks n, n−1, n−2, . . . , k+1 are chosen, as pivots,

then ranks 1, 2, 3, . . . , k − 1. Problem size decreases by 1 each time:

# of comparisons =
n−1∑
i=1

n− i =

n−1∑
i=1

i =

(
n

2

)
.

• For r ∈ {1, . . . , n}, let

Xr =

{
1 if pivot of rank r is chosen,
0 otherwise.

Then Pr[Xr = 1] = 1
n = E[Xr]. Subproblem size:

Y =

k−1∑
r=1

Xr(n− r) +

n∑
r=k+1

Xr(r − 1).

The expected subproblem size would be

E[Y ] = E

[
k−1∑
r=1

Xr(n− r) +

n∑
r=k+1

Xr(r − 1)

]

= E

[
k−1∑
r=1

Xr(n− r)

]
+ E

[
n∑

r=k+1

Xr(r − 1)

]
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=

k−1∑
r=1

E[Xr(n− r)] +

n∑
r=k+1

E[Xr(r − 1)]

=

k−1∑
r=1

E[Xr](n− r) +

n∑
r=k+1

E[Xr](r − 1)

=
1

n

[
k−1∑
r=1

(n− r) +

n∑
r=k+1

(r − 1)

]

=
1

n

[
n−1∑

i=n−k+1

i+

n−1∑
r=k

r

]

=
1

n

[(
n−1∑
i=1

i−
n−k∑
i=1

i

)
+

(
n−1∑
r=k

r −
k−1∑
r=1

r

)]

=
1

n

[(
n

2

)
−
(
n− k + 1

2

)
+

(
n

2

)
−
(
k

2

)]
= (n− 1)− 1

n

[(
n− k + 1

2

)
+

(
k

2

)]
Now let’s take a closer look at

(
n−k+1

2

)
+
(
k
2

)
, we have(

n− k + 1

2

)
+

(
k

2

)
=

k(k − 1)

2
+

(n− k + 1)(n− k)

2

=
1

2

[
k2 − k + (n− k)2 + (n− k)

]
=

1

2

[
2k2 − 2k(n+ 1) + n2 + n

]
= k2 − k(n+ 1) +

1

2
n2 +

1

2
n.

Differentiating with respect to (w.r.t.) k yields

2k − (n+ 1) = 0 when k =
n+ 1

2
.

Thus, we have (
n− k + 1

2

)
+

(
k

2

)
=

(n
2 + 1

2

2

)
+

(n
2 + 1

2

2

)
= 2

(n
2 + 1

2

2

)
=

n+ 1

2

n− 1

2

=
n2 − 1

4
.

Then
E[Y ] = (n− 1)− 1

n

n2 − 1

4
=

3n

4
+

1

4n
− 1.

Let Yi be the problem size in ith call to QuickSelect, Y1 = n, E[Y2] ≤ 3
4n = 3

4Y1. More generally,

E[Yi+1|Yi] ≤
3

4
Yi.

By induction,

E[Yi] ≤
(
3

4

)i−1

n for all i ≥ 1.
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Let Xi be the number of comparisons done in the ith call.

Xi =

{
Yi − 1 if Yi > 0,

0 if Yi = 0.

Then, E[Xi] = E[Yi]− 1 ≤ E[Yi] ≤
(
3
4

)i−1
n. Let X be the total number of comparisons,

X =

∞∑
i=1

Xi.

Hence,

E[X] = E

[ ∞∑
i=1

Xi

]

≤
∞∑
i=1

E[Xi]

≤
∞∑
i=1

(
3

4

)i

n

≤ n

∞∑
i=1

(
3

4

)i

≤ n
0− 3/4

3/4− 1

≤ 3n

2.6.10 Deterministic Selection in O(n) Time (Median-of-median algorithm)

Suppose we have an array A of size n, then we break A into n/5 of 5, find median of each group by sorting
O(1) time per group, which has less than

(
5
2

)
comparisons. Therefore, it takes O(n) time to find all group

medians. Next, form an array Mn/5 of the group medians. Recursive call to find meand x of Mn/5. Use x
as the pivot to partition A: make recursive call as in QuickSelect on left or right half (See Algorithm 8).

Proposition 2.3. x is a good pivot, where x has rank between 3
10n and 7

10n. Thus, the subproblem size
decreases by at least 30%.

The running time would be
T (n) ≤ T (n/5) + T (7n/10) +O(n).

Intuitively, x should be close to the median of A.

1. x is greater than or equal to m/2 elements of M .
2. Each element of M is greater than or equal to 3 elements in its group.

That implies, x is greater than or equal to m/2 · 3 = 3n/10 elements of A. Similarly, x is less than or equal
to m/2 · 3 = 3n/10 elements of A. Therefore the subarray of A (A1 or A2) that select is recursively called
on has at most 7n/10 elements.
Let T (n) be the maximum time for select on an array of size n. Then

T (n) ≤ T (n/5) + T (7n/10) +O(n).

• Each of the n/5 groups is sorted using less than
(
5
2

)
= 10 comparisons, then we have less than 10 ·n/5 =

2n comparisons to sort all groups. In other words, it takes O(n) to sort all groups.
• Form M : O(n) time.
• Recursively find median of M : T (n/5).
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Algorithm 8: Deterministic Selection in O(n) Time (Median-of-Medians algorithm)
Function Select(A[1 . . . n], k):

Input: A[1 . . . n] is an array of n elements, where n is a power of 10.
Output: Find the median of A[1 . . . n].
/* base case */
if n = 1 then

return A[1];
end
Let m = n/5. Partition A into m groups of 5 elements. Insertion sort each of the m groups;
Let M be an array of size n containing the medians from each of the 5 gorups;
Use Select to find the median x of M : /* x is the median-of-medians */
x← Select(M [1 . . .m],m/2);
Partition A into two subarrays: A1 = elements of A that are less than x;
A2 = elements of A that are greater than x;
Let r = |A1|+ 1 be the rank of x in A;
if r = k then

return x;
else if k < r then

return Select(A1[1 . . . r − 1], k);
else

return Select(A2[1 . . . n− r], k − r);
end

end

• Partition A around the median of medians: n− 1 comparisons – O(n) time.
• Recursively call select on a subarray of A of size less than 7n/10 ≤ T (7n/10)

Proposition 2.4. T (n) = O(n).

Proof. This is true if there is a constant c such that T (n) ≤ c · n for all sufficiently large n. Let

T (n) ≤ T (n/5) + T (7n/10) + an.

Suppose that T (n) ≤ cn for some c. Then

T (n) ≤ c · n
5
+ c · 7n

10
+ an =

(
9c

10
+ a

)
n ≤ cn, if c ≥ 10a.

In practice, a = 3 for comparisons, then T (n) ≤ 30n comparison overall, while QuickSelect has less than 4n
comparisons on average.

2.7 Dynamic Programming
• Divide-and-conquer: top-down
• Dynamic Programming: bottom-up

2.7.1 Longest Increasing Subsequence Problem

• Given a sequence of numbers a1, . . . , an.
• Goal: find a longest increasing subsequence, that is, find i1, . . . , ik such that 1 ≤ i1 < i2 < · · · < ik ≤ n

and ai1 < ai2 < · · · < aik, where k is maximized.
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Example 2.6. Let a = [a1, a2, a3, a4, a5, a6, a7a8] = [5, 2, 8, 6, 3, 6, 9, 7]. The longest increasing subsequence
could be [2, 3, 6, 9] or [2, 3, 6, 7].

Brute force: try all 2n possible subsequence. Dynamic programming can reduce the time substatially. For
each j, 1 ≤ j ≤ n, write L(j) for the longest increasing subsequence of a1, . . . , aj , we will compute

L(1), L(2), L(3), . . . , L(n),

in order.

Proposition 2.5. L(j) = 1 +max{L(i)|ai < aj and i < j}.

Go back to the example, we would have

L(0) = 0,

L(1) = 1,

L(2) = 1,

L(3) = 2,

L(4) = 2,

L(5) = 2,

L(6) = 3,

L(7) = 4,

L(8) = 4.

Algorithm 9: Finding longest increaseing subsequence based on dynamic programming
Function longestIncreasingSubsequence([a1, a2, . . . , an]):

Input: Unsorted sequence [a1, a2, . . . , an].
Output: Find the longest inreaseing subsequence.
for j = 1 to n do

/* Predcessor */
pred(j) = 0;
max = 0;
for i = 1 to j − 1 do

if ai < aj and L(i) > max then
max = L(i);
pred(j) = i;

end
end
L(j) = max+ 1;

end
Then find j such that L(j) is maximized, where L(j) is the length of longest increasing
subsequence;

Follow pred links back to extract the sequence;
end

Could we use recursion? Take a look at the formula: L(j) = 1 +max{L(i)|ai < aj and i < j}.

• L(n)

– L(n− 1)

∗ L(n− 2)
∗ L(n− 3)
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∗
...

∗ L(1)

– L(n− 2)

∗ L(n− 3)

∗
...

∗ L(1)

–
...

– L(1)

This would be exponential time. However, the same subproblems are solved over and over. This can be
made efficient - “memoization”

2.7.2 Longest Common Subsequence (LCS)

Algorithm 10: Finding longest common subsequence based on dynamic programming
Function longestCommonSubsequence(x[1 . . . n], y[1 . . .m]):

Input: Two strings x[1 . . . n] and y[1 . . .m]
Output: Compute a longest common subsequence of x and y, that is, a string z[1 . . . k] such

that z is a subsequence both x and y and k is maximized
for i = 0 to n do

L(i, 0) = 0;
end
for j = 1 to m do

L(0, j) = 0;
end
for i = 1 to n do

for j = 1 to m do
if x[i] = y[i] then

L(i, j) = L(i− 1, j − 1) + 1;
else

L(i, j) = max{L(i− 1, j), L(i, j − 1)};
end

end
end

end

Example 2.7. Given two strings x = ABCBDAB, y = BDCABA then BCA is a common subsequence,
BCAB and BCBA are the longest common subsequence.

B D C A B A
0 0 0 0 0 0 0

A 0 0 0 0 1 1 1
B 0 1 1 1 1 2 2
C 0 1 1 2 2 2 2
B 0 1 1 2 2 3 3
D 0 1 2 2 2 3 3
A 0 1 2 2 3 3 4
B 0 1 2 2 3 4 4


Then the LSC’s are BCBA, BDAB, BCAB.
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Write L(i, j) for the length of a LCS of x[1 . . . i] and y[1 . . . j], where 0 ≤ i ≤ n and 0 ≤ j ≤ m, let z[1 . . . k]
be a longest common subsequence of x[1 . . . i] and y[1 . . . j].

• If x[i] = y[j], then z[k] = x[i] = y[j].
• If x[i] ̸= y[j], then

– If z[k] ̸= x[i], then z[1 . . . k] is a LCS of x[1 . . . i− 1] and y[1 . . . j].
– If z[k] ̸= y[j], then z[1 . . . k] is a LCS of x[1 . . . i] and y[1 . . . j − 1].
– If z[k] ̸= y[j] and z[k] ̸= x[i], then z[1 . . . k] is a LCS of x[1 . . . i− 1] and y[1 . . . j − 1].

Corollary 2.1.
1. If x[i] = y[j], then L(i, j) = L(i− 1, j − 1) + 1.

2. If x[i] ̸= y[i], then L(i, j) = max{L(i− 1, j), L(i, j − 1)}.

2.7.3 Edit Distance

Example 2.8. ‘SNOWY‘ and ‘SUNNY‘:

S U N N Y
0 1 2 3 4 5

S 1 0 1 2 3 4
N 2 1 1 1 2 3
O 3 2 2 2 2 3
W 4 3 3 3 3 3
Y 5 4 4 4 4 3



Operation Cost
insertion 1
deletion 1
mismatch 1
mutation 1

Let E(i, j) be the cost of optimal alignment of x[1 . . . i] and y[1 . . . j]. Then we have three possibilities for
optimal of x[1 . . . i] and y[1 . . . j]

• Cost E(i− 1, j − 1): optimal alignment of x[1 . . . i− 1] and y[1 . . . j − 1] (either or mismatch)

x[i]
y[j]

then

E(i, j) =

{
E(i− 1, j − 1) if x[i] = y[j]

E(i− 1, j − 1) + 1 if x[i] ̸= y[j]

• Cost E(i−1, j): optimal alignment of x[1 . . . i−1] and y[1 . . . j] (deletion), then E(i, j) = E(i−1, j)+1.

x[i]
____

• Cost E(i, j−1): optimal alignment of x[1 . . . i] and y[1 . . . j−1] (insertion), then E(i, j) = E(i, j−1)+1.

____
y[j]

The longest common subsequence is a special case of the edit cost by settingmatch = −1, insertion/deletion/mutation =
0.
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Algorithm 11: Finding an optimal alignment (minimal cost) based on dynamic programming
Function editDistance(x[1 . . . n], y[1 . . .m]):

Input: Two strings x[1 . . . n] and y[1 . . .m]
Output:
for i = 0 to n do

E(i, 0) = i;
end
for j = 1 to m do

E(0, j) = j;
end
for i = 1 to n do

for j = 1 to m do
E(i, j) = min{E(i− 1, j), L(i, j − 1)};

end
end

end

2.7.4 Knapsack Problem

• Knapsack capacity W , n items to choose from with weights w1, w2, . . . , wn and values v1, v2, . . . , vn.
• Goal: choose the most valuable collection of tiems that fit in the bag.

Two versions:

• With repitition: unlimited supply of each item.

• Without repitition (standard knapsack problem): only one of each item.

• With repitition

– Subproblems: Knapsacks of capacity w, 1 ≤ w ≤ W . (Another possibility is to consider fewer
items - solve for items 1, 2, . . . , i for i ≤ n, or combine both approaches – vary both number of
items and knapsack size).

– Let K(w) be the maximum value achievable in a knapsack of capacity w.
– Suppose that the last item added to achieve K(w) (optimal solution) is item i with weight wi and

value vi. Take item i out of the knapsack: frees up wi weight and decreases value by vi. We’re
left with a set of items that fits in a knapsack of capacity w − wi and has value K(w)− vi. This
must be an optimal solution for capacity w−wi. (If it isn’t, pick a better solution, add item i to
it, and we have a better solution for capacity K(w), a contradiction.) Then we have

K(w − wi) = K(w)− vi =⇒ K(w) = K(w − wi) + vi,

which assumes ith item is added last. Then{
K(0) = 0, (base case)
K(w) = max1≤i≤n,wi≤w{K(w − wi) + vi}.

• Without repitition

– Subproblems: Knapsacks of weight w, 0 ≤ w ≤W using items 1, 2, . . . , j, 0 ≤ j ≤ n. Let K(w, j)
be the maximum value achievable using knapsack of capcity w and items 1, . . . , j. Consider an
optimal solution s for K(w, j):
∗ Case 1: Item j is not included, then s is also an optimal solution for K(w, j) = K(w, j − 1).
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Algorithm 12: Dynamic Programming for Knapsack Problem with repitiion O(nW ) time
Function knapsack(w[1 . . . n], v[1 . . . n]):

Input:
Output:
K(0) = 0;
for w = 1 to W do

K(w) = max{K(w − wi) + vi|1 ≤ i ≤ n,wi ≤ w};
end
return K(W );

end

∗ Case 2: Item j is included, then remove item j: s − {j} has weight w − wj and value
K(w, j) − vj . s − {j} is an optimal solution for K(w − wj , j − 1) = K(w, j) − vj =⇒
K(w, j) = K(w − wj , j − 1) + vj . Then

K(wj) =

{
max{K(w, j − 1),K(w − wj , j − 1) + vj}, if wj ≤ w,

K(w, j − 1), otherwise.

Algorithm 13: Dynamic Programming for Knapsack Problem with repitiion O(nW ) time
Function knapsack(w[1 . . . n], v[1 . . . n]):

Input:
Output:
Initialize K(0, j) = 0 for 0 ≤ j ≤ n and K(w, 0) = 0 for 1 ≤ w ≤W ;
for j = 1 to n do

for w = 1 to W do
if wj > w then

K(w, j) = K(w, j − 1);
else

K(w, j) = max{K(w, j − 1),K(w − wj , j − 1) + vj};
end

end
end
return K(W,n);

end

Example 2.9. Let W = 10, and Then we have

item weight value
1 6 30
2 3 14
3 4 16
4 2 9

• Another approach:

Let the total value V =
∑n

i=1 vi. For all 0 ≤ v ≤ V and 0 ≤ j ≤ n, let K(v, j) be the minimum weight to
attain value exactly v with items 1, 2, . . . , j, and K(w, j) =∞ if not possible to get value v with those items.

K(v, j) =

{
min{K(v, j − 1),K(v − vj , j − 1) + vj} if vj ≤ v,

K(v, j − 1) otherwise.
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0 1 2 3 4
0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 9
3 0 0 14 14 14
4 0 0 14 16 16
5 0 0 14 16 23
6 0 30 30 30 30
7 0 30 30 30 30
8 0 30 30 30 39
9 0 30 44 44 44
10 0 30 44 46 46

The base cases are K(v, 0) = ∞ for all 1 ≤ v ≤ V , and K(0, j) = 0 for all 0 ≤ j ≤ n. Leads to an O(nV )
time algorithm. After all values computed, look for the v that maximizes K(v, n) and K(v, n) ≤W .

2.7.5 Matrix Chain Multiplication

Example 2.10. Given matrices A50×20, B20×1, C1×10, D10×100, want to compute product ABCD, matrix
multiplication is as associative: A(BC) = (AB)C. We have

• (AB)(CD) : 7000;

• (A(BC))D : 60200;

• A((BC)D) : 120200;

• ((AB)C)D : 51500;

• A(B(CD)) : 13000;

For Aj×k and Bk×l, computing AB with standard algorithm takes jkl operations (multiplications).
How many parenthsesization are there? Let Pn be the number of ways that n factors can be parenthesized.

• n = 1: (A), P1 = 1.
• n = 2: (AB), P2 = 1.
• n = 3: A(BC) and (AB)C, P3 = 2.
• n = 4: (AB)(CD): P2 · P2, (A(BC))D and ((AB)C)D: P3 · P1, A((BC)D) and A(B(CD)): P1 · P3,

then P4 = P3 · P1 + P2 · P2 + P1 · P3 = 5.
• n = 5: Possible splits: (1, 4), (2, 3), (3, 2), (4, 1). Then P5 = P1 · P4 + P2 · P3 + ¶3 · P2 + P4 · P1 =

5 + 2 + 2 + 5 = 14.
• More generally, Pn =

∑n−1
i=1 Pi · Pn−i, which is closedly related to Catalan numbers: C1, C2, . . ., then

Cn+1 =
∑n

i=0 CiCn−i. Therefore, Pn = Cn−1. Closed formula is Cn = 1
n+1

(
2n
n

)
∼ 4n

n3/2
√
π

which is
exponential in n, so is Pn. Worth mentioning, Pn is also the number of full binary with n leaves (see
Figure 1).

• Given: n matrices A1, A2, . . . , An of demensions m0 × m1,m1 × m2, . . . ,mn−1 × mn, where Ai has
dimension mi−1 ×mi.

• Goal: compute the optimal parenthesization (minimize the number of operations to compute product).
• Look for substructure: What multiplication is done last? There are n− 1 possibilities:

Let C(i, j) be the optimal cost for multiplying AiAi+1 · · ·Aj . Then

C(1, n) = min
1≤i<n

{C(1, i) + C(i+ 1, n) +m0mimn},
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Figure 1: Catalan number binary tree example (n = 4)

Operations Cost
(A1)(A2 · · ·An) C(1, 1) + C(2, n) +m0m1mn

(A1A2)(A3 · · ·An) C(1, 2) + C(3, n) +m0m2mn

(A1A2A3)(A4 · · ·An) C(1, 3) + C(4, n) +m0m2mn

...
...

(A1A2 · · ·Ai)(Ai+1 · · ·An) C(1, i) + C(i+ 1, n) +m0m2mn

...
...

(A1A2 · · ·An−1)An C(1, n− 1) + C(n, n) +m0m2mn

C(i, j) = min
i≤k<j

{C(i, k) + C(k + 1, j) +mi−1mkmj},

C(i, i) = 0,∀1 ≤ i ≤ n.

Algorithm 14: Dynamic Programming for Multiplying Matrices Chain
Function MMC(A1A2 . . . An):

Input:
Output:
for i = 1 to m do

C(i, i) = 0;
end
for s = 1 to n− 1 do

for i = 1 to n− s do
j = i+ s;
C(i, j) = mini≤k<j{C(i, k) + C(k + 1, j) +mi−1mkmj};

end
end
return C(1, n);

end

Computes two-dimensional table. Backtrack: to get optimal parenthesization, splitting on the index that
attained the minimum.
The running time would be

n−1∑
s=1

n−s∑
i=1

i+s∑
k=i

1 =

n−1∑
s=1

n−s∑
i=1

(s+ 1)

=

n−1∑
s=1

(n− s)(s+ 1)
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=
n−1∑
s=1

(ns− s2 + n− s)

= n

(
n

2

)
− (n− 1)n(2n− 1)

6
+ n(n− 1)−

(
n− 1

2

)
=

n3 − n2)

2
− 2n3 − 3n2 − n+ 1

6
+ n2 − n− n2 − n

2

= O(n3).

2.7.6 Approximation Algorithm for Kanpsack

FPTAS - fully polynomial-time approximation scheme, n is the number of items. Let OPT be the value of
the optimal solution. The approximation algorithm will produce a solution with value ≥ (1 − ε)OPT , for
any ε > 0, in time polynomial in n and 1/2. The running time for this algorithm is O(n2 · 1/ε).
Note: PTAS, e.g., O(n1/ε) polynomial for each fixed ε.
Let V = maxi vi. Define for all v ≤ nV and i ≤ n, A(v, i) be the mininmal weight of a subset of 1, . . . , i
with total value exactly equal to v; ∞ if does not exist.{

A(v, i) = min{A(v − vi, i− 1), A(v, i− 1)}, if v ≤ vi,

A(v, i− 1), otherwise.

That leads to the dynamic programming algorithm: O(n2V ), where nV · n entries of A to compute. Note
that V may be exponentially large in n (values/weights encoded in binary). If the values are small (bounded
by polynomial in n, e.g., vi ≤ n3, for all i, =⇒ O(n5) time), this algorithm runs polynomial time. We will
scale (round) the values to be small (divide by some “large” number) for our approximation algorithm.

Algorithm 15: FPTAS for knapsack
Function ():

Input: Knapsack instance, approximation parameter ε > 0. items 1, . . . , n, values v1, . . . , vn,
weights w1, . . . , wn, capacity W

Output:
V = maxi vi;
D = εV

n ;
For each object i, define v

′

i = ⌊ viD ⌋;
Run the dynamic programming algorithm using the v

′

i values to obtain a solution
S′ ⊂ {1, . . . , n}. Output S′.

end

The running timeis V ′ = maxiv
′
i and

V ′ = ⌊V /D⌋ =
⌊
V · n

εV

⌋
=
⌊n
ε

⌋
= O(

n

ε
).

Let OPT be the value of optimal solution for original instance. We have the following lemma.

Lemma 2.1. ∑
i∈S′

vi ≥ (1− ε) ·OPT.

We interpret the left-hand side as solution to original instance (original values).

Proof. Let O ⊂ {1, . . . , n} be an optimal solution.∑
i∈O

vi = OPT.
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For each object i, vi ≥ D · v′i ≥ vi −D. Therefore∑
i∈O

vi ≥ D ·
∑
i∈O

v′i

≥
∑
i∈O

(vi −D)

=
∑
i∈O

vi −D|O| (|O ≤ n)

≥ OPT −Dn (Dn =
εV

n
· n = ϵV )

= OPT − εV (V ≤ OPT, assuming all items fit in knapsack)
≥ OPT − εOPT.

= OPT (1− ε).

The solution S′ from the dynamic programming algorithm satisfies∑
i∈S′

v′i ≥
∑
i∈O

v′i,

because S′ is optimal for the rounded values. Then we have∑
i∈S′

vi ≥ D
∑
i∈S′

v′i ≥ D
∑
i∈O

v′i ≥ OPT (1− ε).

Therefore S′ has value ≥ (1− ε)OPT . Completed in time O(n3 1
ε ), thus the algorithm is an FPTAS.

Knapsack is NP-complete - all known poly-time algorithms for exact solutions have worst-case exponential
run time.

2.7.7 All Pairs Shortest Paths

• Undirected graph with vertices {1, 2, . . . , n}, l(i, j) is the length (or cost) from i to j [l(i, j) =∞ if no
edge].

• Goal: compute shortest paths for all pairs of vertices i and j.
• Define dist(i, j, k) to be the length of shortest path from i to j using only vertices from 1, 2, . . . , k as

intermediate nodes, where 1 ≤ i, j, k ≤ n.
• The idea is to compute dist(i, j, 0), . . . , dist(i, j, n). Initially, dist(i, j, 0) = l(i, j). Relate dist(i, j, k) to

smaller problems.
• i−−k : dist(i, k, k − 1).
• i−−j : dist(i, j, k − 1).
• k −−j : dist(k, j, k − 1).
• Two possibilities for dist(i, j, k).

– dist(i, j, k − 1): don’t use vertex k.
– dist(i, k, k − 1) + dist(k, j, k − 1): use vertex k as an intermediate node.

• Compute dist(i, j, k) = min{dist(i, j, k − 1),dist(i, k, k − 1),dist(k, j, k − 1)}.

2.7.8 Traveling Salesman Problem (TSP)

• Instance: n cities numbered 1, . . . , n, for each pair i, j of cities, dij is the distance (cost of traveling)
from i to j. (not necessarily symmetric dij ̸= dji is possible) [Complte weighted directed graph]
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Algorithm 16: Floyd-Warshall Algorithm
Function ():

Input:
Output:
for i = 1 to n do

for j = 1 to n do
dist(i, j, 0) = l(i, j);

end
end
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

dist(i, j, k) = min{dist(i, j, k − 1),dist(i, k, k − 1),dist(k, j, k − 1)};
end

end
end

end

• Goal: find an optimal tour of the n cities: start at 1, visit each city exactly once, and return to 1 with
minimum total distance. Let [n] = {1, . . . , n}, find a permutation π : [n]→ [n] such that

c(π) =

[
n−1∑
i=1

dπ(i),π(i+1)

]
+ dπ(n),π(1)

is minimized.
• There are (n − 1)! permutations to consider: 1, π(2), π(3), . . . , π(n). Brute force search (consider all

permutations) is O(n!) = O(2n log n) time.
• Subproblems: Let S ⊂ [n] with 1 ∈ S and j ∈ S, find the path from 1 to j that visits all cities in S

with minimum total cost. For S ⊂ [n] with 1, j ∈ S, define C(S, j) to be the length of shortest path
from 1 to j that visits each city in S exactly once.

min
j

C([n], j) + dj1 = cost of optimal tour.

• Base case: C({1}, 1) = 0. C(S, 1) =∞ if |S| > 1.
• How to compute C(S, j), suppose the second to last city on the optimal path through S from 1 to j is

i. Then
C(S, j) = min

i∈S:i ̸=j
C(S − {j}, i) + dij .

Run time: ≤ 2n subsets of [n], ≤ n subproblems C(S, j) for each subset S. O(n) time for each subproblem
=⇒ O(2nn2) = O(2n+2 log n). To be more exact,

n∑
s=2

(
n− 1

s− 1

)
(s− 1)2 =

n−1∑
s=1

(
n− 1

s

)
s2 ≤ n2

n−1∑
s=1

(
n− 1

s

)
= n2(2n−1 − 1) = O(2nn2).

All known exact algorithms for TSP require exponential time. Can get fast approximate solutions in some
special cases. TSP with triangle inequality

dij ≤ dik + dkj ,∀i, j, k.

Polynomial-time 2-approximation algorithm (at most twice optimal cost), based on minimum spanning tree
algorithms. With little more work, which uses minimum cost perfect matching, can be improved to 3/2-
approximation.

• Euclidean TSP: distances are Euclidean distances cities are points in the plane (or Rn). There is a
PTAS. For each fixed ε, get a (1 + ε)-approximation solutions in time polynomial in n.
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Algorithm 17: Dynamic Programming for TSP
Function TSP():

Input:
Output:
C({1}, 1)← 0;
for s = 2 to n do

for all S ⊂ [n] with |S| = s and 1 ∈ S do
C(S, 1) =∞;
for all j ∈ S, j ̸= 1 do

C(S, j) = mini∈S,i̸=j{C(S − {j}) + dij};
end

end
end
return minj ̸=1{C([n], j) + dj1};

end

2.8 Greedy Algorithms
Make locally optimal decisions, (e.g., continually extending a partial solution one step at a time with the
decision that looks best at the moment, the greedy choice). Prove this leads to a globally optimal solution.
Of course, only works for some problems and some greedy strategies.

2.8.1 Minimum Spanning Tree (MST)

Given a weighted, connected, undirected graph, compute a spanning tree (a tree that includes all the vertices)
of minimum total weight.
More formally:

• Instance: undirected graph G = (V,E), where E ⊂ V × V , edge weights we for each e ∈ E.
• Goal: compute a tree T = (V,E′) with E′ ⊂ E that minimizes weight(T ) =

∑
e∈E′ we.

Example 2.11.

• Properties of Trees
– A tree is a connected, acyclic graph.
– A tree on n vertices has n− 1 edges.
– A connected, undirected graph G = (V,E) with |E| = |V | − 1 edges is a tree.
– An undirected graph is a tree if and only if there is a unique path between each pair of vertices.

• Greedy Strategy (Krsukal’s Algorithm)
– Start with empty graph.
– Repeatedly add the next lightest edge that does not induce a cycle.
– We need to show correctness (this always yields a MST)
– How to implement efficiently
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Example 2.12.

• Cut Property: Suppose edges X are part of a minimum spanning tree of G = (V,E). Pick any subset
S ⊂ V for which X does not cross from S to V − S. Let e be the lightest edge across the S, V − S
partition. Then X ∪ {e} is part of MST.

Proof. X is part of some MST T . If is part of T , there is nothing to prove. Suppose e is not part of T . We will
construct a new MST T ′ that contains X ∪ {e} by modifying T . Add e to T , which creates a cycle, so there
must be some other edge e′ corssing the cut. Let T ′ = T − {e′} ∪ {e}. T ′ is also a tree - connected, acyclic,
same numbers of edges, vertecies. weight(T ′) = weight(T )− we′ + we and we ≤ we′ (because e is a lightest
edge across the cut). That implies weight(T ′) ≤ weight(T ). Since T is a MST, weight(T ) ≤ weight(T ′), so
weight(T ) = weight(T ′) and T ′ is also a MST. T ′ contains X ∪ {e}.

Example 2.13.

Algorithm 18: Kruskal’s algorithm
Function MST(E):

Input:
Output:

1 Repeatedly add the next lightest edge that does not induce a cycle;
end

• e is lightest edge that does not make a cycle
• each edge across cut does not make cycle
• =⇒ e is lightest edge across cut.
• =⇒ e is safe to add by the cut property.

2.8.2 Disjoint Sets Data Structure (also called Union-Find Data Structure)

• For efficient implementation of Kruskal’s algorithm.

– Kruskal’s algorithm maintain a forest that is a subgraph of a MST.
– Initially, each vertex is in its own tree.
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– In each step, two trees in the forest are merged.
– We will store the trees as sets in this data structure.

• Operations: for elements x and y of the universe, e.g. vertices, under consideration
– makeset(x): create a singleton set containing x.
– find(x): to which set does x belong?
– union(x, y): merge the sets containing x and y.

• Implementation - use trees

Algorithm 19: makeset with run time O(1)

Function makeset(x):
Input: π is the parent points, unless root node then points to itself, rank is the height of

subtree rooted at x
Output:

1 π(x)← x;
2 rank(x)← 0;

end

Algorithm 20: find with run time O(logn) which is proportional to depth of x in its tree depth
which is less than or equal to logn

Function find(x):
Input:
Output: returns root of x’s tree

1 while x ̸= π(x) do
2 x← π(x);
3 end
4 return x;

end

Example 2.14. Given elements A,B,C,D,E, F,G.

1. makeset(A),makeset(B), . . . ,makeset(G):

A0 B0 C0 D0 E0 F 0 G0.

2. union(A,D),union(B,E),union(C,F )

A0 → D1 B0 → E1 C0 → F 0 G0.

3. union(C,G),union(E,A)
C0 → F 1 ← G0 B0 → E1 → D2 ← A1.

4. union(B,G).

Proposition 2.6.

Property 1. For any x, rank(x) < π(x). (ranks along a path to a root are strictly increasing)

Property 2. A root node of rank k has at least 2k nodes in its tree.

Proof. A root node of rank k is formed by joining two trees of rank k− 1. Statement follows by
induction:
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Algorithm 21: union with run time O(logn)
Function union(x):

Input:
Output:

1 rx ← find(x);
2 ry ← find(y);
3 if rx = ry then // x and y are already in the same set
4 return
5 end
6 if rank(rx) > rank(ry) then
7 π(ry) = rx;
8 else
9 π(rx) = ry;

10 if rank(rx) = rank(ry) then
11 rank(ry)← rank(ry) + 1;
12 end
13 end
14 return;

end

• k = 0 =⇒ 1 node (makeset)
• if statement is true for k−1, then it is also true for k two trees of rank k−1 have greater than

2k−1 nodes each. That implies resulting tree of rank k has greater than 2k−1 +2k−1i = 2k

nodes.

Property 3. If there are n elements overall, there are at most n/2k elements of rank k.

Proof. Let R be the number of elementsof rank k. Then there are more than R · 2k nodes in
these R trees. Because there are n nodes overall,

R2k ≤ n =⇒ R ≤ n

2k
.

Corollary 2.2. The maximum rank is less than logn.

Kruskal’s algorithm maintains a collection of connected components (trees). Initially, each vertex is in its
own components. Repeatedly joins components by adding the next lightest edge.

• Run time:

– |V | makeset operations (intialization)
– 2|E| find operations: O(log |V |) (look up endpoints of each edge)
– |V | − 1 union operations: O(log |V |) (merging trees)
– sort E: O(|E| log |E|) = O(|E| log |V |).

2.8.3 Some optimization for the data structure

The path compressed find(x) has “typical” run time O(1). Formally, the amortized run time is O(log∗ n),
where log∗ n = min{i| log(i) n ≤ 1} = number of times the logarithm needs to be taken to get down to 1.
That means any sequence of n operations takes at most O(n log∗ n) time.
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Algorithm 22: Kruskal’s algorithm
Function ():

Input: Connected, weighted graph G = (V,E) with edge weights we

Output: MST defined by edges X
1 for v ∈ V do
2 makeset(v);
3 end
4 X ← ∅;
5 Sort the edges E by weight;
6 for {u, v} ∈ E in increasing order of weight do
7 if find(u) ̸= find(v) then
8 add edge (u, v) to X;
9 union(u, v);

10 end
11 end
12 return X;

end

Algorithm 23: find (based on path compression)
Function find(x):

Input:
Output:

1 if x ̸= π(x) then
2 π(x) = find(π(x));
3 end
4 return π(x);

end
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Example 2.15. 1. log∗ 2 = 1.

2. log∗ 4 = 2.

3. log∗ 16 = 3.

4. log∗ 216 = 4.

5. log∗ 2216 = 5.

2.8.4 Amortized Analysis Example

• Binary counter on n bits.

– increment operation
∗ bits cost
∗ 00000: 0
∗ 00001: 1
∗ 00010: 2
∗ 00011: 1
∗ 00100: 3
∗ 00101: 1
∗ 00110: 2
∗ 00111: 1
∗ 01000: 4
∗ :
∗ 11111: 1
∗ 00000: 5

– worst case: flip n bits
– most of the time doing less

∗ 1/2 of time (2n−1): 1 flip
∗ 1/4 of time (2n−2): 2 flips
∗ 1/8 of time (2n−3): 3 flips
∗ :
∗ 1/2k of time (2n−k): k flips
∗ :
∗ 1/2n of time (1): n flips

– The total cost over 2n increments:

2n−1 · 1 + 2n−2 · 2 + · · ·+ 2n−k · k + · · ·+ 1 · n =

n∑
k=1

2n−kk ≤ 2 · 2n.

2.8.5 Amortized analysis (accounting method)

• n elements

– All ranks are between 0 and logn (we prove max rank is less than logn)

• Divide positive ranks into intervals:

{1}, {2}, {3, 4}, {5, 6, . . . , 16}, {17, . . . , 216 = 65536}, . . . , up to logn.

– intevarls are of form {k + 1, . . . , 2k} up to 2k = logn (assume n is a power of 2 for simplicity)
– number of intervals is log∗ n.

• Start with n log∗ n dollars.

– Each operation must be paid for with dollars.
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– Each node is given an allowance, when it ceases to be a root node.
– If the rank is in the interval {k + 1, . . . , 2k}, the node receives 2k dollars.
– The number of nodes with rank greater than k is less than

n

2k+1
+

n

2k+2
+

n

2k+3
+ · · · = n

(
1

2k+1
+

1

2k+2
+

1

2k+3
+ · · ·

)
= n · 1

2k
=

n

2k
.

That implies for the interval {k + 1, . . . , 2k}, we pay out at most n
2k
2k = n dollars. There are

log∗ n intervals, so we pay out at most n log∗ n dollars.

• Look at a find operation find(x):

– For each node y along the path either:
1. rank(y) and rank(π(y)) are in the same interval.
2. rank(y) and rank(π(y)) are in different intervals. (rank(π(y)) is in a higher interval).
∗ There are at most log∗ n nodes of type 2.
∗ Each node of type 1 we’ll pay a dollar for the computation step. Need that each node has
enough money to make these payments. Each time a node makes a payment, it gets a new
parent with higher rank than the old parent. If y’s rank is in the interval {k + 1, . . . , 2k}, it
has to pay at most 2k dollars before its parent has rank in a higher interval.

∗ For each find call, step of type 2 happends at most log∗ n times. It is less than n log∗ n.
∗ Across all find calls, type 1 happens at most n log∗ n times because we allocated n log∗ n
dollars and the nodes are able to pay a dollar for each type 1 step. It is less than n log∗ n.

2.8.6 Prim’s Algorithm

Recall that Kruskal’s algorithm a forest that is a subset of a MST, while Prim’s algorithm grows a tree that
is a subset of a MST. Repeatedly add lightest edge going out of the tree.

• Implemented using a priority queue.

Algorithm 24: Prim’s Algorithm
Function primMST(V,E):

Input: connected, undirected graph G = (V,E) with edge weights we

Output: a MST defined by array prev
1 for all u ∈ V do
2 cost(u) =∞;
3 prev(u) = nil;
4 end
5 Choose an initial node u0;
6 cost(u) = 0;
7 H = makequeue(V ) ; // using cost values as keys, O(|v|)
8 while H is not empty do // O(|v| log |v|)
9 v = delete(H) ; // extracts the vertex in H with lowest cost, O(log |v|)

10 for each {v, z} ∈ E do
11 if cost(z) > w(v, z) + cost(v) then
12 cost(z) = w(v, z) + cost(v) ; // H is updated with the new cost for z
13 prev(z) = v;
14 end
15 end
16 end
17 return prev;

end
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2.8.7 Boruvka’s Algorithm for MST

• Brauvka phase
– For each vertex v, mark the lightest edge touching v.
– Determine the connected components formed by the marked edges.
– Contract each component to a single vertex, keeping only lightest edges between components.

Let G′ be the graph obtained after the Boruvka phase.
Proposition 2.7. If G has n vertices, then G′ has at most n/2 vertices.
Proposition 2.8. The marked edges are part of an MST (follows from cut property).

Can be make faster by adding randomization.
Definition 2.1. Let F be a forest in graph G and let u, v be two vertices.
1. If u, v are in the same tree of F , there is a unique path P (u, v) from u to v in F . Let wF (u, v) be the

max weight of an edge on P (u, v). (If u, v are on the same tree, wF (u, v) =∞.)

2. We say that (u, v) is F -heavy if w(u, v) > wF (u, v).

3. We say that (u, v) is F -light if w(u, v) ≤ wF (u, v).
Lemma 2.2. Let F be any forest in G. If (u, v) is F -heavy, then (u, v) is not in any MST for G.
Theorem 2.3. Given a graph G and a forest F , all F -heavy edges can be identified in O(n + m) time.
(MST verification algorithm)
Lemma 2.3. Let G be a graph and p ∈ (0, 1) be probability. Obtain a subgraph G′ of G by keeping each
edge with probability p. Let F be a minimum spanning forest in G′ Then the expected number of F -light
edges in G is at most n/p.

2.8.8 Randomized-MST(G)

Algorithm 26: Randomized-MST
Function Randomized-MST(G):

Input: G = (V,E) and |V | = n, |E| = m
Output:

1 Use three Boruvka phases to compute a graph G1, with at most n/8 edges. Let C be the set of
edges marked during the three phases. If G1 has only one vertex, return C;

2 Randomly select a subgraph G2 of G1 by including each edge with probility 1/2;
3 Call Randomized-MST(G2) to obtain a minimum spanning forest F2 for G2;
4 Identify the F2-heavy edges in G1, and delete them to obtain a new graph G3;
5 Call Randomized-MST(G3) to obtain a minimum spanning forest F3 for G3;
6 return the forest F = C ∪ F3;

end

Proposition 2.9. Expect run time is O(n+m).
• G: n vertices, m edges,

• G1: ≤ n/8 vertices, ≤ m edges, O(n+m)

• G2: ≤ n/8 vertices, ≈ m/2 edges, T (n/8,m/2)

• Identifying F2-heavy edges in G1, O(n+m)

• G3: ≤ n/8 vertices, ≈ m/4 edges, T (n/8, n/4).
Proposition 2.10.

T (n,m) ≤ T (m/8, n/2) + T (n/8, n/4) + c(n+m) ≤ 2c(n+m).
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2.9 Computational Complexity
• P vs. NP problem is the biggest open problem in theoretical computer science.
• NP-complete: presumably intractable problems (suspected to require exponential time).
• P (determistic polynomial-time): problems for which solutions can be found by a polynomial-time

algorithm.
• NP (nondetermistic polynomial-time): problems for which solutoins can be verified (to be correct or

not) by a polynomial-time algorithm.
• Polynomial-time algorithm: O(nc) time for some constant c.
• NP-complete: “hardest” problems in NP. If some NP-complete problem can be solved in polynomial

time, then all NP problems can be solved in polynomial time.

Example 2.16. Composites problem:

• Instance: a number n.

• Question: is n a composite number? (if so, produce two factors)

• Solution: a pair of numbers k, l > 1 such that n = k · l.

• Verification algorithm: input: number n, candidate solution (k, l): multiply k · l, and check if the
answer equals n:

– if it does, output yes.
– if it doesn’t, output no.

• Suppose n has 1000 bits, finding two 500-bit factors would take O(2500) time. But given two 500-bit
numbers, can multiply together efficiently and check. Finding the factors is the hard part.

P NP
Shortest path longest simple path

2-SAT 3-SAT
Eulerian cycle Hamiltonian cycle

Example 2.17. • Eulerian cycle: find a cycle that use each edge once.

• Hamiltonian cycle: find a cycle that visits each vertex once.

• 3-SAT - Canonical NP-complete problem.

– instance: 3CNF formula (CNF: conjunctive normal form)
– Example: ϕ = (x1 ∨ x2 ∨ x4)︸ ︷︷ ︸

clause consists of 3 literals

∧(x5∨x1∨x2)∧ (x4∨x5∨x3), where x1, . . . , xn are Boolean

variables, literal: variable xi or negation xi

– Question: is ϕ satisfiable? That is to say, is there a way to assign T/F values to x1, . . . , xn so the
formula evaluates to true?

• 2-SAT - P:

– instance: 2 CNF formula ϕ.
– Example: clauses of size 2 instead of size 3: ϕ = (x1 ∨ x3) ∧ (x2 ∨ x5) ∧ (x4 ∨ x3).
– Solvable in polynomial-time: reduce (convert) into a graph problem then do some graph reacha-

bility test.

NP-problems:

ljin1@uwyo.edu
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• 3-SAT
• CLIQUE: Given a graph G and k ≥ 1, is there a fully connected subset of vertices of size k?
• TSP
• VERTEX-COVER: Given a graph G and k ≥ 1, is there a set of vertices of size k that touch every

edge?
• HAM-CYCLE
• SUBSET-SUM: Given a list of numbers L = (a1, a2, . . . , an) and a target number t, is there a sublist

of L that sums to t?
• KNAPSACK

Definition 2.2. A problem is NP-complete if every problem in NP is reducible to it in polynomial time.

Definition 2.3. A is polynomial-time reducible to B if there is a polynomial-time computable function f
such that for all instances I of A,

I ∈ A =⇒ f(I) ∈ B,

I /∈ A =⇒ f(I) /∈ B,

where I ∈ A means I is a positive instance of A (yes answer), and I /∈ A means I is a negative instance of
A (no answer).

Proposition 2.11. If A is polynomai-time reducible to B, and B ∈ P , then A ∈ P .

Proof. Given instance I of A, compute f(I) and use the algorithm for B to solve f(I). Output this answer
as the answer for I.

Proposition 2.11 implies easiness translates downward over reductions.

Proposition 2.12. If A is polyonmial-time reducible to B, and A /∈ P , then B /∈ P .

Proof. Counterpositive of Proposition 2.11.

Proposition 2.12 implies hardness translates upward over reductions.

Proposition 2.13. If A reduces to C and C reduces to B, then A reduces to B.

Proof. Compose the two reduction.

Theorem 2.4. 3-SAT polynomial-time reduces to CLIQUE.

Proof. Let ϕ be a 3CNF formula with m classes c1, . . . , cn and n variables x1, . . . , xn. We will construct an
m-partite graph with m triples of 3 vertices. For each class clause, there is a triple of vertices labeled by the
classes’s literals. Connect two vertices if and only if:

• they are in different triples.

• they have compatible labels (don’t connect xi to xi).

Example 2.18. Let ϕ = (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
c1

∧ (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
c2

∧ (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
c3

.

Proposition 2.14. ϕ is satisfiable if and only if G has a clique of size m.
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2.9.1 Subset-Sum Problem

Given a collection of numbers x1, . . . , xk and a target number t, is there a subcollection that sumes to t?
More precisely, is there a subset I ⊂ {1, . . . , k} such that

∑
i∈I xi = t?

Theorem 2.5. Subset-Sum is NP-complete.

Proof. We will show 3-SAT polynomial-time reduces to Subset-Sum. Given a formula ϕ with variables
x1, . . . , xl, and clauses c1, . . . , ck, we define numbers y1, . . . , yl, z1, . . . , zl, g1, . . . , gk, h1, . . . , hk (2l+ 2k num-
bers) as follows. Each number has k + l digits.

Proposition 2.15. ϕ is satisfiable if and only if and list has a sublist that sublist that sums to t.

Example 2.19. ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3), l = 3 = k, we have 12 numbers with 6
digits.

2.10 Set Cover
Given a universe U of n elements, a collection S = {S1, . . . , Sk} of subsets of U , and a cost function
c : S → Q+, find a minimum cost subcollection of S that covers U . In other words, find I ⊂ {1, . . . , k} such
that U ⊂

∪
i∈I Si and

∑
i∈I c(Si) is minimized. Note: Set Cover is NP-complete.

2.10.1 Greedy Approximation Algorithm

• Idea: iteratives pick the most cost-effective set and remove the covered elsements, until all elements
are covered. Let C be the set of elements already covered at the beginning of an iteration. The
cost-effectiveness of a set S is the average cost at which it covers new elments:

c(S)

|S − C|
.

Algorithm 27:
Function ():

Input:
Output:

1 C = ∅;
2 while C ̸= U do
3 Find a set S whose cost-effectiveness is smallest (S minimizes c(S)

|S−C| );
4 Let α = c(S)

|S−C| ;
5 Add S to the collection and for each e ∈ S − C, set price(e) = α;
6 C = C ∪ S;
7 end
8 Output the collection of selected sets;

end
Number the elements of U as e1, e2, . . . , en in the order they are covered by the algorithm, resolving ties
arbitrarily.

Lemma 2.4. For each k ∈ {1, . . . , n},

price(ek) ≤
OPT

n− k + 1
,

where OPT is the cost of an optimal solution.
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Proof. In any iteration, the remaining elements can be covered at a cost of at most OPT (use the sets in the
optimal solution that we haven’t selected). Therefore, there must be a set with cost-effectiveness at most
OPT/|C| (averaging argument). In the iteration where ek is covered, |C| ≥ n− k + 1 elements. Since ek is
covered by the most cost-effective set in the iteration,

price(ek) ≤
OPT

|C|
≤ OPT

n− k + 1
.

Theorem 2.6. This is an Hn-approximation algorithm, where Hn = 1 + 1
2 + · · ·+ 1

n .

Proof. The total cost of the set cover is
n∑

k=1

price(ek) ≤
n∑

k=1

OPT

n− k + 1
= OPT

n∑
k=1

1

n− k + 1
= OPT ·Hn.

Corollary 2.3. This is an O(logn) - approximation algorithm. Hn is tight for this algorithm, n elements
x1, x2, . . . xn, set S1, . . . , Sn, S, Si = {xi}, cost(xi) =

1
i , S = {x1, . . . , xn}, cost(S) = 1 + ε.

For Greedy Approximation Algorithm: it picks Sn, Sn−1, . . . , S2, S1, cost Hn, and the performance ratio is
Hn/(1 + ε).

2.11 Approximating TSP with Triangle Inequality
Let G be a complete graph on n vertices. For each pair u, v of vertices there is a cost(u, v). Triangle
inquality: for all u, v, w, we have

cost(u,w) ≤ cost(u, v) + cost(v, w).

Goal: find a minimum cost tour.
Algorithm 28: Approximating TSP with Triangle Inequality

Function ():
Input:
Output:

1 Find an minimum spanning tree T of G;
2 Double every edge of T to obtain an Eulerian graph ; // every vertex has even degree
3 Find an Eulerian cycle T of this graph;
4 Let C be the tour that follows T visiting vertices in order of first appearance in T ; // taking

shortcuts to not repeat vertices
5 Output C;

end

Theorem 2.7. This is a 2-approximation algorithm.

Proof.

• cost(T ) ≤ OPT .

• cost(T ) = 2 cost(T ).

• cost(C) ≤ cost(T ).

Therefore, cost(C) ≤ cost(T ) = 2 cost(T ) ≤ 2 ·OPT .
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Algorithm 29:
Function ():

Input:
Output:

1 Find an minimum spanning tree T of G;
2 Compute a minimum-cost perfect matching M on the set of odd-degree vertices of T ;
3 Add M to T , obtaining an Eulerian graph;
4 Compute an Eulerian cycle T ;
5 Let C be the shortcut tour of T ;
6 Output C;

end

Theorem 2.8. This is a 2-approximation algorithm.

Proof.

• cost(T ) ≤ OPT .

• cost(M) ≤ OPT
2 .

• cost(T ) = cost(T ) + cost(M).

• cost(C) ≤ cost(T ).

Therefore, cost(C) ≤ cost(T ) = cost(T ) + cost(M) ≤ 3
2 ·OPT .

2.12 Computational Complexity
• p =⇒ q is logically equivalent to ¬p ∨ q.
• p =⇒ q is logically equivalent to ¬q =⇒ ¬p.

Proposition 2.16. ϕ is unsatifiable if and only if there is a variable x such that there is path from x to ¬x.

2.12.1 Savitch’s Algorithm

The graph recheability problem is

GR = {⟨G, u, v⟩ : G is a directed graph and there is a path from u to v in G} .

• Instance: Graph G, vertices u, v.
• Question: Is there a path from u to v.
• BFS, DFS: linear time, linear space.
• Savithc’s algorithm: sublinear space O(log2 n).
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