COSC 5110 - Analysis of Algorithms Lecture Note 1

Libao Jin (ljin1@uwyo.edu)

December 6, 2018

1 Introduction

Definition 1.1 (Algorithm). Algorithm is procedure for solving a problem that is precise, unambiguous, mechanical, and corret.

We are most interested in *efficient algorithms*.

1.1 What is efficient?

The two most basic computational resources are time and space:

- *time*: number of computation steps.
- *space*: amount of memory used during the computation.

Usually measured in terms of the *input size*. Formally, the size of an object is the number of bits needed to represent it as a binary string. Often we take a simpler approach and use some parameter of the input as the size.

- A graph on n vertices has size. Sometimes, we identify two parameters: a graph with n vertices and m edges.
- An array of size n.
- An $n \times n$ matrix has size nm.

Using bits

• An integer is represented in binary the number n has size $\approx \log n$.

2 Overview of Some Topics

- Preliminaries (Chapter 0)
- Divide-and-conquer
 - Sorting (# of comparisons)
 - * Merge Sort: $O(n \log n)$ time.
 - * Quick Sort: $O(n^2)$ worst-case time, $O(n \log n)$ average-case time.
 - * Randomized Quick Sort: $O(n\log n)$ expected time.
 - Finding the median (# of comparisons)
 - * O(n) randomized algorithm Quick Select
 - * O(n) deterministic algorithm Median-of-Medians
 - Matrix Multiplication (# of multiplications & additions)
 - * Multiply two $n \times n$ matrices
 - * Standard algorithm is $O(n^3)$ time (three nested for loops)
 - * Strassen's algorithm: $O(n^{\log_2 7}) \approx O(n^{2.81})$ time

* $O(n^{2.37})$ time is achievable (some researchers conjecture that $O(n^2)$ or $O(n^{2+\varepsilon})$ is achievable)

- Integer multiplication (multiply two *n*-bit numbers)
 - * Standard (grade school) algorithm is $O(n^2)$
 - * Karasuba's algorithms: $O(n^{\log_2 3}) \approx O(n^{1.6})$
 - * Strassen & Soloway: $O(n\log n\log\log n)$
- Fast Fourier Transform (many applications)
 - * Convolution of vectors
 - * Product of Polynomials
 - * Application multiplying integers: $O(n\log n)$ time
 - * Standard algorithm is $O(n^2)$
- Dynamical Programming (bottom-up vs. top-down: powerful variation of divide-and-conquer)
 - Longest common sequence (applications in computation biology)
 - Edit distance (applications in computation biology)
 - Knapsack
 - All-pairs shortest paths
 - Maximum flow problems
- Greedy Algorithms
 - Locally optimal choices lead to a globally optimal solution
 - Minimum spanning trees
 - * Kruskal's algorithm (Union-find data structure)
 - * Prim's algorithm
 - Huffman encoding
- Linear Programming (many applications)
 - Simplex algorithm
 - LP-duality
 - Applications to approximation algorithms
- Computational Intractability
 - Shortest paths (easy, polynomial time algorithm) vs. Longest paths (hard, NP-complete)
 - Eulerian cycle vs. Hamiltonian cycle
 - 2-SAT vs. 3-SAT
- NP-completeness
 - Traveling salesman problem
 - Knapsack
 - Clique vertex cover
 - Subset sum
- Other Hard Problems (conjectured to be hard but not NP-complete)
 - Factoring
 - Discrete logarithm
 - Graph isomorphism
- Coping with Intractability
 - Search techniques and heuristics (no provable guarantee but can work well in practice)
 - * Backtracking
 - * branch-and-bound
 - * local search
 - * simulated annealing

- Approximation algorithms with provable guarantees
 - * (3/2) 2-approximation algorithm for TSP with triangle inequality (minimal spanning tree algorithm)
 - * PTAS (Polynomial Time Approximation Solution) for Euclidean TSP (divide-and-conquer)
 - * 2-approximation algorithm for vertex cover (greedy algorithm)
 - * FPTAS for knapsack (dynamic programming)
- Cryptography
 - * Using computational intractability to our advantage
 - * Hardness of factoring -> RSA cryptosystem (public-key cryptography)
 - $\ast\,$ Discrete logarithm based cryptosystem
 - * Quantum algorithms for factoring and discrete logarithm

2.1 Asymptotic Notation

Let $f : \mathbb{Z}^+ \to \mathbb{R}^+$ and $g : \mathbb{Z}^+ \to \mathbb{R}^+$.

- 1. We say f(n) = O(g(n)) if $(\exists c)(\exists n_0)(\forall n \ge n_0)f(n) \le c \cdot g(n)$. Read "f(n) is big-oh of g(n)". f(n) = O(g(n)) means "f(n) grows no faster than g(n)".
- 2. We say $f(n) = \Omega(g(n))$ if g(n) = O(f(n)). Read "f(n) is omega of g(n)". $f(n) = \Omega(g(n))$ means "f(n) grows at least as fast as g(n)".
- 3. We say $f(n) = \Theta(g(n))$ if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$. Read "f(n) is theta of g(n)". $f(n) = \Theta(g(n))$ means "f(n) and g(n) have the same growth rate".
- 4. We say f(n) = o(g(n)) if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$. Read "f(n) is little-oh of g(n)", "f(n) is asymptotically smaller than g(n)".

Example 2.1.

- 1) 3n = O(n): f(n) = 3n, g(n) = n, c = 3, $n_0 = 1$.
- 2) 5n+8 = O(n): $c = 6, n_0 = 8$.
- 3) $3n^2 + 4n + 2 = O(n^2)$.
- 4) $100n^2 + 1000n + 50000 = O(n^2)$.
- 5) $n = O(n^2).$
- 6) $n^3 \neq O(n^2)$.
- 7) $n^2 = \Omega(n).$
- 8) $\frac{1}{2}n^3 n^2 + 6 = \Omega(n^3).$
- 9) $3n^2 = \Theta(n^2).$
- 10) $5n^3 + 8n^2 n = \Theta(n^3).$
- 11) $n = o(n^2)$, since $\lim_{n \to \infty} \frac{n}{n^2} = \lim_{n \to \infty} frac_{1n} = 0$.
- 12) $4n^2 + 5n + 3 = o(n^3)$, since $\lim_{n \to \infty} \frac{4n^2 + 5n + 3}{n^3} = \lim_{n \to \infty} \frac{4}{n} + \frac{5}{n^2} + \frac{3}{n^3} = 0$.

13) $2n = o(n \log n)$, since $\frac{2n}{n \log n} = \frac{2}{\log n} \to 0$ as $n \to \infty$.

Note: f(n) = o(g(n)) implies f(n) = O(g(n)). Analogies: Asymptotic notation captures how well algorithms scale.

- O(n) time algorithm: double the input size \implies roughly twice as much computation time.
- $O(n^2)$ time algorithm: double the input size \implies roughly four times as much computation time.
- $O(n^3)$ time algorithm: double the input size \implies roughly eight times as much computation time.
- $O(2^n)$ time algorithm: double the input size \implies exponential increase in computation time, i.e., $f(n) = 2^n$, $f(2n) = 2^{2n}$, $f(2n)/f(n) = 2^{2n-n} = 2^n$.

Notation	Analogy
0	\leq
Ω	\geq
Θ	=
0	<
ω	>

2.2 Multiplying Two Numbers

Example 2.2.

(1) $35 = 100011_2$

(2) $26 = 11010_2$

2.2.1 "Grade School" Algorithm

 $100011 \times 11010 = 1110001110$, $O(n^2)$ time for two *n*-bit numbers, where there would be n^2 bit operations. Note: Does not matter if we use another base. As for number N, we have

> $N \rightarrow \approx \log_2 N$ bits, binary $N \rightarrow \approx \log_{10} N$ digits, decimal

Hence we have

$$\log_2 x = (\log_2 10) \log_{10} x,$$

$$\log_{10} x = (\log_{10} 2) \log_2 x,$$

$$\log_2 x = \Theta(\log_{10} x).$$

2.2.2 Recursive Approach

Can we do better than $O(n^2)$?

Idea: use recursion. Recursively multiply two *n*-bit numbers x and y. Split each number into two numbers with n/2 bits.

$$x = x_L x_R = 2^{n/2} x_L + x_R,$$

$$y = y_L y_R = 2^{n/2} y_L + y_R,$$

where x, y are n-bit binary numbers, and x_L, x_R, y_L, y_R are n/2 bit numbers.

$$x \cdot y = \left(2^{n/2}x_L + x_R\right) \left(2^{n/2}y_L + y_R\right)$$

= $2^n x_L y_L + 2^{n/2} x_L y_R + 2^{n/2} x_R y_L + x_R y_R$
= $2^n x_L y_L + 2^{n/2} (x_L y_R + x_R y_L) + x_R y_R.$

Algorithm 1: Standard recursive algorithm for multiplying two *n*-bits numbers

Function multiply(x, y):

Input: x and y are two *n*-bit numbers (assume n is a power of 2) **Output:** The product of x and yif n == 1 then return $x \cdot y$; end $x_L = \text{leftmost } n/2 \text{ bits of } x;$ $x_R = \text{rightmost } n/2 \text{ bits of } x;$ $y_L = \text{leftmost } n/2 \text{ bits of } y;$ $y_R = \text{rightmost } n/2 \text{ bits of } y;$ $p_1 = \text{multiply}(x_L, y_L);$ $p_2 = \text{multiply}(x_L, y_R);$ $p_3 = \text{multiply}(x_R, y_L);$ $p_4 = \text{multiply}(x_R, y_R);$ $p = 2^n p_1 + 2^{n/2} (p_2 + p_3) + p_4;$ return p; end

Let T(n) = overall runtime on inputs of size n, then

$$T(n) = T(n/2) + T(n/2) + T(n/2) + T(n/2) + O(n) = 4T(n/2) + O(n)$$

$$\vdots$$

$$T(1) = O(1).$$

where the runtimes for p_1, p_2, p_3, p_4 are T(n/2), O(1) is constant time.

Proposition 2.1.

$$T(n) = O(n^2).$$

2.2.3 Backward Substitution

$$T(n) = 4T(n/2) + cn$$

= 4[4T(n/4) + cn/2] + cn
= 16T(n/4) + 2cn + cn
= 16[4T(n/8) + cn/4] + 2cn + cn
= 64T(n/8) + 4cn + 2cn + cn
= 256T(n/8) + 8cn + 4cn + 2cn + cn
:
:

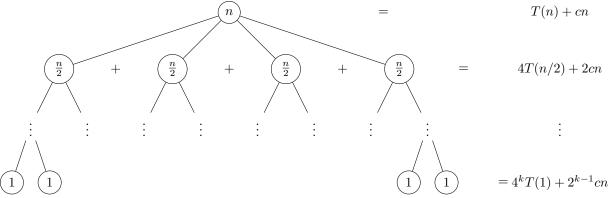
$$= 4^{k}T(n/2^{k}) + cn\sum_{i=0}^{k} 2^{i}$$
$$= 4^{k}T(n/2^{k}) + cn(2^{k}-1).$$

Choose k such that $n/2^k = 1, 2^k = n, k = \log_2 n$. Suppose $n = 2^k, k = \log_2 n$ then

$$T(n) = 4^{k}T(n/2^{k}) + (2^{k} - 1)cn$$

= $4^{\log_{2} n}T(1) + (n - 1)cn$
= $n^{2}O(1) + O(n^{2})$
= $O(n^{2}).$

On inputs of size n, the recursion tree has $\log_2 n$ levels. Branching factor is 4.



2.2.4 Better Approach: Karatsuba's Algorithm

Recall that $x \cdot y = 2^n (x_L y_L) + 2^{n/2} (x_L y_R + x_R y_L) + x_R y_R$. Idea: $x_L y_R + x_R y_L = (x_L + x_R) (y_L + y_R) - x_L y_L - x_R y_R$. Compute

$$p_1 = x_L y_L,$$

$$p_2 = x_R y_R,$$

$$p_3 = (x_L + x_R)(y_L + y_R).$$

Then $(x_L y_R + x_R y_L) = p_3 - p_1 - p_2$, therefore, $x \cdot y = 2^n p_1 + 2^{n/2} (p_3 - p_1 - p_2) + p_2$.

Algorithm 2: Karatsuba's algorithm for multiplying two *n*-bits numbers

Function multiply(x, y):

Input: x and y are two n-bit numbers (assume n is a power of 2) Output: The product of x and y if n == 1 then \mid return $x \cdot y$; end $x_L = \text{leftmost } n/2 \text{ bits of } x$; $x_R = \text{rightmost } n/2 \text{ bits of } x$; $y_L = \text{leftmost } n/2 \text{ bits of } y$; $y_R = \text{rightmost } n/2 \text{ bits of } y$; $p_1 = \text{multiply}(x_L, y_L)$; $p_2 = \text{multiply}(x_R, y_R)$; $p_3 = \text{multiply}(x_L + x_R, y_L + y_R)$; $p = 2^n p_1 + 2^{n/2} (p_3 - p_1 - p_2) + p_2$; return p; end

÷

Overall runtime: T(n) = 3T(n/2) + O(n).

T(n) = 3T(n/2) + cn= 3[3T(n/4) + cn/2] + cn = 9T(n/4) + 3/2cn + cn = 9[3T(n/8) + cn/4] + 3/2cn + cn = 27T(n/8) + 9/4cn + 3/2cn + cn = 81T(n/16) + 27/8cn + 9/4cn + 3/2cn + cn

$$= 3^{k}T(n/2^{k}) + cn \sum_{i=0}^{k-1} (3/2)^{i}$$

= $3^{k}T(n/2^{k}) + cn[2(3/2)^{k} - 2].$
= $3^{\log_{2} n}T(1) + O((3/2)^{\log_{2} n} \cdot n)$
= $n^{\log_{2} 3}O(1) + O(n^{\log_{2} 3})$
= $O(n^{\log_{2} 3}).$

2.2.5 Summary

- Standard algorithm (first recursive algorithm): $O(n^2)$.
- Karatsuba's algorithm (1961): $O(n^{\log_2 3}) \approx O(n^{1.58})$.
- Schöhage-Strassen using Fast Fourier Transform (1971): $O(n \cdot \log n \cdot \log \log n)$.
- Fürer (2007): $O(n \cdot \log n \cdot 2^{\log^* n})$, where \log^* is the number of recursively taking logarithm to get to 1.
- Open problem: Is there on $O(n \log n)$ time algorithm?

2.2.6 Master Theorem for Recurrence Relations

Suppose that

$$T(n) = \begin{cases} aT(n/b) + O(n^d), & n > 1\\ O(1), & n = 1 \end{cases}$$

where a > 0 (recursive calls), b > 1 (input size reduction factor), and d > 0 ($O(n^d)$ is local work) are constants. Then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a, \\ O(n^d \log n), & \text{if } d = \log_b a, \\ O(n^{\log_b a}), & \text{if } d < \log_b a. \end{cases}$$

Recursion tree has branching factor $a \implies$ the kth level of the recursion tree has a^k subproblems.

Subproblems are a factor b smaller at each level

1. \implies subproblems at level k have size n/b^k .

2. \implies depth of recursion tree is $\log_b n \ (n/b^k = 1 \implies b^k = n \implies k = \log_b n)$

Total work:

$$\sum_{k=0}^{\log_b n} \left(\frac{a}{b^d}\right)^k cn^d = cn^d \sum_{k=0}^{\log_b n} \left(\frac{a}{b^d}\right)^k$$

• Geometric series:

$$S = \sum_{k=0}^{l} \alpha^{k} = \begin{cases} \frac{\alpha^{l+1}-1}{\alpha-1}, & \text{if } \alpha \neq 1\\ l+1, & \text{if } \alpha = 1 \end{cases}$$

- * If \$\alpha > 1\$, this is \$\Theta(\alpha^l)\$.
- * If \$\alpha < 1\$, this is \$\Theta(1)\$.
- * If $\lambda = 1$, this is $\lambda = 1$,

Let $\alpha = \frac{a}{b^d}$. So

$$S = \begin{cases} \Theta(\left(\frac{a}{b^d}\right)^{\log_b n}), & \text{if } a > b^d, \\ \Theta(1), & \text{if } a < b^d, \\ \Theta(\log_b n) & \text{if } a = b^d. \end{cases}$$

Then it becomes

$$cn^{d} \sum_{k=0}^{\log_{b} n} \left(\frac{a}{b^{d}}\right)^{k} = \begin{cases} O(n^{d} \left(\frac{a}{b^{d}}\right)^{\log_{b} n}), & \text{if } a > b^{d}, \\ \Theta(n^{d}), & \text{if } a < b^{d}, \\ \Theta(n^{d} \log_{b} n) & \text{if } a = b^{d}. \end{cases} \begin{cases} O(n^{d} \left(n^{\log_{b} a}\right), & \text{if } d < \log_{b} a, (\text{work done at bottom dominates} : O(1)) \\ \Theta(n^{d} \log_{b} n) & \text{if } a = b^{d}. \end{cases} \begin{cases} O(n^{d} \left(n^{\log_{b} a}\right), & \text{if } d < \log_{b} a, (\text{work done at top dominates} : O(n^{d})) \\ \Theta(n^{d} \log_{b} n) & \text{if } a = b^{d}. \end{cases}$$

Example 2.3. 1. MergeSort: T(n) = 2T(n/2) + O(n): $T(n) = O(n \log n)$ since a = 2, b = 2, d = 1.

2.
$$T(n) = 4T(n/2) + O(n)$$
: $T(n) = O(n^2)$ since $a = 4, b = 2, d = 1$.

- 3. Karatsuba's algorithm: T(n) = 3T(n/2) + O(n): $T(n) = O(n^{\log_2 3})$ since a = 3, b = 2, d = 1.
- 4. T(n) = 2T(n/4) + O(n): T(n) = O(n) since a = 2, b = 4, d = 1.

2.2.7 Matrix Multiplication

Given two $n \times n$ matrices X and Y, compute the product $Z = X \cdot Y$.

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{bmatrix}, Y = \begin{bmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n1} & y_{n2} & \cdots & y_{nn} \end{bmatrix} Z = \begin{bmatrix} z_{11} & z_{12} & \cdots & z_{1n} \\ z_{21} & z_{22} & \cdots & z_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ z_{n1} & z_{n2} & \cdots & z_{nn} \end{bmatrix}.$$

• Standard Matrix Multiplication $(\Theta(n^3))$

$$z_{ij} = \sum_{k=1}^{n} x_{ik} \cdot y_{kj}.$$

for i = 1 to n for j = 1 to n $z_{ij} = 0$ for k = 1 to n $z_{ij} = z_{ij} + x_{ik} \setminus dot y_{kj}, 0(1)$

2.2.8 Divide-and-Conquer Approach

Divide each matrix into 4 matrices n/2-by-n/2.

$$X = \begin{bmatrix} A & B \\ C & D \end{bmatrix}, Y = \begin{bmatrix} E & F \\ G & H \end{bmatrix}, \implies X \cdot Y = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$$

Reduce multiplying a pair of $n \times n$ matrices to multiplying 8 pairs of $n/2 \times n/2$ matrices, which leads to the recursive algorithm: $T(n) = 8T(n/2) + O(n^2) \implies T(n) = O(n^3)$, since a = 8, b = 2, d = 2. (No improvement over standard algorithm)

RecursiveMultiply(X, Y) // \$n \times n\$ matrices if (\$u = 1\$) return \$X \cdot Y\$ Form A, B, C, D, E, F, G, H (O(n^2)) U_1 = RecusiveMultiply(A, E) + RecusiveMultiply(B, G) (T(n/2) + T(n/2) + O(n^2 / 4)) U_2 = RecusiveMultiply(A, F) + RecusiveMultiply(B, H) (T(n/2) + T(n/2) + O(n^2 / 4)) L_1 = RecusiveMultiply(C, E) + RecusiveMultiply(D, G) (T(n/2) + T(n/2) + O(n^2 / 4)) L_2 = RecusiveMultiply(C, F) + RecusiveMultiply(D, G) (T(n/2) + T(n/2) + O(n^2 / 4)) P = [U_1 & U_2 \\ L_1 & L_2] (O(n^2)) return P

$$T(n) = 8T(n/2) + O(n^2) = O(n^3), a = 8, b = 2, c = 2.$$

2.2.9 Strassen's Algorithm $T(n) = 7T(n/2) + O(n^2), a = 7, b = 2, c = 2..$ $X = \begin{bmatrix} A & B \\ C & D \end{bmatrix}, Y = \begin{bmatrix} E & F \\ G & H \end{bmatrix}$

as before. Compute

 $P_{1} = A(F - H)$ $P_{2} = (A + B)H$ $P_{3} = (C + D)E$ $P_{4} = D(G - E)$ $P_{5} = (A + D)(E + H)$ $P_{6} = (B - D)(G + H)$ $P_{7} = (A - C)(E + F)$

Then

$$XY = \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 - P_3 - P_7 \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$$

Strassen(X, Y) // \$n \times n\$ matrices if (\$u = 1\$) return \$X \cdot Y\$ Form A, B, C, D, E, F, G, H (0(n^2)) P_1 = Strassen(A, F - H) (T(n/2) + T(n/2) + 0(n^2 / 4)) P_2 = Strassen(A + B, F) (T(n/2) + T(n/2) + 0(n^2 / 4)) P_3 = Strassen(C + D, E) (T(n/2) + T(n/2) + 0(n^2 / 4)) P_4 = Strassen(D, G - E) (T(n/2) + T(n/2) + 0(n^2 / 4)) P_5 = Strassen(A + D, E + H) (T(n/2) + T(n/2) + 0(n^2 / 4)) P_6 = Strassen(B - D, G + H) (T(n/2) + T(n/2) + 0(n^2 / 4)) P_7 = Strassen(A - C, E + F) (T(n/2) + T(n/2) + 0(n^2 / 4)) P = [U_1 & U_2 \\ L_1 & L_2] (0(n^2)) return P

Algorithm 3: Karatsuba's algorithm for multiplying two *n*-bits numbers

Function Strassen(x, y): **Input:** X and Y are two $n \times n$ matrices (assume n is a power of 2) **Output:** The product of X and Yif n == 1 then return $X \cdot Y$; end $P_1 = \text{Strassen}(A, F - H)(T(n/2) + T(n/2) + O(n^2/4));$ $P_2 =$ Strassen $(A + B, F)(T(n/2) + T(n/2) + O(n^2/4));$ $P_3 =$ Strassen $(C + D, E)(T(n/2) + T(n/2) + O(n^2/4));$ $P_4 = \text{Strassen}(D, G - E)(T(n/2) + T(n/2) + O(n^2/4));$ $P_5 = \text{Strassen}(A + D, E + H)(T(n/2) + T(n/2) + O(n^2/4));$ $P_6 =$ Strassen $(B - D, G + H)(T(n/2) + T(n/2) + O(n^2/4));$ $P_7 = \text{Strassen}(A - C, E + F)(T(n/2) + T(n/2) + O(n^2/4));$ $P = \begin{bmatrix} U_1 & U_2 \\ L_1 & L_2 \end{bmatrix} (O(n^2));$ return P; end

- Summary
 - Strassen (1961): $O(n^{2.81...})$.
 - Cooper Smith and Winograd (1990): $O(n^{2.375477...})$.
 - Current best (2014): $O(^{2.3728})$.
 - $-O(n^{2+\varepsilon})$ for $\varepsilon > 0$ is conjectured by some researchers. Obvious $\Omega(n^2)$ is the lower bound. ω is the infimum of all w such that there is an $O(n^w)$ algorithm.
 - Conjecture: $\omega = 2$, known $2 \le \omega < 2.3728...$
- Why might we expect that $\omega = 2$? While it is unknown how to multiply matrices in $O(n^2)$ time, it is possible to check that the answer in $O(n^2)$ randomized time.

2.3 Verifying Matrix Multiplication

- Given: $n \times n$ matrices X, Y and Z.
- Question: XY = Z?
- Simpliest approach: multiply $X \cdot Y$ and check if it equals Z.
- $O(n^{\omega}) + O(n^2) = O(n^{\omega}).$

2.3.1 Better Approach for Verifying Matrix Multiplication

Choose a vector $\vec{r} \in \{0,1\}^n$ uniformly at random (*n* independent fair coin flips). * If $X \cdot Y = Z$, then for every \vec{r} ,

$$XY\vec{r} = Z\vec{r}.$$

Theorem 2.1. If $X \cdot Y \neq Z$, then

$$\Pr_{\vec{r} \in \{0,1\}^n} [XY\vec{r} = Z\vec{r}] \le \frac{1}{2} \implies \Pr_{\vec{r} \in \{0,1\}^n} [XY\vec{r} \neq Z\vec{r}] \ge \frac{1}{2}.$$

How does this help? $Z\vec{r}$ is $O(n^2)$ time, $(XY)\vec{r} = X(Y\vec{r})$

2.3.2 Randomized Algorithm for Verifying Matrix Multiplication

Choose $\vec{r} \in \{0,1\}^n$ uniformly at random. Compute

$$\vec{b} = Y \cdot \vec{r} \leftarrow O(n^2)\vec{a} = X \cdot \vec{b} \leftarrow O(n^2)\vec{c} = Z \cdot \vec{r} \leftarrow O(n^2)$$

If $\vec{a} == \vec{c}$, return true; If $\vec{a} \neq \vec{c}$, return false.

- Correctness of the algorithm.
 - If XY = Z, then $\Pr[\text{algorithm outputs true}] = 1$.
 - If $XY \neq Z$, then Pr[algorithm outputs true] $\leq 1/2$.
 - Equivalently, If $XY \neq Z$, then $\Pr[\text{algorithm outputs false}] \geq 1/2$.
 - No false negatives. Whenever the algorithm outputs false, that is the correct answer.
 - There are false positives. If the algorithm outputs true, this is possibly the wrong answer (should be false). $XY \neq Z$, but $XY\vec{r} = Z\vec{r}$ for the chosen vector \vec{r} . (Happens at most half of the time.)

2.3.3 Improving the success probability

- Run the algorithm k times, where $k \ge 2$, each run is independent, different random vector each time.
- If true is output every time, then output true.
- If false is ever output, then output false.
 - If XY = Z, output true every time, so algorithm outputs true...
 - If $XY \neq Z$, $\Pr[\text{algorithm outputs true}] \leq 1/2^k$, so $\Pr[\text{algorithm output true}] \leq 2^{-k}$, $\Pr[\text{algorithm output false}] \geq 1-2^{-k}$

- Take k = 2, then $\Pr[\text{incorrect answer}] \leq \frac{1}{4}$.
- Take k = 10, then $\Pr[\text{incorrect answer}] \le \frac{1}{2^{10}}$.
- Take k = 100, then $\Pr[\text{incorrect answer}] \le \frac{1}{2^{100}}$.
- One-sided error algorithm, CORP algorithm (computation complexity theory).
- $P \subset RP \subset NP$ and $P \subset coRP \subset coNP$.

2.3.4 Proof

X, Y, and Z are $n \times n$ matrices. Choose $\vec{r} \in \{0,1\}^n$ uniformly at random. If XY = Z, then $XY\vec{r} = Z\vec{r}$ for all $\vec{r} \in \{0,1\}^n$.

Theorem 2.2. If $XY \neq Z$,

$$\Pr_{\vec{r} \in \{0,1\}^n} [XY\vec{r} = Z\vec{r}] \le \frac{1}{2}.$$

Equivalently, $\Pr[XY\vec{r} \neq Z\vec{r}] \geq \frac{1}{2}$.

Proof. Assume $XY \neq Z$. Let D = XY - Z. Then $D \neq 0$ (the all zero's matrix). So D has at least one nonzero entry - WLOG, suppose it is d_{1n} . Suppose $XY\vec{r} = Z\vec{r}$ for a vector $\vec{r} \in \{0,1\}^n$. Then $D\vec{r} = (XY - Z)\vec{r} = XY\vec{r} - Z\vec{r} = \vec{0}$. In particular, the first component of the vector $D\vec{r}$ is 0:

$$\sum_{j=1}^{n} d_{1j} r_j = 0$$

Equivalently,

$$r_n = \frac{-\sum_{j=1}^{n-1} d_{1j} r_j}{d_{1n}}.$$
(1)

Thought experiment: assume $r_1, \dots, r_{n-1} \in \{0, 1\}$ have been chosen at random. Choose $r_n \in \{0, 1\}$. What is the probability that (1) is true. There are two choices for r_n : 0 and 1. At most one is correct. That implies probability is at most 1/2.

- If RHS = 0, then $\Pr[r_n = \text{RHS}] = \frac{1}{2}$.
- If RHS = 1, then $\Pr[r_n = \text{RHS}] = \frac{1}{2}$.
- If RHS $\notin \{0, 1\}$, then $\Pr[r_n = \text{RHS}] = 0$.

In any case, $\Pr[r_n = \text{RHS}] \leq \frac{1}{2}$. Then,

$$\Pr[XY\vec{r} = Z\vec{r}] \le \Pr[r_n = \frac{-\sum_{j=1}^{n-1} d_{1j}r_j}{d_{1n}}] \le \frac{1}{2}.$$

2.4 Evaluating Polynomials

Given a degree *n* polynomial $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = \sum_{i=0}^n a_i x^i$, where a_i are the coefficients of x^i . Given *x*, evaluate p(x)

```
total = 0
for i = 0 to n
    val = a_i
    for j = 1 to i
        val = val x
        total = total + val
return total
```

Count # of multiplications:

$$\sum_{i=0}^{n} \sum_{j=1}^{i} 1 = \sum_{i=0}^{n} i = \sum_{i=1}^{n} i = \frac{n(n-1)}{2}.$$

Therefore, the time complexity $\Theta(n^2)$.

2.4.1 Optimized algorithm: $\Theta(n)$

```
total = a_0
xpow = 1 // = x^0
for i = 1 to n
    xpow = xpow * x // xpow
    total = total + xpow * a_i
return total
```

Count # of multiplications:

$$\sum_{i=1}^{n} 2 = 2n = \Theta(n).$$

2.5 Evaluating:

 $A(x) = 3 + 4x + 6x^{2} + 2x^{3} + 4x^{4} + 10x^{5} + 8x^{6} + 9x^{7} = x(4 + 2x^{2} + 10x^{4} + 9x^{6}) + (3 + 6x^{2} + 4x^{4} + 8x^{6}) = x \cdot A_{0}(x^{2}) + A_{e}(x^{2}) + A_{e}(x^{2}) = 4 + 2x + 10x^{2} + 9x^{3}, A_{e}(x) = 3 + 6x + 4x^{2} + 8x^{3}.$ Recursively evaluate A_{0}, A_{e} .

$$A_0(x) = x(2+9x^2) + (4+10x^2) = x \cdot A_{00}(x^2) + A_{0e}(x^2),$$

where $A_{00}(x) = 2 + 9x$, $A_{0e}(x) = 4 + 10x$.

2.6 Multiplying Polynomials

 $p(x) = \sum_{i=0}^{n} a_i x^i$, $q(x) = \sum_{j=0}^{n} b_i x^i$. $r(x) = p(x) \cdot q(x)$ is a degree 2n polynomial.

$$r(x) = \left(\sum_{i=0}^{n} a_i x^i\right) \left(\sum_{j=0}^{n} b_j x^j\right)$$
$$= \sum_{k=0}^{2n} c_k x^k,$$

where $c_k = \sum_{i=0}^k a_i b_{k-i}$. Takes $\Theta(k)$ time to compute c_k using this formula. Total time to compute all coefficients of r(x) is $\Theta(n^2)$.

• Is there a faster way?

2.6.1 Fast Fourier Transform $O(n \log n)$ time.

Polynomial \rightarrow Convolution \rightarrow multiplication of convolutions \rightarrow product polynomial. HAHA: Fourier Transform = make it "four"ier by changing things to 4's.

• Basic idea: A degree d polynomial is determined by its values at any d + 1 distinct points. Can interpolate to recover the polynomial. Have p of degree n, q of degree n, want $r = p \cdot q$ of degree 2n. We could evaluate p and q at 2n+1 points $x_1, x_2, \dots, x_{2n+1}$. Then we can compute r at 2n+1 points: $r(x_i) = p(x_i) \cdot q(x_i) \rightarrow r(x_1), r(x_2), r(x_3), \dots, r(x_{2n+1}) \rightarrow$ interpret to recover r.

2.6.2 Steps:

- Evaluate p, q at 2n + 1 points. $(\Theta(n^2))$
- Compute r at these 2n + 1 points by multiplying values of p and q. $(\Theta(n))$
- Interpolate to recover r. $(\Theta(n^2))$

 $\Theta(n^2)$ time - no improvement over standard approach. FFT evaluates the polynomials at 2n + 1 specially chosen points in $O(n \log n)$ time. (Complex numbers: roots of unity).

2.6.3 Roots

Complex numbers a + bi, where $i = \sqrt{-1}$ or $i^2 = -1$. There are two square roots of unity: 1, -1. Can be written as $e^{i\theta} = \cos\theta + i\sin\theta$ for $\theta = 0, \pi$. Hence the fourth roots of unity is 1, -1, i, -i. In general, the *n*th roots of unity are given by

$$e^{\frac{2\pi i}{n}k}$$
, for $k = 0, 1, 2, \dots, n-1$.

n evenly spaced points around the unit circle in the complex plane. $e^{\frac{2\pi i}{n}}$ is the principal *n*th root of unity. Denote $\omega = e^{\frac{2\pi i}{n}} = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$.

2.6.4 Euler's Formula

 $e^{\pi i} = -1$, and $e^{2\pi i} = 1$. For any θ ,

$$e^{i\theta} = \cos\theta + i\sin\theta.$$

Why is this true? We take a look at the Taylor Series of e^x :

$$\exp(x) = e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

Also the Taylor Series for sin(x) and cos(x) are as follows:

$$\sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} = \sum_{k=0}^{\infty} \frac{x^{4k+1}}{(4k+1)!} - \frac{x^{4k+3}}{(4k+3)!}$$
$$\cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = \sum_{k=0}^{\infty} \frac{x^{4k}}{(4k)!} - \frac{x^{4k+2}}{(4k+2)!}$$

Therefore, plugging in $x = i\theta$ to the Taylor Series of $\exp(x)$ gives

$$\begin{split} \exp(i\theta) &= \sum_{k=0}^{\infty} \frac{(i\theta)^k}{k!} \\ &= \sum_{k=0}^{\infty} \frac{(i\theta)^{4k}}{(4k)!} + \frac{(i\theta)^{4k+1}}{(4k+1)!} + \frac{(i\theta)^{4k+2}}{(4k+2)!} + \frac{(i\theta)^{4k+3}}{(4k+3)!} \\ &= \sum_{k=0}^{\infty} \frac{\theta^{4k}}{(4k)!} + \frac{i\theta^{4k+1}}{(4k+1)!} + \frac{-\theta^{4k+2}}{(4k+2)!} + \frac{-i\theta^{4k+3}}{(4k+3)!} \\ &= \sum_{k=0}^{\infty} \frac{\theta^{4k}}{(4k)!} - \frac{\theta^{4k+2}}{(4k+2)!} + \frac{i\theta^{4k+1}}{(4k+1)!} - \frac{i\theta^{4k+3}}{(4k+3)!} \\ &= \left(\sum_{k=0}^{\infty} \frac{\theta^{4k}}{(4k)!} - \frac{\theta^{4k+2}}{(4k+2)!}\right) + i\left(\sum_{k=0}^{\infty} \frac{\theta^{4k+1}}{(4k+1)!} - \frac{\theta^{4k+3}}{(4k+3)!}\right) \\ &= \cos\theta + i\sin\theta. \end{split}$$

2.6.5 FFT:

- Given polynomial A of degree $\leq n-1$ (assume n is a power of 2), ω is a principal nth root of unity.
- Output: $A(\omega^0), A(\omega^1), A(\omega^2), A(\omega^3), \dots, A(\omega^{n-1})$ (values of A at nth roots of unity)
- Time: $O(n \log n)$ time.

Algorithm 4: FFT

Function $FFT(A, \omega, n)$: **Input:** A is a polynomial of degree $\leq n-1$, n is a power of 2, ω is a principal nth root of unity. **Output:** $A(\omega^0), \cdots, A(\omega^{n-1})$ if $\omega == 1$ then /* base case */ return A(1); \mathbf{end} express A(x) as $A_e(x^2) + xA_0(x^2)$ /* A_e and A_0 have degree < n/2. */ $FFT(A_e, \omega^2, n/2)$ /* result: $A_e(\omega^0), A_e(\omega^2), A_e(\omega^4), \cdots, A_e(\omega^{n-2})$ */ /* result: $A_0(\omega^0), A_0(\omega^2), A_0(\omega^4), \dots, A_0(\omega^{n-2})$ $FFT(A_0, \omega^2, n/2)$ */ for $j \leftarrow 0$ to n-1 do $A(\omega^j) = A_e(\omega^{2j}) + \omega^j A_0(\omega^{2j});$ end return $A(\omega^0), A(\omega^1), A(\omega^2), \cdots A(\omega^{n-1});$ end

Example 2.4. Evaluate $A(x) = 3x^3 + x^2 + 2x + 4$. Given that $n = 4, \omega = i$, evaluate A at $\omega^0 = 1, \omega^1 = i, \omega^2 = -1, \omega^3 = -i$. Let $A_e(x) = x + 4, A_0(x) = 3x + 2$, then $A(x) = A_e(x^2) + xA_0(x^2)$. Then evaluate A_e , A_0 at ω^0, ω^2 . We have $A_e(\omega^0) = 5, A_e(\omega^2) = 3, A_0(\omega^0) = 5, A_0(\omega^2) = -1$. Therefore,

$$\begin{split} A(\omega^{0}) &= A_{e}(\omega^{0}) + \omega^{0}A_{0}(\omega^{0}) = 10. \\ A(\omega^{1}) &= A_{e}(\omega^{2}) + \omega^{1}A_{0}(\omega^{2}) = 3 - i. \\ A(\omega^{2}) &= A_{e}(\omega^{4}) + \omega^{2}A_{0}(\omega^{4}) = 0. \\ A(\omega^{3}) &= A_{e}(\omega^{6}) + \omega^{3}A_{0}(\omega^{6}) = 3 + i. \end{split}$$

2.6.6 Recursion tree

- $a_7x^7 + a_6x^6 + a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x^1 + a_0x^0$, evaluate at $\omega^0, \omega^1, \omega^2, \dots, \omega^7$, 8th roots of unity.
 - $-a_6x^3 + a_4x^2 + a_2x^1 + a_0$, evaluate at $\omega^0, \omega^2, \omega^4, \omega^6$, 4th roots of unity
 - * $a_4x + a_0$, evaluate at ω^0, ω^4 , 2nd roots of unity
 - · a_4 , evaluate at ω^0
 - · a_0 , evaluate at ω^0
 - * $a_6x + a_2$, evaluate at ω^0, ω^4 , 2nd roots of unity
 - · a_6 , evaluate at ω^0
 - · a_2 , evaluate at ω^0
 - $-a_7x^3 + a_5x^2 + a_3x^1 + a_1$, evaluate at $\omega^0, \omega^2, \omega^4, \omega^6$
 - * $a_5x + a_1$, evaluate at ω^0, ω^4 , 2nd roots of unity
 - · a_5 , evaluate at ω^0
 - · a_1 , evaluate at ω^0
 - * $a_7x + a_3$, evaluate at ω^0, ω^4 , 2nd roots of unity
 - · a_7 , evaluate at ω^0
 - · a_3 , evaluate at ω^0

Let $A(x) = a_{n-1}x^{n-1} + \dots + a_1x_1 + a_0$ be a polynomial of degree n-1, evaluate at x_0, x_1, \dots, x_{n-1} .

$$\vec{A} = \begin{bmatrix} A(x_0) \\ A(x_1) \\ A(x_2) \\ \vdots \\ A(x_{n-1}) \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{bmatrix} = M * \vec{a},$$

where M is the Vandermonde matrix - invertible assuming x_0, \ldots, x_{n-1} are all distinct, i.e., M^{-1} exists. Therefore,

$$\vec{a} = M^{-1}\vec{A} \implies M^{-1}\vec{A} = M^{-1}M\vec{a} = I\vec{a}.$$

Define

$$M_{n}(\omega) = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix}$$

FFF "multiplies" $M_n(\omega)$ and the coefficient vector.

$$\begin{bmatrix} A(1) \\ A(\omega) \\ A(\omega^2) \\ \vdots \\ A(\omega^{n-1}) \end{bmatrix} = M_n(\omega) \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

 $M_n^{-1}(\omega)$ exists, that implies, can recover coefficients from values by multiplying by $M_n^{-1}(\omega)$ (can be done by FFT).

Proposition 2.2.

$$M_n^{-1}(\omega) = \frac{1}{n} M_n(\omega^{-1}), i.e., M_n^{-1}(\omega) = \frac{1}{n} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(n-1)}\\ 1 & \omega^{-2} & \omega^{-4} & \cdots & \omega^{-2(n-1)}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{-(n-1)} & \omega^{-2(n-1)} & \cdots & \omega^{-(n-1)(n-1)} \end{bmatrix}$$

Proof. Let

$$M_{n}(\omega) \cdot M_{n}(\omega^{-1}) = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{bmatrix}$$

Now look at x_{ij} , we have

$$x_{ij} = \begin{bmatrix} 1 & \omega^i & \omega^{2i} & \cdots & \omega^{(n-1)i} \end{bmatrix} \begin{bmatrix} 1 \\ \omega^j \\ \omega^{2j} \\ \vdots \\ \omega^{(n-1)j} \end{bmatrix} = \sum_{k=0}^{n-1} \omega^{ki} \omega^{-kj} = \sum_{k=0}^{n-1} \omega^{k(i-j)} = \begin{cases} n & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

As for $\omega = e^{\frac{2\pi i}{n}}$, we have

$$\omega^{-1}\omega = 1 \implies \omega^{-1} = e^{-\frac{2\pi i}{n}}, e^{\frac{2\pi i}{n}(n-1)}$$

 So

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{bmatrix} = \frac{1}{n} M_n(\omega^{-1}) \begin{bmatrix} A(1) \\ A(\omega) \\ A(\omega^2) \\ \vdots \\ A(\omega^{n-1}) \end{bmatrix}$$

2.6.7 Multiplication Algorithm

Algorithm 5: Calculate the product of two polynomials

 $\begin{array}{l} \textbf{Function PolynomialMultiplication}(A,B) \textbf{:} \\ \textbf{Input: } A(x) = a_0 + a_1 x + a_2 x + \cdots a_{m-1} x^{m-1} \text{ and } B(x) = b_0 + b_1 x + b_2 x + \cdots b_{l-1} x^{l-1} \text{ are two} \\ \text{ polynomials of degree } m-1 \text{ and } l-1, \text{ respectively.} \\ \textbf{Output: The product } C \text{ of } A \cdot B. \\ \textbf{Choose } n > m+l \text{ so that } n \text{ is a power of } 2, \text{ where } n \leq 2 \cdot \max(m,l); \\ \omega \leftarrow e^{\frac{2\pi i}{n}}, \text{ where } e^{\frac{2\pi i}{n}} \text{ is the principle } n \text{th root of unity;} \\ \textbf{Call FFT}(A, \omega, n) \text{ and FFT}(B, \omega, n) \text{ to obtain values } A(\omega^0), A(\omega^1), \dots, A(\omega^{n-1}) \text{ and} \\ B(\omega^0), B(\omega^1), \dots, B(\omega^{n-1}); \\ \textbf{Compute } C(\omega^i) = A(\omega^i) \cdot B(\omega^i) \text{ for } i = 0, 1, \dots, n-1; \\ \textbf{Call FFT}(D, \omega^{-1}, n), \text{ where } d_i = C(\omega^i); \\ c_i \leftarrow \frac{1}{n} D(\omega^{-1}) \text{ for } i = 0, 1, \dots, n-1; \\ \textbf{return } c_0, c_1, \dots, c_{n-1}; \\ \textbf{end} \end{array} \right.$

Running time: 3 FFT calls $(O(n \log n))$ and O(n) additional work, in total, $O(n \log n)$ time. Recall: standard algorithm is $O(n^2)$.

FFT \rightarrow Schohage - Strassen fast integer multiplication $O(n \log n \log \log n)$ time. $a = \overline{a_{n-1}a_{n-2}\cdots a_0} = \sum_{i=0}^{n-1} a_i 2^i = A(2)$

2.6.8 Quicksort

Algorithm 6: Quick sort

 Function Quicksort(A[1...n]):

 Input: A is a array, of which all elements are distinct.

 Output: Sorted A

 if $n \leq 1$ then

 | return A;

 end

 Choose an element p of A as a pivot;

 Compare every other element of A to p and divide them into two subarrays: A_1 has the elements of A that are less than p;

 A_2 has the elements of A that are greater than p;

 Use Quicksort to sort A_1 and A_2 ;

 return the array A_1, p, A_2 ;

Suppose p has rank k in A (kth smallest element). Then $|A_1| = k - 1$, and $|A_2| = n - k$. Number of comparisons:

(n-1) + # done by Quicksort $(A_1) + \#$ done by Quicksort (A_2) .

Then

$$C(n) = n - 1 + C(k - 1) + C(n - k),$$

where C(n) = # of comparisons on an array of size n.

• Worst case: k = 1 every time.

$$C(n) = n - 1 + C(0) + C(n - 1)$$

= $n - 1 + C(n - 1)$
= $(n - 1) + (n - 2) + C(0) + C(n - 2)$
:
= $(n - 1) + (n - 2) + \dots + 1$
= $\sum_{i=1}^{n-1} i$
= $\binom{n}{2}$
= $\frac{n(n - 1)}{2}$
= $\Theta(n^2)$.

Note: $k = \text{ largest every time is also worst case } - \binom{n}{2}$ comparisons.

• Best case: k = n/2

$$C(n) = (n-1) + C(\frac{n}{2}) + C(\frac{n}{2})$$
$$= 2C(\frac{n}{2}) + (n-1)$$
$$= \Theta(n \log n)$$
$$\approx 2n \log n.$$

This is optimal: lower bound – any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

• Average case analysis. Suppose

$$\frac{n}{4} \le k \le \frac{3n}{4},$$

that is, pivot in middle half. And

$$C(n) \le n - 1 + C(\frac{n}{4}) + C(\frac{3n}{4}) = O(n \log n).$$

Intuitively: get pivot in the middle half about half of the time, so performance should be about the same. Let (y_1, y_2, \ldots, y_N) be the sorted order of A, where y_i is the element of rank i. Define a random variable

$$X_{ij} = \begin{cases} 1 & \text{if } y_i \text{ and } y_j \text{ are compared,} \\ 0 & \text{otherwise.} \end{cases}$$

for each i and j. Let X be the number of comparisons performed,

$$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}.$$

and $Y_{ij} = (y_i, y_{i+1}, \dots, y_j)$, y_i and y_j are compared \iff the first pivot selected from Y_{ij} is y_i or y_j . So

$$\Pr[X_{ij} = 1] = \frac{2}{j - i + 1}.$$

since $Y_{ij} = (y_i, y_{i+1}, \dots, y_j)$. That implies the expectation

$$E[X_{ij}] = \Pr[X_{ij} = 1] = \frac{2}{j - i + 1}.$$

Note: If $Z \in \{0, 1\}$ is 0 - 1 valued, then Z is called an indicator random variable. Then $\Pr[Z = 1] = p$ and $\Pr[Z = 0] = 1 - p$, therefore $E[Z] = 1 \cdot \Pr[Z = 1] + 0 \cdot \Pr[Z = 0] = \Pr[Z = 1]$. Then

$$\begin{split} E[X] &= E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] \\ &= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}] \\ &= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\ &= 2\sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{1}{k} \\ &= 2\sum_{k=2}^{n} \sum_{i=1}^{n-k+1} \frac{1}{k} \\ &= 2\sum_{k=2}^{n} \frac{n-k+1}{k} \\ &= 2\sum_{k=2}^{n} \left(\frac{n+1}{k} - 1\right) \\ &= 2\left[(n+1)\sum_{k=2}^{n} \frac{1}{k} - (n-1) - (n+1)\right] \\ &= 2\left[(n+1)H_n - 2n\right] \\ &= 2(n+1)H_n - 4n \\ &= 2(n+1)\Theta(\log n) - 4n \\ &= \Theta(n\log n). \end{split}$$

• A different proof: Probablistic recurrence relation:

$$C(n) = \frac{1}{n} \sum_{k=1}^{n} [(n-1) + C(k-1) + C(n-k)] = (n-1) + \frac{2}{n} \sum_{k=1}^{n-1} C(k).$$
(2)

$$nC(n) = n(n-1) + 2\sum_{k=1}^{n-1} C(k)$$
(3)

$$(n-1)C(n-1) = (n-1)(n-2) + 2\sum_{k=1}^{n-2} C(k)$$
(4)

Then (3) - (4) gives

$$nC(n) - (n-1)C(n-1) = n(n-1) - (n-2)(n-1) - 2\sum_{k=1}^{n-2} C(k) + 2\sum_{k=1}^{n-1} C(k)$$

$$\begin{split} &= 2(n-1) + 2C(n-1) \\ \implies nC(n) &= 2(n-1) + (n+1)C(n-1) \\ \implies C(n) &= \frac{2(n-1)}{n} + \frac{(n+1)C(n-1)}{n} \\ \implies \frac{C(n)}{n+1} &= \frac{2(n-1)}{n(n+1)} + \frac{C(n-2)}{n(n-1)} + \frac{C(n-2)}{n-1} \\ &= \frac{2(n-1)}{n(n+1)} + \frac{2(n-2)}{n(n-1)} + \frac{C(n-2)}{n-1} \\ &= 2\sum_{k=2}^{n} \frac{k-1}{k(k+1)} \\ &= 2\sum_{k=2}^{n} \left(\frac{1}{k+1} - \frac{1}{k(k+1)}\right) \\ &= 2\left(\sum_{k=2}^{n} \frac{1}{k+1} - \sum_{k=2}^{n} \frac{1}{k(k+1)}\right) \\ &= 2\left[\sum_{k=2}^{n} \frac{1}{k+1} - \sum_{k=2}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)\right] \\ &= 2\left[\sum_{k=3}^{n} \frac{1}{k} - \left(\frac{1}{2} - \frac{1}{n+1}\right)\right] \\ &= 2\left[\sum_{k=1}^{n} \frac{1}{k} + \frac{1}{n+1} - 1 - \frac{1}{2} - \left(\frac{1}{2} - \frac{1}{n+1}\right) \\ &= 2H_n - \frac{4n}{n+1} \\ \implies C(n) = 2(n+1)H_n - 4n. \end{split}$$

2.6.9 Finding Medians and Order Statistics

Let S be an (unsorted) array of n elements with no duplicates.

- If |S| is odd, then the median of S is the middle element of S when sorted.
- If |S| is even, then there are two medians, $|S| = n = 2k \implies$ elements of ranks k and k + 1 are medians.

In any case, an element of rank $\lfloor \frac{n}{2} \rfloor + 1$ is a median. More generally, the *i*th-order statistic is the element of rank *i*.

- Sort S, select middle element (or desired rank).
 - $-\Theta(n\log n)$ time: MergeSort.
 - Expected $\Theta(n \log n)$ time: QuickSort.
- QuickSelect (randomized algorithm)
 - -O(n) exptected time
 - $O(n^2)$ worst case time
- Deterministic divide-and-conquer algorithm:
 - -O(n) time with large constants.

Example 2.5. n = 8 and k = 5, 5th order statistic.

S = [4, 12, 3, 8, 2, 6, 15, 5]

$$\begin{split} S &= [3, 2, 4, 12, 8, 6, 15, 5] \\ S &= [12, 8, 6, 15, 5] \\ S &= [8, 6, 5, 12, 15] \\ S &= [8, 6, 5] \\ S &= [6, 5, 8] \\ S &= [6, 5] \\ S &= [5, 6] \end{split}$$

Algorithm 7: Quick Select

Function QuickSelect(S[1...n], k): **Input:** Select the kth order statistic from S**Output:** Return the k the order statistic if n = 1 then return S[1];end Choose a pivot p from S; /* Partition into two subarrays: $S_1 =$ elements of S that are $\langle p;$ $S_2 =$ elements of S that are > p; $r \leftarrow |S_1| + 1;$ /* the rank of pif r = k then return p; else if k < r then **return** QuickSelect (S_1, k) ; else **return** QuickSelect $(S_2, k - r)$; \mathbf{end} end

• Worst case: $\binom{n}{2} = \Theta(n^2)$ comparisons. Elements of ranks $n, n-1, n-2, \ldots, k+1$ are chosen, as pivots, then ranks $1, 2, 3, \ldots, k-1$. Problem size decreases by 1 each time:

of comparisons =
$$\sum_{i=1}^{n-1} n - i = \sum_{i=1}^{n-1} i = \binom{n}{2}$$
.

• For $r \in \{1, ..., n\}$, let

$$X_r = \begin{cases} 1 & \text{if pivot of rank } r \text{ is chosen,} \\ 0 & \text{otherwise.} \end{cases}$$

Then $\Pr[X_r = 1] = \frac{1}{n} = E[X_r]$. Subproblem size:

$$Y = \sum_{r=1}^{k-1} X_r(n-r) + \sum_{r=k+1}^n X_r(r-1).$$

The expected subproblem size would be

$$E[Y] = E\left[\sum_{r=1}^{k-1} X_r(n-r) + \sum_{r=k+1}^n X_r(r-1)\right]$$

= $E\left[\sum_{r=1}^{k-1} X_r(n-r)\right] + E\left[\sum_{r=k+1}^n X_r(r-1)\right]$

*/

*/

$$=\sum_{r=1}^{k-1} E[X_r(n-r)] + \sum_{r=k+1}^{n} E[X_r(r-1)]$$

$$=\sum_{r=1}^{k-1} E[X_r](n-r) + \sum_{r=k+1}^{n} E[X_r](r-1)$$

$$=\frac{1}{n} \left[\sum_{r=1}^{k-1} (n-r) + \sum_{r=k+1}^{n} (r-1)\right]$$

$$=\frac{1}{n} \left[\sum_{i=n-k+1}^{n-1} i + \sum_{r=k}^{n-1} r\right]$$

$$=\frac{1}{n} \left[\left(\sum_{i=1}^{n-1} i - \sum_{i=1}^{n-k} i\right) + \left(\sum_{r=k}^{n-1} r - \sum_{r=1}^{k-1} r\right)\right]$$

$$=\frac{1}{n} \left[\left(\binom{n}{2} - \binom{n-k+1}{2} + \binom{n}{2} - \binom{k}{2}\right]$$

$$= (n-1) - \frac{1}{n} \left[\binom{n-k+1}{2} + \binom{k}{2}\right]$$

Now let's take a closer look at $\binom{n-k+1}{2} + \binom{k}{2}$, we have

$$\binom{n-k+1}{2} + \binom{k}{2} = \frac{k(k-1)}{2} + \frac{(n-k+1)(n-k)}{2}$$
$$= \frac{1}{2} \left[k^2 - k + (n-k)^2 + (n-k) \right]$$
$$= \frac{1}{2} \left[2k^2 - 2k(n+1) + n^2 + n \right]$$
$$= k^2 - k(n+1) + \frac{1}{2}n^2 + \frac{1}{2}n.$$

Differentiating with respect to (w.r.t.) k yields

$$2k - (n+1) = 0$$
 when $k = \frac{n+1}{2}$.

Thus, we have

$$\binom{n-k+1}{2} + \binom{k}{2} = \binom{\frac{n}{2}+\frac{1}{2}}{2} + \binom{\frac{n}{2}+\frac{1}{2}}{2}$$
$$= 2\binom{\frac{n}{2}+\frac{1}{2}}{2}$$
$$= \frac{n+1}{2}\frac{n-1}{2}$$
$$= \frac{n^2-1}{4}.$$

Then

$$E[Y] = (n-1) - \frac{1}{n}\frac{n^2 - 1}{4} = \frac{3n}{4} + \frac{1}{4n} - 1$$

Let Y_i be the problem size in *i*th call to QuickSelect, $Y_1 = n$, $E[Y_2] \leq \frac{3}{4}n = \frac{3}{4}Y_1$. More generally,

$$E[Y_{i+1}|Y_i] \le \frac{3}{4}Y_i.$$

By induction,

$$E[Y_i] \le \left(\frac{3}{4}\right)^{i-1} n \text{ for all } i \ge 1.$$

Let X_i be the number of comparisons done in the *i*th call.

$$X_i = \begin{cases} Y_i - 1 & \text{if } Y_i > 0, \\ 0 & \text{if } Y_i = 0. \end{cases}$$

Then, $E[X_i] = E[Y_i] - 1 \le E[Y_i] \le \left(\frac{3}{4}\right)^{i-1} n$. Let X be the total number of comparisons,

$$X = \sum_{i=1}^{\infty} X_i.$$

Hence,

$$E[X] = E\left[\sum_{i=1}^{\infty} X_i\right]$$
$$\leq \sum_{i=1}^{\infty} E[X_i]$$
$$\leq \sum_{i=1}^{\infty} \left(\frac{3}{4}\right)^i n$$
$$\leq n \sum_{i=1}^{\infty} \left(\frac{3}{4}\right)^i$$
$$\leq n \frac{0 - 3/4}{3/4 - 1}$$
$$\leq 3n$$

2.6.10 Deterministic Selection in O(n) Time (Median-of-median algorithm)

Suppose we have an array A of size n, then we break A into n/5 of 5, find median of each group by sorting O(1) time per group, which has less than $\binom{5}{2}$ comparisons. Therefore, it takes O(n) time to find all group medians. Next, form an array $M_{n/5}$ of the group medians. Recursive call to find meand x of $M_{n/5}$. Use x as the pivot to partition A: make recursive call as in QuickSelect on left or right half (See Algorithm 8).

Proposition 2.3. x is a good pivot, where x has rank between $\frac{3}{10}n$ and $\frac{7}{10}n$. Thus, the subproblem size decreases by at least 30%.

The running time would be

$$T(n) \le T(n/5) + T(7n/10) + O(n).$$

Intuitively, x should be *close* to the median of A.

- 1. x is greater than or equal to m/2 elements of M.
- 2. Each element of M is greater than or equal to 3 elements in its group.

That implies, x is greater than or equal to $m/2 \cdot 3 = 3n/10$ elements of A. Similarly, x is less than or equal to $m/2 \cdot 3 = 3n/10$ elements of A. Therefore the subarray of A (A₁ or A₂) that select is recursively called on has at most 7n/10 elements.

Let T(n) be the maximum time for select on an array of size n. Then

$$T(n) \le T(n/5) + T(7n/10) + O(n).$$

- Each of the n/5 groups is sorted using less than $\binom{5}{2} = 10$ comparisons, then we have less than $10 \cdot n/5 = 2n$ comparisons to sort all groups. In other words, it takes O(n) to sort all groups.
- Form M: O(n) time.
- Recursively find median of M: T(n/5).

Algorithm 8: Deterministic Selection in O(n) Time (Median-of-Medians algorithm)

Function Select(A[1...n], k): **Input:** A[1...n] is an array of *n* elements, where *n* is a power of 10. **Output:** Find the median of A[1...n]. */ /* base case if n = 1 then return A[1]; end Let m = n/5. Partition A into m groups of 5 elements. Insertion sort each of the m groups; Let M be an array of size n containing the medians from each of the 5 gorups; Use Select to find the median x of M: /* x is the median-of-medians */ $x \leftarrow \text{Select}(M[1 \dots m], m/2);$ Partition A into two subarrays: A_1 = elements of A that are less than x; A_2 = elements of A that are greater than x; Let $r = |A_1| + 1$ be the rank of x in A; if r = k then return x; else if k < r then **return** Select $(A_1[1 \dots r-1], k)$; else **return** Select $(A_2[1 \dots n-r], k-r);$ end end

- Partition A around the median of medians: n-1 comparisons -O(n) time.
- Recursively call select on a subarray of A of size less than $7n/10 \le T(7n/10)$

Proposition 2.4. T(n) = O(n).

Proof. This is true if there is a constant c such that $T(n) \leq c \cdot n$ for all sufficiently large n. Let

$$T(n) \le T(n/5) + T(7n/10) + an.$$

Suppose that $T(n) \leq cn$ for some c. Then

$$T(n) \le c \cdot \frac{n}{5} + c \cdot \frac{7n}{10} + an = \left(\frac{9c}{10} + a\right)n \le cn, \text{ if } c \ge 10a.$$

In practice, a = 3 for comparisons, then $T(n) \le 30n$ comparison overall, while QuickSelect has less than 4n comparisons on average.

2.7 Dynamic Programming

- Divide-and-conquer: top-down
- Dynamic Programming: bottom-up

2.7.1 Longest Increasing Subsequence Problem

- Given a sequence of numbers a_1, \ldots, a_n .
- Goal: find a longest increasing subsequence, that is, find i_1, \ldots, i_k such that $1 \le i_1 < i_2 < \cdots < i_k \le n$ and $a_{i_1} < a_{i_2} < \cdots < a_{i_k}$, where k is maximized.

Example 2.6. Let $a = [a_1, a_2, a_3, a_4, a_5, a_6, a_7a_8] = [5, 2, 8, 6, 3, 6, 9, 7]$. The longest increasing subsequence could be [2, 3, 6, 9] or [2, 3, 6, 7].

Brute force: try all 2^n possible subsequence. Dynamic programming can reduce the time substatially. For each $j, 1 \leq j \leq n$, write L(j) for the longest increasing subsequence of a_1, \ldots, a_j , we will compute

$$L(1), L(2), L(3), \ldots, L(n),$$

in order.

Proposition 2.5. $L(j) = 1 + \max\{L(i) | a_i < a_j \text{ and } i < j\}.$

Go back to the example, we would have

$$\begin{split} L(0) &= 0, \\ L(1) &= 1, \\ L(2) &= 1, \\ L(3) &= 2, \\ L(4) &= 2, \\ L(5) &= 2, \\ L(6) &= 3, \\ L(7) &= 4, \\ L(8) &= 4. \end{split}$$

Algorithm 9: Finding longest increaseing subsequence based on dynamic programming

Function longestIncreasingSubsequence($[a_1, a_2, \ldots, a_n]$): **Input:** Unsorted sequence $[a_1, a_2, \ldots, a_n]$. **Output:** Find the longest inreaseing subsequence. for j = 1 to n do /* Predcessor pred(j) = 0;max = 0;for i = 1 to j - 1 do if $a_i < a_j$ and L(i) > max then max = L(i);pred(j) = i;end end L(j) = max + 1;end Then find j such that L(j) is maximized, where L(j) is the length of longest increasing subsequence; Follow *pred* links back to extract the sequence; end

Could we use recursion? Take a look at the formula: $L(j) = 1 + \max\{L(i) | a_i < a_j \text{ and } i < j\}$.

• *L*(*n*)

$$\begin{array}{r} - \ L(n-1) \\ * \ L(n-2) \\ * \ L(n-3) \end{array}$$

*/

* :
*
$$L(1)$$

- $L(n-2)$
* $L(n-3)$
* :
* $L(1)$
- :
- $L(1)$

This would be exponential time. However, the same subproblems are solved over and over. This can be made efficient - "memoization"

2.7.2 Longest Common Subsequence (LCS)

Algorithm 10: Finding longest common subsequence based on dynamic programming

Function longestCommonSubsequence($x[1 \dots n], y[1 \dots m]$): **Input:** Two strings $x[1 \dots n]$ and $y[1 \dots m]$ **Output:** Compute a longest common subsequence of x and y, that is, a string z[1...k] such that z is a subsequence both x and y and k is maximized for i = 0 to n do L(i,0) = 0;end for j = 1 to m do L(0, j) = 0;end for i = 1 to n do for j = 1 to m do if x[i] = y[i] then L(i,j) = L(i-1,j-1) + 1;else $L(i,j) = \max\{L(i-1,j), L(i,j-1)\};\$ end end end end

Example 2.7. Given two strings x = ABCBDAB, y = BDCABA then BCA is a common subsequence, BCAB and BCBA are the longest common subsequence.

Γ		B	D	C	A	B	A
	0	0	0	0	0	0	0
A	0	0	0	0	1	1	1
B	0	1	1	1	1	2	2
C	0	1	1	2	2	2	2
B	0	1	1	2	2	3	3
D	0	1	2	2	2	3	3
A	0	1	2	2	3	3	4
B	0	1	2	2	3	4	4

Then the LSC's are BCBA, BDAB, BCAB.

Write L(i, j) for the length of a LCS of $x[1 \dots i]$ and $y[1 \dots j]$, where $0 \le i \le n$ and $0 \le j \le m$, let $z[1 \dots k]$ be a longest common subsequence of $x[1 \dots i]$ and $y[1 \dots j]$.

- If x[i] = y[j], then z[k] = x[i] = y[j].
- If $x[i] \neq y[j]$, then - If $z[k] \neq x[i]$, then $z[1 \dots k]$ is a LCS of $x[1 \dots i-1]$ and $y[1 \dots j]$. - If $z[k] \neq y[j]$, then $z[1 \dots k]$ is a LCS of $x[1 \dots i]$ and $y[1 \dots j-1]$. - If $z[k] \neq y[j]$ and $z[k] \neq x[i]$, then $z[1 \dots k]$ is a LCS of $x[1 \dots i-1]$ and $y[1 \dots j-1]$.

Corollary 2.1.

- 1. If x[i] = y[j], then L(i, j) = L(i 1, j 1) + 1.
- 2. If $x[i] \neq y[i]$, then $L(i, j) = \max\{L(i-1, j), L(i, j-1)\}$.

2.7.3 Edit Distance

Example 2.8. 'SNOWY' and 'SUNNY':

-		S	U	N	N	Ŷ
	0	1	2	3	4	5
S	1	0	1	2	3	4
N	2	1	1	1	2	3
O	3	2	2	2	2	3
W	4	3	3	3	3	3
Y	5	4	4	4	4	3
	OI	pera	tion	C	ost	
	in	sert	ion		1	
	d	elet	ion		1	
	m	isma	atch		1	
	m	utat	tion		1	

Let E(i, j) be the cost of optimal alignment of $x[1 \dots i]$ and $y[1 \dots j]$. Then we have three possibilities for optimal of $x[1 \dots i]$ and $y[1 \dots j]$

• Cost E(i-1, j-1): optimal alignment of $x[1 \dots i-1]$ and $y[1 \dots j-1]$ (either or mismatch)

x[i]

y[j]

then

$$E(i,j) = \begin{cases} E(i-1,j-1) & \text{if } x[i] = y[j] \\ E(i-1,j-1) + 1 & \text{if } x[i] \neq y[j] \end{cases}$$

• Cost E(i-1, j): optimal alignment of $x[1 \dots i-1]$ and $y[1 \dots j]$ (deletion), then E(i, j) = E(i-1, j)+1.

x[i]

• Cost E(i, j-1): optimal alignment of $x[1 \dots i]$ and $y[1 \dots j-1]$ (insertion), then E(i, j) = E(i, j-1)+1.

y[j]

The longest common subsequence is a special case of the edit cost by setting match = -1, insertion/deletion/mutation = 0.

Algorithm 11: Finding an optimal alignment (minimal cost) based on dynamic programming

```
Function editDistance(x[1 \dots n], y[1 \dots m]):

Input: Two strings x[1 \dots n] and y[1 \dots m]

Output:

for i = 0 to n do

| E(i, 0) = i;

end

for j = 1 to m do

| E(0, j) = j;

end

for i = 1 to n do

| E(i, j) = \min\{E(i - 1, j), L(i, j - 1)\};

end

end

end
```

2.7.4 Knapsack Problem

- Knapsack capacity W, n items to choose from with weights w_1, w_2, \ldots, w_n and values v_1, v_2, \ldots, v_n .
- Goal: choose the most valuable collection of tiems that fit in the bag.

Two versions:

- With repitition: unlimited supply of each item.
- Without repitition (standard knapsack problem): only one of each item.
- With repitition
 - Subproblems: Knapsacks of capacity $w, 1 \le w \le W$. (Another possibility is to consider fewer items solve for items $1, 2, \ldots, i$ for $i \le n$, or combine both approaches vary both number of items and knapsack size).
 - Let K(w) be the maximum value achievable in a knapsack of capacity w.
 - Suppose that the last item added to achieve K(w) (optimal solution) is item *i* with weight w_i and value v_i . Take item *i* out of the knapsack: frees up w_i weight and decreases value by v_i . We're left with a set of items that fits in a knapsack of capacity $w w_i$ and has value $K(w) v_i$. This must be an optimal solution for capacity $w w_i$. (If it isn't, pick a better solution, add item *i* to it, and we have a better solution for capacity K(w), a contradiction.) Then we have

$$K(w - w_i) = K(w) - v_i \implies K(w) = K(w - w_i) + v_i,$$

which assumes ith item is added last. Then

$$\begin{cases} K(0) = 0, & \text{(base case)} \\ K(w) = \max_{1 \le i \le n, w_i \le w} \{ K(w - w_i) + v_i \} \end{cases}$$

• Without repitition

- Subproblems: Knapsacks of weight $w, 0 \le w \le W$ using items $1, 2, ..., j, 0 \le j \le n$. Let K(w, j) be the maximum value achievable using knapsack of capcity w and items 1, ..., j. Consider an optimal solution s for K(w, j):
 - * Case 1: Item j is not included, then s is also an optimal solution for K(w, j) = K(w, j 1).

Algorithm 12: Dynamic Programming for Knapsack Problem with repitiion O(nW) time

 $\begin{array}{l|l} \textbf{Function knapsack}(w[1 \dots n], v[1 \dots n]) \textbf{:} \\ \textbf{Input:} \\ \textbf{Output:} \\ K(0) = 0; \\ \textbf{for } w = 1 \textbf{ to } W \textbf{ do} \\ \mid K(w) = \max\{K(w - w_i) + v_i | 1 \leq i \leq n, w_i \leq w\}; \\ \textbf{end} \\ \textbf{return } K(W); \\ \textbf{end} \\ \end{array}$

* Case 2: Item j is included, then remove item j: $s - \{j\}$ has weight $w - w_j$ and value $K(w, j) - v_j$. $s - \{j\}$ is an optimal solution for $K(w - w_j, j - 1) = K(w, j) - v_j \implies K(w, j) = K(w - w_j, j - 1) + v_j$. Then

$$K(w_j) = \begin{cases} \max\{K(w, j-1), K(w-w_j, j-1) + v_j\}, & \text{if } w_j \le w_j \\ K(w, j-1), & \text{otherwise.} \end{cases}$$

Algorithm 13: Dynamic Programming for Knapsack Problem with repitiion O(nW) time

Function knapsack $(w[1 \dots n], v[1 \dots n])$: Input: Output: Initialize K(0, j) = 0 for $0 \le j \le n$ and K(w, 0) = 0 for $1 \le w \le W$; for j = 1 to n do for w = 1 to W do if $w_j > w$ then | K(w, j) = K(w, j - 1);else $| K(w, j) = \max\{K(w, j - 1), K(w - w_j, j - 1) + v_j\};$ end end return K(W, n);end

Example 2.9. Let W = 10, and Then we have

item	weight	value
1	6	30
2	3	14
3	4	16
4	2	9

• Another approach:

Let the total value $V = \sum_{i=1}^{n} v_i$. For all $0 \le v \le V$ and $0 \le j \le n$, let K(v, j) be the minimum weight to attain value exactly v with items $1, 2, \ldots, j$, and $K(w, j) = \infty$ if not possible to get value v with those items.

$$K(v,j) = \begin{cases} \min\{K(v,j-1), K(v-v_j,j-1)+v_j\} & \text{if } v_j \le v, \\ K(v,j-1) & \text{otherwise.} \end{cases}$$

	0	1	2	3	4
0		0	0	0	0
1	0	0	0	0	0
2	0	0	0	0	9
3	0	0	14	14	14
4	0	0	14	16	16
5	0	0	14	16	23
6	0	30	30	30	30
7	0	30	30	30	30
8	0	30	30	30	39
9	0	30	44	44	44
10	0	30	44	46	46

The base cases are $K(v, 0) = \infty$ for all $1 \le v \le V$, and K(0, j) = 0 for all $0 \le j \le n$. Leads to an O(nV) time algorithm. After all values computed, look for the v that maximizes K(v, n) and $K(v, n) \le W$.

2.7.5 Matrix Chain Multiplication

Example 2.10. Given matrices $A_{50\times 20}$, $B_{20\times 1}$, $C_{1\times 10}$, $D_{10\times 100}$, want to compute product *ABCD*, matrix multiplication is as associative: A(BC) = (AB)C. We have

- (AB)(CD): 7000;
- (A(BC))D: 60200;
- A((BC)D): 120200;
- ((AB)C)D: 51500;
- A(B(CD)): 13000;

For $A_{j \times k}$ and $B_{k \times l}$, computing AB with standard algorithm takes jkl operations (multiplications). How many parenthesization are there? Let P_n be the number of ways that n factors can be parenthesized.

- n = 1: (A), $P_1 = 1$.
- n = 2: $(AB), P_2 = 1$.
- n = 3: A(BC) and (AB)C, $P_3 = 2$.
- n = 4: (AB)(CD): $P_2 \cdot P_2$, (A(BC))D and ((AB)C)D: $P_3 \cdot P_1$, A((BC)D) and A(B(CD)): $P_1 \cdot P_3$, then $P_4 = P_3 \cdot P_1 + P_2 \cdot P_2 + P_1 \cdot P_3 = 5$.
- n = 5: Possible splits: (1, 4), (2, 3), (3, 2), (4, 1). Then $P_5 = P_1 \cdot P_4 + P_2 \cdot P_3 + \P_3 \cdot P_2 + P_4 \cdot P_1 = 5 + 2 + 2 + 5 = 14$.
- More generally, $P_n = \sum_{i=1}^{n-1} P_i \cdot P_{n-i}$, which is closedly related to Catalan numbers: C_1, C_2, \ldots , then $C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$. Therefore, $P_n = C_{n-1}$. Closed formula is $C_n = \frac{1}{n+1} {\binom{2n}{n}} \sim \frac{4^n}{n^{3/2} \sqrt{\pi}}$ which is exponential in n, so is P_n . Worth mentioning, P_n is also the number of full binary with n leaves (see Figure 1).
- Given: *n* matrices A_1, A_2, \ldots, A_n of demensions $m_0 \times m_1, m_1 \times m_2, \ldots, m_{n-1} \times m_n$, where A_i has dimension $m_{i-1} \times m_i$.
- Goal: compute the optimal parenthesization (minimize the number of operations to compute product).
- Look for substructure: What multiplication is done last? There are n-1 possibilities: Let C(i, j) be the optimal cost for multiplying $A_i A_{i+1} \cdots A_j$. Then

$$C(1,n) = \min_{1 \le i < n} \{ C(1,i) + C(i+1,n) + m_0 m_i m_n \},\$$

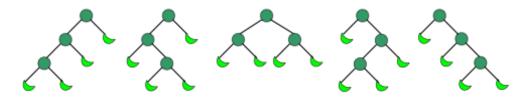


Figure 1: Catalan number binary tree example (n = 4)

Operations	Cost
$ \begin{array}{c} \hline (A_1)(A_2\cdots A_n) \\ (A_1A_2)(A_3\cdots A_n) \\ (A_1A_2A_3)(A_4\cdots A_n) \end{array} $	$C(1,1) + C(2,n) + m_0 m_1 m_n$ $C(1,2) + C(3,n) + m_0 m_2 m_n$ $C(1,3) + C(4,n) + m_0 m_2 m_n$
$\vdots (A_1 A_2 \cdots A_i)(A_{i+1} \cdots A_n)$: $C(1,i) + C(i+1,n) + m_0 m_2 m_n$
$\vdots \\ (A_1 A_2 \cdots A_{n-1}) A_n$: $C(1, n-1) + C(n, n) + m_0 m_2 m_n$

 $C(i,j) = \min_{i \le k < j} \{ C(i,k) + C(k+1,j) + m_{i-1}m_km_j \},\$ $C(i,i) = 0, \forall 1 \le i \le n.$

Algorithm	14: Dynamic	Programming	for Multiplying	Matrices Chain
		1 1001000000000000000000000000000000000	Tor manufpi, mg	interest offerin

Function MMC($A_1A_2...A_n$): Input: Output: for i = 1 to m do | C(i, i) = 0; end for s = 1 to n - 1 do | j = i + s; $| C(i, j) = \min_{i \le k < j} \{C(i, k) + C(k + 1, j) + m_{i-1}m_km_j\}$; end end return C(1, n); end

Computes two-dimensional table. Backtrack: to get optimal parenthesization, splitting on the index that attained the minimum. The running time would be

$$\sum_{s=1}^{n-1} \sum_{i=1}^{n-s} \sum_{k=i}^{i+s} 1 = \sum_{s=1}^{n-1} \sum_{i=1}^{n-s} (s+1)$$
$$= \sum_{s=1}^{n-1} (n-s)(s+1)$$

$$=\sum_{s=1}^{n-1} (ns - s^{2} + n - s)$$

= $n\binom{n}{2} - \frac{(n-1)n(2n-1)}{6} + n(n-1) - \binom{n-1}{2}$
= $\frac{n^{3} - n^{2}}{2} - \frac{2n^{3} - 3n^{2} - n + 1}{6} + n^{2} - n - \frac{n^{2} - n}{2}$
= $O(n^{3}).$

2.7.6 Approximation Algorithm for Kanpsack

FPTAS - fully polynomial-time approximation scheme, n is the number of items. Let OPT be the value of the optimal solution. The approximation algorithm will produce a solution with value $\geq (1 - \varepsilon)OPT$, for any $\varepsilon > 0$, in time polynomial in n and 1/2. The running time for this algorithm is $O(n^2 \cdot 1/\varepsilon)$. Note: PTAS, e.g., $O(n^{1/\varepsilon})$ polynomial for each fixed ε .

Let $V = \max_i v_i$. Define for all $v \le nV$ and $i \le n$, A(v,i) be the minimal weight of a subset of $1, \ldots, i$ with total value exactly equal to $v_i \propto i$ if does not exist.

$$\begin{cases} A(v,i) = \min\{A(v-v_i,i-1), A(v,i-1)\}, & \text{if } v \le v_i, \\ A(v,i-1), & \text{otherwise.} \end{cases}$$

That leads to the dynamic programming algorithm: $O(n^2V)$, where $nV \cdot n$ entries of A to compute. Note that V may be exponentially large in n (values/weights encoded in binary). If the values are small (bounded by polynomial in n, e.g., $v_i \leq n^3$, for all i, $\implies O(n^5)$ time), this algorithm runs polynomial time. We will scale (round) the values to be small (divide by some "large" number) for our approximation algorithm.

Algorithm 15: FPTAS for knapsack

 $\begin{array}{l} \textbf{Function ():} \\ \textbf{Input: Knapsack instance, approximation parameter } \varepsilon > 0. items 1, \ldots, n, \text{ values } v_1, \ldots, v_n, \\ & \text{weights } w_1, \ldots, w_n, \text{ capacity } W \\ \textbf{Output:} \\ V = \max_i v_i; \\ D = \frac{\varepsilon V}{n}; \\ \text{For each object } i, \text{ define } v_i^{'} = \lfloor \frac{v_i}{D} \rfloor; \\ \text{Run the dynamic programming algorithm using the } v_i^{'} \text{ values to obtain a solution} \\ S' \subset \{1, \ldots, n\}. \text{ Output } S'. \\ \textbf{end} \end{array}$

The running time is $V' = max_i v'_i$ and

$$V' = \lfloor V/D \rfloor = \left\lfloor V \cdot \frac{n}{\varepsilon V} \right\rfloor = \left\lfloor \frac{n}{\varepsilon} \right\rfloor = O(\frac{n}{\varepsilon}).$$

Let OPT be the value of optimal solution for original instance. We have the following lemma.

Lemma 2.1.

$$\sum_{i \in S'} v_i \ge (1 - \varepsilon) \cdot OPT.$$

We interpret the left-hand side as solution to original instance (original values).

Proof. Let $\mathcal{O} \subset \{1, \ldots, n\}$ be an optimal solution.

$$\sum_{i \in \mathcal{O}} v_i = OPT.$$

For each object $i, v_i \ge D \cdot v'_i \ge v_i - D$. Therefore

$$\begin{split} \sum_{i \in \mathcal{O}} v_i &\geq D \cdot \sum_{i \in \mathcal{O}} v'_i \\ &\geq \sum_{i \in \mathcal{O}} (v_i - D) \\ &= \sum_{i \in \mathcal{O}} v_i - D |\mathcal{O}| \quad (|\mathcal{O} \leq n) \\ &\geq OPT - Dn \quad (Dn = \frac{\varepsilon V}{n} \cdot n = \epsilon V) \\ &= OPT - \varepsilon V \quad (V \leq OPT, \text{assuming all items fit in knapsack}) \\ &\geq OPT - \varepsilon OPT. \\ &= OPT(1 - \varepsilon). \end{split}$$

The solution S' from the dynamic programming algorithm satisfies

$$\sum_{i \in S'} v'_i \ge \sum_{i \in \mathcal{O}} v'_i$$

because S' is optimal for the rounded values. Then we have

$$\sum_{i \in S'} v_i \ge D \sum_{i \in S'} v'_i \ge D \sum_{i \in \mathcal{O}} v'_i \ge OPT(1 - \varepsilon).$$

Therefore S' has value $\geq (1 - \varepsilon)OPT$. Completed in time $O(n^3 \frac{1}{\varepsilon})$, thus the algorithm is an FPTAS.

Knapsack is NP-complete - all known poly-time algorithms for exact solutions have worst-case exponential run time.

2.7.7 All Pairs Shortest Paths

- Undirected graph with vertices $\{1, 2, ..., n\}$, l(i, j) is the length (or cost) from i to j $[l(i, j) = \infty$ if no edge].
- Goal: compute shortest paths for all pairs of vertices *i* and *j*.
- Define dist(i, j, k) to be the length of shortest path from i to j using only vertices from $1, 2, \ldots, k$ as intermediate nodes, where $1 \le i, j, k \le n$.
- The idea is to compute $dist(i, j, 0), \ldots, dist(i, j, n)$. Initially, dist(i, j, 0) = l(i, j). Relate dist(i, j, k) to smaller problems.
- i k : dist(i, k, k 1).
- i -j : dist(i, j, k 1).
- k -j : dist(k, j, k 1).
- Two possibilities for dist(i, j, k).
 - $-\operatorname{dist}(i, j, k-1)$: don't use vertex k.
 - dist(i, k, k 1) + dist(k, j, k 1): use vertex k as an intermediate node.
- Compute dist $(i, j, k) = \min\{\operatorname{dist}(i, j, k-1), \operatorname{dist}(i, k, k-1), \operatorname{dist}(k, j, k-1)\}$.

2.7.8 Traveling Salesman Problem (TSP)

• Instance: *n* cities numbered $1, \ldots, n$, for each pair *i*, *j* of cities, d_{ij} is the distance (cost of traveling) from *i* to *j*. (not necessarily symmetric $d_{ij} \neq d_{ji}$ is possible) [Complet weighted directed graph]

Algorithm 16: Floyd-Warshall Algorithm

Function (): Input: **Output:** for i = 1 to n do for j = 1 to n do dist(i, j, 0) = l(i, j);end end for k = 1 to n do for i = 1 to n do for j = 1 to n do $dist(i, j, k) = min\{dist(i, j, k-1), dist(i, k, k-1), dist(k, j, k-1)\};$ end end end \mathbf{end}

• Goal: find an optimal tour of the *n* cities: start at 1, visit each city exactly once, and return to 1 with minimum total distance. Let $[n] = \{1, \ldots, n\}$, find a permutation $\pi : [n] \to [n]$ such that

$$c(\pi) = \left[\sum_{i=1}^{n-1} d_{\pi(i),\pi(i+1)}\right] + d_{\pi(n),\pi(1)}$$

is minimized.

- There are (n-1)! permutations to consider: $1, \pi(2), \pi(3), \ldots, \pi(n)$. Brute force search (consider all permutations) is $O(n!) = O(2^{n \log n})$ time.
- Subproblems: Let $S \subset [n]$ with $1 \in S$ and $j \in S$, find the path from 1 to j that visits all cities in S with minimum total cost. For $S \subset [n]$ with $1, j \in S$, define C(S, j) to be the length of shortest path from 1 to j that visits each city in S exactly once.

$$\min_{j} C([n], j) + d_{j1} = \text{ cost of optimal tour.}$$

- Base case: $C(\{1\}, 1) = 0$. $C(S, 1) = \infty$ if |S| > 1.
- How to compute C(S, j), suppose the second to last city on the optimal path through S from 1 to j is i. Then

$$C(S,j) = \min_{i \in S: i \neq j} C(S - \{j\}, i) + d_{ij}$$

Run time: $\leq 2^n$ subsets of $[n], \leq n$ subproblems C(S, j) for each subset S. O(n) time for each subproblem $\implies O(2^n n^2) = O(2^{n+2\log n})$. To be more exact,

$$\sum_{s=2}^{n} \binom{n-1}{s-1} (s-1)^2 = \sum_{s=1}^{n-1} \binom{n-1}{s} s^2 \le n^2 \sum_{s=1}^{n-1} \binom{n-1}{s} = n^2 (2^{n-1}-1) = O(2^n n^2).$$

All known exact algorithms for TSP require exponential time. Can get fast approximate solutions in some special cases. TSP with triangle inequality

$$d_{ij} \le d_{ik} + d_{kj}, \forall i, j, k.$$

Polynomial-time 2-approximation algorithm (at most twice optimal cost), based on minimum spanning tree algorithms. With little more work, which uses minimum cost perfect matching, can be improved to 3/2-approximation.

• Euclidean TSP: distances are Euclidean distances cities are points in the plane (or \mathbb{R}^n). There is a PTAS. For each fixed ε , get a $(1 + \varepsilon)$ -approximation solutions in time polynomial in n.

Algorithm 17: Dynamic Programming for TSP

```
Function TSP():

Input:

Output:

C(\{1\}, 1) \leftarrow 0;

for s = 2 to n do

for all S \subset [n] with |S| = s and 1 \in S do

|C(S, 1) = \infty;

for all j \in S, j \neq 1 do

|C(S, j) = \min_{i \in S, i \neq j} \{C(S - \{j\}) + d_{ij}\};

end

end

return \min_{j \neq 1} \{C([n], j) + d_{j1}\};

end
```

2.8 Greedy Algorithms

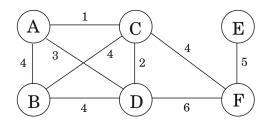
Make locally optimal decisions, (e.g., continually extending a partial solution one step at a time with the decision that looks best at the moment, the greedy choice). Prove this leads to a globally optimal solution. Of course, only works for some problems and some greedy strategies.

2.8.1 Minimum Spanning Tree (MST)

Given a weighted, connected, undirected graph, compute a spanning tree (a tree that includes all the vertices) of minimum total weight.

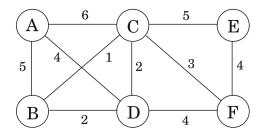
More formally:

- Instance: undirected graph G = (V, E), where $E \subset V \times V$, edge weights w_e for each $e \in E$.
- Goal: compute a tree T = (V, E') with $E' \subset E$ that minimizes weight $(T) = \sum_{e \in E'} w_e$.



Example 2.11.

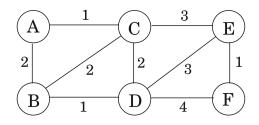
- Properties of Trees
 - A tree is a connected, acyclic graph.
 - A tree on n vertices has n-1 edges.
 - A connected, undirected graph G = (V, E) with |E| = |V| 1 edges is a tree.
 - An undirected graph is a tree if and only if there is a unique path between each pair of vertices.
- Greedy Strategy (Krsukal's Algorithm)
 - Start with empty graph.
 - Repeatedly add the next lightest edge that does not induce a cycle.
 - We need to show correctness (this always yields a MST)
 - How to implement efficiently



Example 2.12.

• Cut Property: Suppose edges X are part of a minimum spanning tree of G = (V, E). Pick any subset $S \subset V$ for which X does not cross from S to V - S. Let e be the lightest edge across the S, V - S partition. Then $X \cup \{e\}$ is part of MST.

Proof. X is part of some MST T. If is part of T, there is nothing to prove. Suppose e is not part of T. We will construct a new MST T' that contains $X \cup \{e\}$ by modifying T. Add e to T, which creates a cycle, so there must be some other edge e' corssing the cut. Let $T' = T - \{e'\} \cup \{e\}$. T' is also a tree - connected, acyclic, same numbers of edges, vertecies. weight $(T') = \text{weight}(T) - w_{e'} + w_e$ and $w_e \leq w_{e'}$ (because e is a lightest edge across the cut). That implies weight $(T') \leq \text{weight}(T)$. Since T is a MST, weight $(T) \leq \text{weight}(T')$, so weight(T) = weight(T') and T' is also a MST. T' contains $X \cup \{e\}$.



Example 2.13.

Function $MST(E)$:	
Input	
Input.	
Input: Output:	
1 Repeatedly add the next lightest edge that does not induce a cycle;	
end	

- *e* is lightest edge that does not make a cycle
- each edge across cut does not make cycle
- $\implies e$ is lightest edge across cut.
- \implies e is safe to add by the cut property.

2.8.2 Disjoint Sets Data Structure (also called Union-Find Data Structure)

- For efficient implementation of Kruskal's algorithm.
 - Kruskal's algorithm maintain a forest that is a subgraph of a MST.
 - Initially, each vertex is in its own tree.

- In each step, two trees in the forest are merged.
- We will store the trees as sets in this data structure.
- Operations: for elements x and y of the universe, e.g. vertices, under consideration
 - makeset(x): create a singleton set containing x.
 - find(x): to which set does x belong?
 - union(x, y): merge the sets containing x and y.
- Implementation use trees

Algorithm 19: makes with run time O(1)

 Function makeset(x):
 Input: π is the parent points, unless root node then points to itself, rank is the height of subtree rooted at x

 Output:
 $\pi(x) \leftarrow x;$
 $\mathbf{1}$ $\pi(x) \leftarrow x;$
 $\mathbf{2}$ $\operatorname{rank}(x) \leftarrow 0;$

 end

Algorithm 20: find with run time $O(\log n)$ which is proportional to depth of x in its tree depth which is less than or equal to $\log n$

Function find(x): Input: Output: returns root of x's tree while $x \neq \pi(x)$ do | $x \leftarrow \pi(x)$; end return x; end

Example 2.14. Given elements A, B, C, D, E, F, G.

1. makeset(A), makeset(B), ..., makeset(G):

 $A^0 \quad B^0 \quad C^0 \quad D^0 \quad E^0 \quad F^0 \quad G^0.$

2. union(A, D), union(B, E), union(C, F)

$$A^0 \to D^1 \quad B^0 \to E^1 \quad C^0 \to F^0 \quad G^0.$$

3. union(C, G), union(E, A)

 $C^0 \to F^1 \leftarrow G^0 \quad B^0 \to E^1 \to D^2 \leftarrow A^1.$

4. union(B, G).

Proposition 2.6.

Property 1. For any x, rank(x) < $\pi(x)$. (ranks along a path to a root are strictly increasing)

Property 2. A root node of rank k has at least 2^k nodes in its tree.

Proof. A root node of rank k is formed by joining two trees of rank k-1. Statement follows by induction:

Algorithm 21: union with run time $O(\log n)$

Function union(x): Input: **Output:** $r_x \leftarrow \text{find}(x);$ 1 $r_y \leftarrow \text{find}(y);$ $\mathbf{2}$ if $r_x = r_y$ then //x and y are already in the same set 3 return $\mathbf{4}$ end 5 if $\operatorname{rank}(r_x) > \operatorname{rank}(r_y)$ then 6 $\pi(r_y) = r_x;$ 7 8 else $\pi(r_x) = r_y;$ 9 if $\operatorname{rank}(r_x) = \operatorname{rank}(r_y)$ then 10 $\operatorname{rank}(r_y) \leftarrow \operatorname{rank}(r_y) + 1;$ 11 end 12end 13 return; 14 end

- $k = 0 \implies 1 \text{ node (makeset)}$
- if statement is true for k-1, then it is also true for k two trees of rank k-1 have greater than 2^{k-1} nodes each. That implies resulting tree of rank k has greater than $2^{k-1} + 2^{k-1}i = 2^k$ nodes.

Property 3. If there are n elements overall, there are at most $n/2^k$ elements of rank k.

Proof. Let R be the number of elements of rank k. Then there are more than $R \cdot 2^k$ nodes in these R trees. Because there are n nodes over all,

$$R2^k \le n \implies R \le \frac{n}{2^k}.$$

Corollary 2.2. The maximum rank is less than $\log n$.

Kruskal's algorithm maintains a collection of connected components (trees). Initially, each vertex is in its own components. Repeatedly joins components by adding the next lightest edge.

- Run time:
 - -|V| makes operations (initialization)
 - -2|E| find operations: $O(\log |V|)$ (look up endpoints of each edge)
 - -|V| 1 union operations: $O(\log |V|)$ (merging trees)
 - sort E: $O(|E| \log |E|) = O(|E| \log |V|)$.

2.8.3 Some optimization for the data structure

The path compressed find(x) has "typical" run time O(1). Formally, the amortized run time is $O(\log^* n)$, where $\log^* n = \min\{i | \log^{(i)} n \leq 1\} =$ number of times the logarithm needs to be taken to get down to 1. That means any sequence of n operations takes at most $O(n \log^* n)$ time.

Algorithm 22: Kruskal's algorithm

F	function ():
	Input: Connected, weighted graph $G = (V, E)$ with edge weights w_e
	Output: MST defined by edges X
1	$\mathbf{for} \ v \in V \ \mathbf{do}$
2	makeset(v);
3	end
4	$X \leftarrow \emptyset;$
5	Sort the edges E by weight;
6	for $\{u, v\} \in E$ in increasing order of weight do
7	if find(u) \neq find(v) then
8	add edge (u, v) to X;
9	union (u, v) ;
10	end
11	end
12	$\mathbf{return} X;$
e	nd

Algorithm 23: find (based on path compression)

F	Function $find(x)$:
	Input:
	Output:
1	if $x \neq \pi(x)$ then
2	$\pi(x) = \operatorname{find}(\pi(x));$
3	end
4	return $\pi(x)$;
е	end

- 2. $\log^* 4 = 2$.
- 3. $\log^* 16 = 3$.
- 4. $\log^* 2^{16} = 4$.
- 5. $\log^* 2^{2^{16}} = 5.$

2.8.4 Amortized Analysis Example

- Binary counter on n bits.
 - increment operation
 - * bits cost
 - * 00000: 0
 - * 00001: 1 * 00010: 2
 - * 00011: 1
 - * 00100: 3
 - * 00101: 1
 - * 00110: 2
 - * 00111: 1
 - * 01000: 4
 - * :
 - * 11111: 1
 - * 00000: 5
 - worst case: flip n bits
 - most of the time doing less
 - * 1/2 of time (2^{n-1}) : 1 flip * 1/4 of time (2^{n-2}) : 2 flips * 1/8 of time (2^{n-3}) : 3 flips * : * $1/2^k$ of time (2^{n-k}) : k flips * : * $1/2^n$ of time (1): n flips
 - The total cost over 2^n increments:

$$2^{n-1} \cdot 1 + 2^{n-2} \cdot 2 + \dots + 2^{n-k} \cdot k + \dots + 1 \cdot n = \sum_{k=1}^{n} 2^{n-k} k \le 2 \cdot 2^{n}.$$

2.8.5 Amortized analysis (accounting method)

- *n* elements
 - All ranks are between 0 and $\log n$ (we prove max rank is less than $\log n$)
- Divide positive ranks into intervals:

 $\{1\}, \{2\}, \{3,4\}, \{5,6,\ldots,16\}, \{17,\ldots,2^{16}=65536\}, \ldots, \text{ up to } \log n.$

- intevarls are of form $\{k + 1, ..., 2^k\}$ up to $2^k = \log n$ (assume *n* is a power of 2 for simplicity) - number of intervals is $\log^* n$.
- Start with $n \log^* n$ dollars.
 - Each operation must be paid for with dollars.

- Each node is given an allowance, when it ceases to be a root node.
- If the rank is in the interval $\{k+1,\ldots,2^k\}$, the node receives 2^k dollars.
- The number of nodes with rank greater than k is less than

$$\frac{n}{2^{k+1}} + \frac{n}{2^{k+2}} + \frac{n}{2^{k+3}} + \dots = n\left(\frac{1}{2^{k+1}} + \frac{1}{2^{k+2}} + \frac{1}{2^{k+3}} + \dots\right) = n \cdot \frac{1}{2^k} = \frac{n}{2^k}$$

That implies for the interval $\{k + 1, ..., 2^k\}$, we pay out at most $\frac{n}{2^k}2^k = n$ dollars. There are $\log^* n$ intervals, so we pay out at most $n \log^* n$ dollars.

- Look at a find operation find(x):
 - For each node y along the path either:
 - 1. rank(y) and rank($\pi(y)$) are in the same interval.
 - 2. rank(y) and rank($\pi(y)$) are in different intervals. (rank($\pi(y)$) is in a higher interval).
 - * There are at most $\log^* n$ nodes of type 2.
 - * Each node of type 1 we'll pay a dollar for the computation step. Need that each node has enough money to make these payments. Each time a node makes a payment, it gets a new parent with higher rank than the old parent. If y's rank is in the interval $\{k + 1, \ldots, 2^k\}$, it has to pay at most 2^k dollars before its parent has rank in a higher interval.
 - * For each find call, step of type 2 happends at most $\log^* n$ times. It is less than $n \log^* n$.
 - * Across all find calls, type 1 happens at most $n \log^* n$ times because we allocated $n \log^* n$ dollars and the nodes are able to pay a dollar for each type 1 step. It is less than $n \log^* n$.

2.8.6 Prim's Algorithm

Recall that Kruskal's algorithm a forest that is a subset of a MST, while Prim's algorithm grows a tree that is a subset of a MST. Repeatedly add lightest edge going out of the tree.

• Implemented using a priority queue.

Algorithm 24: Prim's Algorithm

```
Function primMST(V, E):
       Input: connected, undirected graph G = (V, E) with edge weights w_e
       Output: a MST defined by array prev
       for all u \in V do
 1
           \cot(u) = \infty;
 \mathbf{2}
           \operatorname{prev}(u) = \operatorname{nil};
 3
       end
 \mathbf{4}
       Choose an initial node u_0;
 \mathbf{5}
       \cot(u) = 0;
 6
       H = \text{makequeue}(V); // using cost values as keys, O(|v|)
 7
       while H is not empty do //O(|v| \log |v|)
 8
           v = \text{delete}(H); // extracts the vertex in H with lowest cost, O(\log |v|)
 9
           for each \{v, z\} \in E do
10
               if cost(z) > w(v, z) + cost(v) then
11
                   cost(z) = w(v, z) + cost(v); // H is updated with the new cost for z
12
                   \operatorname{prev}(z) = v;
13
               end
14
           \mathbf{end}
15
16
       end
       return prev;
\mathbf{17}
   end
```

2.8.7 Boruvka's Algorithm for MST

- Brauvka phase
 - For each vertex v, mark the lightest edge touching v.
 - Determine the connected components formed by the marked edges.
 - Contract each component to a single vertex, keeping only lightest edges between components.

Let G' be the graph obtained after the Boruvka phase.

Proposition 2.7. If G has n vertices, then G' has at most n/2 vertices.

Proposition 2.8. The marked edges are part of an MST (follows from cut property).

Can be make faster by adding randomization.

Definition 2.1. Let F be a forest in graph G and let u, v be two vertices.

- 1. If u, v are in the same tree of F, there is a unique path P(u, v) from u to v in F. Let $w_F(u, v)$ be the max weight of an edge on P(u, v). (If u, v are on the same tree, $w_F(u, v) = \infty$.)
- 2. We say that (u, v) is F-heavy if $w(u, v) > w_F(u, v)$.
- 3. We say that (u, v) is F-light if $w(u, v) \leq w_F(u, v)$.

Lemma 2.2. Let F be any forest in G. If (u, v) is F-heavy, then (u, v) is not in any MST for G.

Theorem 2.3. Given a graph G and a forest F, all F-heavy edges can be identified in O(n + m) time. (MST verification algorithm)

Lemma 2.3. Let G be a graph and $p \in (0, 1)$ be probability. Obtain a subgraph G' of G by keeping each edge with probability p. Let F be a minimum spanning forest in G' Then the expected number of F-light edges in G is at most n/p.

2.8.8 Randomized-MST(G)

Algorithm 26: Randomized-MST

Function Randomized-MST(G): **Input:** G = (V, E) and |V| = n, |E| = m**Output:** Use three Boruvka phases to compute a graph G_1 , with at most n/8 edges. Let C be the set of 1 edges marked during the three phases. If G_1 has only one vertex, return C; Randomly select a subgraph G_2 of G_1 by including each edge with probility 1/2; $\mathbf{2}$ 3 Call Randomized-MST(G_2) to obtain a minimum spanning forest F_2 for G_2 ; Identify the F_2 -heavy edges in G_1 , and delete them to obtain a new graph G_3 ; 4 Call Randomized-MST(G_3) to obtain a minimum spanning forest F_3 for G_3 ; 5 **return** the forest $F = C \cup F_3$; 6 end

Proposition 2.9. Expect run time is O(n+m).

- G: n vertices, m edges,
- $G_1: \leq n/8$ vertices, $\leq m$ edges, O(n+m)
- G_2 : $\leq n/8$ vertices, $\approx m/2$ edges, T(n/8, m/2)
- Identifying F_2 -heavy edges in G_1 , O(n+m)
- $G_3: \leq n/8$ vertices, $\approx m/4$ edges, T(n/8, n/4).

Proposition 2.10.

$$T(n,m) \le T(m/8, n/2) + T(n/8, n/4) + c(n+m) \le 2c(n+m).$$

2.9 Computational Complexity

- P vs. NP problem is the biggest open problem in theoretical computer science.
- NP-complete: presumably intractable problems (suspected to require exponential time).
- P (determistic polynomial-time): problems for which solutions can be found by a polynomial-time algorithm.
- NP (nondetermistic polynomial-time): problems for which solutoins can be verified (to be correct or not) by a polynomial-time algorithm.
- Polynomial-time algorithm: $O(n^c)$ time for some constant c.
- NP-complete: "hardest" problems in NP. If some NP-complete problem can be solved in polynomial time, then all NP problems can be solved in polynomial time.

Example 2.16. Composites problem:

- Instance: a number *n*.
- Question: is *n* a composite number? (if so, produce two factors)
- Solution: a pair of numbers k, l > 1 such that $n = k \cdot l$.
- Verification algorithm: input: number n, candidate solution (k, l): multiply $k \cdot l$, and check if the answer equals n:
 - if it does, output yes.
 - if it doesn't, output no.
- Suppose n has 1000 bits, finding two 500-bit factors would take $O(2^{500})$ time. But given two 500-bit numbers, can multiply together efficiently and check. Finding the factors is the hard part.

Р	NP
Shortest path 2-SAT	longest simple path 3-SAT
Eulerian cycle	Hamiltonian cycle

Example 2.17. • Eulerian cycle: find a cycle that use each edge once.

- Hamiltonian cycle: find a cycle that visits each vertex once.
- 3-SAT Canonical NP-complete problem.
 - instance: 3CNF formula (CNF: conjunctive normal form)
 - Example: $\phi = \underbrace{(x_1 \lor \overline{x}_2 \lor x_4)}_{\text{clause consists of 3 literals}} \land (x_5 \lor \overline{x}_1 \lor x_2) \land (x_4 \lor x_5 \lor x_3), \text{ where } x_1, \dots, x_n \text{ are Boolean}$

variables, literal: variable x_i or negation \overline{x}_i

- Question: is ϕ satisfiable? That is to say, is there a way to assign T/F values to x_1, \ldots, x_n so the formula evaluates to true?
- 2-SAT P:
 - instance: 2 CNF formula ϕ .
 - Example: clauses of size 2 instead of size 3: $\phi = (x_1 \vee \overline{x}_3) \wedge (\overline{x}_2 \vee x_5) \wedge (x_4 \vee x_3)$.
 - Solvable in polynomial-time: reduce (convert) into a graph problem then do some graph reachability test.

NP-problems:

- 3-SAT
- CLIQUE: Given a graph G and $k \ge 1$, is there a fully connected subset of vertices of size k?
- TSP
- VERTEX-COVER: Given a graph G and $k \ge 1$, is there a set of vertices of size k that touch every edge?
- HAM-CYCLE
- SUBSET-SUM: Given a list of numbers $L = (a_1, a_2, ..., a_n)$ and a target number t, is there a sublist of L that sums to t?
- KNAPSACK

Definition 2.2. A problem is NP-complete if every problem in NP is reducible to it in polynomial time.

Definition 2.3. A is polynomial-time reducible to B if there is a polynomial-time computable function f such that for all instances I of A,

$$I \in A \implies f(I) \in B,$$

$$I \notin A \implies f(I) \notin B,$$

where $I \in A$ means I is a positive instance of A (yes answer), and $I \notin A$ means I is a negative instance of A (no answer).

Proposition 2.11. If A is polynomai-time reducible to B, and $B \in P$, then $A \in P$.

Proof. Given instance I of A, compute f(I) and use the algorithm for B to solve f(I). Output this answer as the answer for I.

Proposition 2.11 implies easiness translates downward over reductions.

Proposition 2.12. If A is polynomial-time reducible to B, and $A \notin P$, then $B \notin P$.

Proof. Counterpositive of Proposition 2.11.

Proposition 2.12 implies hardness translates upward over reductions.

Proposition 2.13. If A reduces to C and C reduces to B, then A reduces to B.

Proof. Compose the two reduction.

Theorem 2.4. 3-SAT polynomial-time reduces to CLIQUE.

Proof. Let ϕ be a 3CNF formula with m classes c_1, \ldots, c_n and n variables x_1, \ldots, x_n . We will construct an m-partite graph with m triples of 3 vertices. For each class clause, there is a triple of vertices labeled by the classes's literals. Connect two vertices if and only if:

- they are in different triples.
- they have compatible labels (don't connect x_i to \overline{x}_i).

Example 2.18. Let $\phi = \underbrace{(x_1 \lor \overline{x}_2 \lor x_3)}_{c_1} \land \underbrace{(\overline{x}_1 \lor x_2 \lor x_3)}_{c_2} \land \underbrace{(\overline{x}_1 \lor x_2 \lor \overline{x}_3)}_{c_3}.$

Proposition 2.14. ϕ is satisfiable if and only if G has a clique of size m.

2.9.1 Subset-Sum Problem

Given a collection of numbers x_1, \ldots, x_k and a target number t, is there a subcollection that sumes to t? More precisely, is there a subset $I \subset \{1, \ldots, k\}$ such that $\sum_{i \in I} x_i = t$?

Theorem 2.5. Subset-Sum is NP-complete.

Proof. We will show 3-SAT polynomial-time reduces to Subset-Sum. Given a formula ϕ with variables x_1, \ldots, x_l , and clauses c_1, \ldots, c_k , we define numbers $y_1, \ldots, y_l, z_1, \ldots, z_l, g_1, \ldots, g_k, h_1, \ldots, h_k$ (2l + 2k numbers) as follows. Each number has k + l digits.

Proposition 2.15. ϕ is satisfiable if and only if and list has a sublist that sublist that sums to t.

Example 2.19. $\phi = (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor x_2 \lor \overline{x}_3), l = 3 = k$, we have 12 numbers with 6 digits.

2.10 Set Cover

Given a universe U of n elements, a collection $S = \{S_1, \ldots, S_k\}$ of subsets of U, and a cost function $c: S \to \mathbb{Q}_+$, find a minimum cost subcollection of S that covers U. In other words, find $I \subset \{1, \ldots, k\}$ such that $U \subset \bigcup_{i \in I} S_i$ and $\sum_{i \in I} c(S_i)$ is minimized. Note: Set Cover is NP-complete.

2.10.1 Greedy Approximation Algorithm

• Idea: iteratives pick the most cost-effective set and remove the covered elsements, until all elements are covered. Let C be the set of elements already covered at the beginning of an iteration. The **cost-effectiveness** of a set S is the average cost at which it covers new elements:

$$\frac{c(S)}{|S-C|}.$$

Al	gorithm 27:
F	unction ():
	Input:
	Output:
1	$C = \emptyset;$
2	while $C \neq U$ do
3	Find a set S whose cost-effectiveness is smallest (S minimizes $\frac{c(S)}{ S-C }$);
4	Let $\alpha = \frac{c(S)}{ S-C };$
5	Add S to the collection and for each $e \in S - C$, set price $(e) = \alpha$;
6	$C = C \cup S;$
7	end
8	Output the collection of selected sets;
e	nd

Number the elements of U as e_1, e_2, \ldots, e_n in the order they are covered by the algorithm, resolving ties arbitrarily.

Lemma 2.4. For each $k \in \{1, ..., n\}$,

$$\operatorname{price}(e_k) \le \frac{OPT}{n-k+1},$$

where OPT is the cost of an optimal solution.

Proof. In any iteration, the remaining elements can be covered at a cost of at most OPT (use the sets in the optimal solution that we haven't selected). Therefore, there must be a set with cost-effectiveness at most $OPT/|\overline{C}|$ (averaging argument). In the iteration where e_k is covered, $|\overline{C}| \ge n - k + 1$ elements. Since e_k is covered by the most cost-effective set in the iteration,

$$\operatorname{price}(e_k) \leq \frac{OPT}{|\overline{C}|} \leq \frac{OPT}{n-k+1}.$$

Theorem 2.6. This is an H_n -approximation algorithm, where $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$.

Proof. The total cost of the set cover is

$$\sum_{k=1}^{n} \operatorname{price}(e_k) \le \sum_{k=1}^{n} \frac{OPT}{n-k+1} = OPT \sum_{k=1}^{n} \frac{1}{n-k+1} = OPT \cdot H_n.$$

Corollary 2.3. This is an $O(\log n)$ - approximation algorithm. H_n is tight for this algorithm, n elements x_1, x_2, \ldots, x_n , set $S_1, \ldots, S_n, S, S_i = \{x_i\}, \cos(x_i) = \frac{1}{i}, S = \{x_1, \ldots, x_n\}, \cos(S) = 1 + \varepsilon$.

For Greedy Approximation Algorithm: it picks $S_n, S_{n-1}, \ldots, S_2, S_1$, cost H_n , and the performance ratio is $H_n/(1+\varepsilon)$.

2.11 Approximating TSP with Triangle Inequality

Let G be a complete graph on n vertices. For each pair u, v of vertices there is a cost(u, v). Triangle inquality: for all u, v, w, we have

$$\cot(u, w) \le \cot(u, v) + \cot(v, w).$$

Goal: find a minimum cost tour.

Algorithm 28: Approximating TSP with Triangle Inequality		
Function ():		
	Input:	
	Output:	
1	Find an minimum spanning tree T of G ;	
2	Double every edge of T to obtain an Eulerian graph ; $//$ every vertex has even degree	
3	Find an Eulerian cycle \mathcal{T} of this graph;	
4	Let C be the tour that follows \mathcal{T} visiting vertices in order of first appearance in \mathcal{T} ; // taking	
	shortcuts to not repeat vertices	
5	Output C ;	
end		

Theorem 2.7. This is a 2-approximation algorithm.

Proof.

- $\operatorname{cost}(T) \leq OPT$.
- $\operatorname{cost}(\mathcal{T}) = 2\operatorname{cost}(T).$
- $\operatorname{cost}(C) \leq \operatorname{cost}(\mathcal{T}).$

Therefore, $\operatorname{cost}(C) \leq \operatorname{cost}(\mathcal{T}) = 2 \operatorname{cost}(T) \leq 2 \cdot OPT$.

Algorithm 29:		
Function ():		
	Input:	
	Output:	
1	Find an minimum spanning tree T of G ;	
2	Compute a minimum-cost perfect matching M on the set of odd-degree vertices of T ;	
3	Add M to T , obtaining an Eulerian graph;	
4	Compute an Eulerian cycle \mathcal{T} ;	
5	Let C be the shortcut tour of \mathcal{T} ;	
6	Output C ;	

 \mathbf{end}

Theorem 2.8. This is a 2-approximation algorithm.

Proof.

- $\operatorname{cost}(T) \leq OPT$.
- $\operatorname{cost}(M) \leq \frac{OPT}{2}$.
- $\operatorname{cost}(\mathcal{T}) = \operatorname{cost}(T) + \operatorname{cost}(M).$
- $\operatorname{cost}(C) \leq \operatorname{cost}(\mathcal{T}).$

Therefore, $\operatorname{cost}(C) \le \operatorname{cost}(\mathcal{T}) = \operatorname{cost}(T) + \operatorname{cost}(M) \le \frac{3}{2} \cdot OPT.$

2.12 Computational Complexity

- $p \implies q$ is logically equivalent to $\neg p \lor q$.
- $p \implies q$ is logically equivalent to $\neg q \implies \neg p$.

Proposition 2.16. ϕ is unsatifiable if and only if there is a variable x such that there is path from x to $\neg x$.

2.12.1 Savitch's Algorithm

The graph recheability problem is

 $GR = \{ \langle G, u, v \rangle : G \text{ is a directed graph and there is a path from } u \text{ to } v \text{ in } G \}.$

- Instance: Graph G, vertices u, v.
- Question: Is there a path from u to v.
- BFS, DFS: linear time, linear space.
- Savithc's algorithm: sublinear space $O(\log^2 n)$.