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1 Introduction and notations

1.1 Taylor series

Assume that f(z) has k + 1 derivatives in an interval containing the points z¢ and x¢ + h. Then

FED(g),

k k) k+1
P @) +

/ h? ., h

where £ is some point between zg and zy + h. From Taylor series, we have

T — f(x k—1 k
f/(ff()) _ f( 0“1‘]”2 f( 0) _ |:;Lf”($0) NI hT (k)(x())_’_ (kil)!f(k+1)(f)

Further, we have

f/(.%o) _ f(xo + h}z - f(-’L'O) ~ g|f//(x0)| as long as f’(a?o) 7& 0.
for small enough h. We write

1.2 Big-O notation
Suppose that f(h) and g(h) are two functions of h. We say f(h) = O(g(h)) if there exists some constant C' # 0, such that
|f(h)] < C|g(h)]| for sufficiently small h.

Hence, (1) is equivalent to the follows: there exists a constant C' such that

f/(ﬂﬁo) _ f(-xO + h})L - f($0)

< Ch,

where C' can be determined by the Taylor series.

1.3 Little-o notation
Suppose that f(h) and g(h) are two functions of h. We say f(h) = o(g(h)) if

‘ggg’—mash—n).

That is to say, f(h) — 0 faster than g(h) — 0.

e Remark: If f(h) = o(g(h)), then f(h) = O(g(h)), then converse may not be true.
e Example: 2h3 = O(h?). There exists a C such that 2h = 2;—33 < C, so we can choose C =1 for all h < % (h is sufficiently

small). Is 2h3 = o(h?)? True, since 2h = 2,%23 —0ash—0.
e Example: We can show that

1 —cosh =o(h)
1 —cosh = O(h?)

2 Vectors and matrix norms
e For a vector ¥ € R™, then [ norm is defined as

n 1/2
S ST (2 2, .2\1/2 _ 2
2 = = = § )
(]| #TE = (27 + 23 + ;) ( xz)

i=1

1
x2
where ¥ =

Tn
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1/p

ly morm: 1, = ( 5ol
1=

loo morm: ||#]|ec = lrél%xn{|xz|}

n
l; norm: ||Z||1 = Y |z4].
i=1

—

Example: For all vectors in R?, 7 = [il], let all norms || - || = 1, we have
2

| Z|l2 = \/x? + 23 = 1, which is a unit cirle .

|Z]|cc = max{|z1],|z2|}, which is a square (box) with side equals 2

|Z]|1 = |x1] + |x2| = 1, which is a diamond .

Example: ¥ = {_12] , we have
[#]l0 < [1Z]l2 < V2[|Z]|0o
[Z]lo0 < 111 < 2|7
172 < 17l < V2] 72
and for any ¥ € R", we have

1700 < 11Zll2 < V7| 7|00
170 < 17l < 0l 7]

1702 < €] < v/nl|Z(l2

e In R™, all norms are equivalent, i.e. there exist constants ¢ and C, such that ¢||Z||, < ||Z]|a < C|Z||p-

2.1 Matrix norm

Given an m x n matrix A. The induced or normal norm of A associated with each vector norm is defined by

Az
” I max [|AZ].
O TR

1Al =

It can be shown that the induced norm satisfies

1) |A]| > 0; ||A|| = 0 if and only if A =0 (zero matrix).
2) [leA]l = |all|A]l, Vo € R.

3) A+ Bl <Al + B, for A, B € R™*".

4) [|AB|| < [[A[IBII

[AZ]|
llll

Proof of 4): Since || A|| = mjx IAZ] e have IAIZ|| = ql;%( [|AZ||. That is to say, || AZ|| < ||A]|||Z]]. Therefore, we have
xT

IABZ|| < [[A[l|BZ]| < [[AIB]IZ] = r{l;gl\ABfH < [ AIIIBIIIZ]

Therefore, ||AB|| = max HABI” < [ A[|||B]|-
T#0

2.2 Calculating induced matrix norms

Let # be a vector with ||Z]e =1, where |z;] <1,j=1,...,n.

||A:vHoof max Za”xj § _max Z|a”|\xj|< max Z\a”|

...............
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n
To show the equality, choose i = p the number of the row of maximum sum, that is, max >~ laijl = 3 |ap;|. Denote
i=1,...,m ;=] =1

T -1 ap; < 0
¥= | | with &; = sign(a,;) = 0 ap; = 0. Hence, we have a,;%; = |a,;|. For this particular vector,
T 1 ap; >0

n

n n
1AZ]|oo = max | " aid| > | D apds| = layl.
T =1 j=1

=1

Hence,
n

n n
S lagsl < 1470 < [4l1e < lags| = [Alloo = max S Jayl.
2 2 LS

m
Exercise: show that ||Al|; = _max
J=1n

yeees Tl g —

|aij].
1

2.3 The induced 2-norm and spectral radius

|All2 = max [|AZ|| = max [(AZ)T AZ]'/? = max [T AT A7)/
1] 2=1 1] 2=1 IZ]>=1

We can get that AT A is symmetric and 7 AT AZ > 0,7 # 0 (positive semi-definite). Let B = AT A, which has non-negative
eigenvalues denoted by )\;, and let Z; be corresponding eigenvector. Then ;E'iT:Ej = 0;; (exercise). Because B is symmetric
(BT = B). Define the inner product, (%) = &1y = ¢ &, where & and ¥ are eigenvectors of distinct eigenvalues of B, we

n
have BZ; = \;@; and A; > 0. Let Z be a vector in R™ and its linear combination of Z; with ||Z]j2 = 1, i.e. = Y ¢;Z; and
i

B =1
1|2 = 30 ¢ = 1.
i=1

1A, = max |77 AT Az|"/
1Zll2=1
" T N 1/2
= max ZCZ@ ATA chfj
lZ]l2=1 | \ £ ;
i=1 j=1

= max
1Zll2=1

(
[

max
1Zll2=1

IN
VR
[]=
o
=N
N
~__
-
~
[\v]
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S
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.....

is the largest eigenvalue of A, we have

[All2 = |p| = max [p:i] = /p,
i=1,....m

where |p| is the spectral radius of A.

3

Unconstrained optimization
Consider ;n%{n ®(Z), where n > 1 and @ : R™ — R is a smooth function.
reR"™
A point #* is a global minimizer if ®(£*) < ®(Z) for all ¥ € R™.
2 TEeR™

Example: (%) =23 + 25+ 1, = [il} € R2. The solution of min ®(7) is * = [8} and Z* is a global minimizer.

A point ¥* is a local minimizer in N, if ®(Z*) < ®(Z) for all &£ € N. The point Z* is a strict local minimizer if
O(F*) < ®(Z).

)+ pTVO(E + tp).
+ tp)pdt.

8

Theorem: Suppose & : R” — R is continuous differentiable and 5 € R™. Then ®(Z + p) = P(
Moreover, if ® is twice continuously differentiable, ¢t € (0, 1), then V®(Z + p) = VO(Z) + fol V29(

8

1
O(Z+p) = (@) + (V@) P+ 5ﬁTv‘Zcp(er tp)p,t € (0,1),

where
2% 9% 2%
o0d Bm% Oxo0x1 0,011
Bz, 5% %P 8%
_, . _, Ox10x ox2 Oz, O0x
Ve(@) = | : | and V2@(7) = | 7777 = o
2% : : . :
Izn 9°® 2%® 9%®
O0z10x, Ox20x, ox2

%

Theorem (First-order necessary condition): Suppose that #* is a local minimizer and & is continuously differentiable

in an open neighborhood of Z*, then V®(Z*) = 0.

Proof. (By contradiction) Suppose that V®(#*) # 0 = ®(Z*) is not a local minimimum. Define p = —V®(7*),
PIVO(T) = —||[Ve(2*)| < 0. Because V®(Z) is continuous near &, there is a scalar T' > 0, such that p? V& (z* +1tp) <
0, for all ¢ € [0,T]. Hence for any t € (0,7T], ®(T* + tp) = ®(F*) + tpT VO(T* + tp), where t € (0,%). Thus, we have
(7" + tp) < (7).

Theorem (Second-order necessary condition): If #* is a local minimizer of ® and V2®(¥) exists and is continuous in
an open neighborhood of 7*, then V& (7*) = 0 and V2®(7*) is positive semidefinite (p7 V2®(z*)p > 0).

Theorem (Second-order sufficient condition): Suppose that V2®(F) is continuous in an open neighborhood of #*, and
V&(#*) = 0 and V2®(&*) is positive definite (i.e. p? VZ®(£*)p > 0). Then #* is a strict local minimizer, ®(7*) is a
local minimum.

Proof. Goal: if #* satisfies the given condition, then 5 # 0, ®(Z* +p) > ®(&*). Choose r > 0, so that V2®(Z) is positive
definite for all # € D = {Z]||Z — *|| < r}. Choose j # 0 with ||p]| < r, we have ||Z* + p— Z*|| <r, so &* +p € D.

1
O(F" +p) = ®(F") + ' VO(T") + 5p" V?O(2),
where 7 = 7* + tp,t € (0,1),Z € D. Since Z € D,p? V?®(Z)p > 0, hence &(7* + p) > &(z*).
Remark: A sufficient condition is not necessary.

Suppose that ® is convex, i.e. for a line segment that joins Z, §¥ € R" with ®(Z) < ®(). Let 2= AZ+ (1 —-X)7, A € [0, 1],
then ®(7) < A®(Z) + (1 — V) P(y) < D(7).

Theorem: When & is convex, any local minimizer #* is a local minimizer of ®. If additivity & is differentiable, then
any stationary point &* with V®(&*) = 0 is global minimizer.

Proof. (By contradiction) Assume #* is a local minimizer but not a global one which leads to contradiction. By the
properties of convexity.
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3.1 Optimization algorithms
e Beginning at & optimization algorithms generate a sequence of iterates {71}, that terminate when

(1) No more progress can be made.
(2) Solution point has been accurately approximated.

e Two strategies:

(1) Line search.
(2) Trust region.

3.2 The principles of line search method

e From the Taylor’s theorem, let the kth iterate be Zy, the search direction be p, and step length parameter be a.

1
(T + ap) = (&) + ap’ VO(T) + 504217TV2‘I’(51~: + tp)p;

for t € [0,a]. The rate of change of ® along the direction § at T is p7 V®(F). Hence, the unit direction of 5 of most
rapid decrease is the solution of the problem:

min 5’ V®(F;) = min ||F]|||V®(Zk)|| cos® = min ||[VO(F)| cos¥,

lI7ll=1 lI7ll=1 lI7l1=1
where 6 is the angle between p'and V®(Z)). The minimum is attained when cosf = —1, p'= —%, 7 e R2
e The steepest descent method is a line search method that moves along p, = —V®(Z}) at every step. Line search may use

search directions other than the steepest descent direction. We can choose an angle that is less than § with —V®(&y,).

O(Zy + epr) = ®(T) + epy VO(Ty) + O(?) if pTVO(Ty) = ||Pil|IVO(Zy)| cos O < 0, then ®(T) + epr) < D(Ty),
cos by, < 079k > gﬂT—ek < g

3.3 Line search algorithms

—

The iteration of line search algorithms is given by @1 = T, + apfk, where oy, € R, py = — B 'V®(%), B ! is the matrix
to be determined. The search direction pj, satisfies pf V® (7)) < 0, which results in the function value of ® reduced along p.

(a) For the steepest descent method By = I.
(b) If By = V2®(&) (exact Hessian matrix of ®). This is the Newton’s method.
(c) If By ~ V2®(%}) and is updated by means of lower-rank formula, this is so called Quasi-Newton’s Method.

Note that: if By is positive definite, then pf V®(Z1) = —(V® (&%) B, 'V®(&))) < 0. By, is positive definite, B, ! is also
positive definite 7 AZ > 0 = ZTATZ > 0, let §f = AZ, compute ¢/ B~ = T ATZ > 0.

3.4 Newton’s method
e Recall the first-order necessary condition for #* is V®(#*) = 0. The Taylor’s series for VO(&*) w.r.t. Z:
0=Vo(T*) = VO(T) + V(7)) (" — &) + O(F* — T)

Hence we have 7* — 7 ~ —(V2®(F;))"!V®(F). This implies that we could choose the next iterate Fj,1 in the
direction of —(V2®(#)) "'V ®(Z). This implies the Newton’s method Fxi1 = T, — ar (V2P (T%)) "1 VO(Ty).

3.5 Quasi-Newton’s method

e Recall: @ is twice continuously differentiable. By Taylor theorem, V®(Z + p) = VO(Z) + fol V2®(F + tp)pdt. Adding
and substracting the term V2®(Z)p, we have

VO(F + p) = VO(F) + V2O(2)p + /0 [V20(i + tp) — V2O(F)|pdt = VO(Z) + V2@ (Z)F + o(||p]]). (2)
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Setting & = Ty, p = Tx+1 — Tx. Then, equation (2) becomes
VO (ZTpy1) = VO(Zy) + V2O(Z) (Fp 11 — Tx) + 0| Zrs1 — Tnll)-

Suppose that #), and Fj41 lie in neighborhood of #*, within wich V2®(Z) is positive definite, and o(||Zx+1 — Zk||) — 0.

V(I)(fk)(ka — f}c) ~ V(I)(karl) — V(I)(fk) (3)

Equation (3) suggests that the new Hessian approximation, namely By should mimic the behavior of (3).

Bi115% = i, (4)
where 3, = 11 — Tk, Y = VO(Zr11) — VO(Zy). Bry1 should be updated by By, 8k, ¥ and satisfies (4).
e Two most popular formula for updating the Hessian approximation are
(1) SR1 (Symmetric-Rank-One) formula:
(Fx — Br5k) (G — Bisi)"
(Y — Brsi)T 5k '

(2) The BFGS (Broyden-Flecher-Goldfarb-Shanno, rank-two-update)

Byi1 =B+

el — 7
By5k5, B | Ukl

T = T >
8}, B3y Ui, Sk

Byy1 = By —

e Both (1) and (2) satisfy the secant condition Bjyy18; = . Furthermore, one can show that BFGS update generates
positive definite sequence if By is positive definite and .?,f i > 0.

o JTk+1 =Tkt appi
- - -1 -
Tk+1 = Tk — akBk Vq)(xk)

(1) By =1, Steepest Descent Method.
(2) By = V2?®(&#), Newton’s Method.
(3) By, approximation V2®(7) and is updated by iterative schemes, Quasi-Newton’s Method: SR1 and BFGS.

e Example: For BFGS to update Bk_1 other than By, let Hy := Bk_l, then the inverse approximation is Hyy1 =
(I — prSeyi ) Hi(I — prijuSy ) + piSisy, , where p, = %171«
3.6 Step length

e Wolfe Conditions:

(1) Amijo condition (sufficient decrease condition): a4 has sufficient decrease in the objective function ®(Z) along pj.
(T + api) < B(x) + CLaVe(F) P = I(w),

where C1 > 0, a > 0, VO(Z) i, < 0. Let I'(a) = &(Tx + api)-
(2) Curvature condition: reject unacceptable steps.

V(T + appr) TP > Co (VO(Z)) Tk, 0 < C1 < Cy < 1
N—————’
I () I (0)

e Strong Wolfe Conditions: To prevent large positive slope, here is the modified Wolfe Conditions:

(T + axpr) < O(Tx) + C1a VO(Z4) T P
|VO(Zy + ap@r) T pr, < Co| VO(T5)T Pl

which no longer allows the derivative to be too positive.

o Example: ®(Z) + ap)) < ®(Z)). Let a sequence of {Z;}§° for which ®(F}) = 2,k = 1,2,3,.... Say the minimum
of ®(F) = —1, the sequence will never reach the minimum in countably many steps. Instead, we let ®(Zy + api) <
(%) + CLaVe(T)Tpr = I(a), where Cy > 0 is a constant, empirically, C; = 107%, a > 0, and V®(F;,)Tpy < 0.
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3.7 Convergence rate of the steepest descent method

Consider the objective function

— bTZ, where A is SPD (symmetric positive definite) ,Z € R™ 5)
AT — 7

A minimizer 7 satisfies V®(Z*) = 0. #* is the unique solution of the linear system AZ = b (AZ — b = 0). For ® defined as
(5)-

m]iRn ®(F) & solving AT = b.
:E‘G n

(1) it = V().
(2) ar? Let o minimize (& — oy VO(Zy)) ie. ap = rgirﬁ (T, — ap®(Zy)).
are
Note that V®(Zy) = A%y — b= —7, and

(D(fk — aV@(fk)) = ‘I)(fk + osz) = (fk + OzT_"k)TA(fk + Oz’Fk) — gT(fk + on_"k).

prz

8]

AZy, + apry, 7L AT, + —rk PLAR, — b T — akl;TFk

2

O N N
Eal!
l\.’)

TN
-

S
T A7, + a7y (AZy — b) + if{Azﬁk — b7,

|

To find «y, take the derivative of ®(Z) — ap VP (Fy)) with respect to oy, we have

dd -
don, (l‘k + Oék’l”k) = akngFk + fg(Afk — b) = akngFk — ’Fgf‘k =0 (6)

Solving for ay, in (6),

We introduce the weighted norm
1% = 2" Az

We can show 3|7 — Z*||3 = ®(Z) — ®(F*), where &* is the solution of AZ = b, that is AT* = b. Since Tpi1 = Tk —
(M) V®(Z),). Note that V®(T) = AZy — b = A(Z, — Z*). We can derive

. 2 e w2 k) VO ()]
”‘”’“““””A‘”“‘x”A{l‘[vq><fk>TAv<I><f V@) A V(@ >1}'

Rate of convergence:

(7)

1% —2= |
|1 Z 41— |

Fpy1—F" .
{w < C Linear convergence
1z, —z*®

< C p-order convergence .

Due to the Luenberger (1984) the above equation (7) is bounded in terms of eigenvalues of A.

A=A\ 2 N
[T — 2|5 PO 1Zx — 7%,

where 0 < A1 < A\ < --- < )\, are eigenvalues of A.
Remarks

(1) The steepest descent method converges linearly since

|1 = lla _ o _ M=
[Ze =24 = At

(2) Suppose that @ ~ 1= ||Begr — T3 < [Tk — T*]|%, where € < 1.

When A = I the method converges in one step. Suppose that ’\” > 1,2 . ;il ~ 0.99999999999. Hence, ||T+1 — F*[|4 ~

|k — T4 ~ - ||Zo — Z*||4. * Define K(A) = /\—" the condltlon number” of A.
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3.8 Convergence rate of Newton’s method

e Definition: Lipschitz continuity. Let ® : D — R™, where D C R" for general m and n. The function is said to be
Lipschitz continuous on some set N C D. If there is a constant L > 0 such that

[©(Z1) — ©(Zo)|| < L[|#1 — o

for all &y, 71 € N and L is called the Lipschitz constant.
e Recall the Newton’s method:
Trt1 = Tp + i, Pk = —[V2O(Fk)] " V(). (8)

e Theorem: Suppose that ® is twice differentiable and that the Hessian V2®(Z) is lipschitz continuous in a neighborhood
of £* at wchich the sufficient conditions are satisfied. Then the iterative process (8) with ay = 1 satisfies

(1) If the starting point Zy is sufficiently close to &*, the sequence {Z\} converges quadratically to Z*, i.e.

[ e e O

|, — 2|2

(2) the sequence of gradient norm {||V®(Z)||} converges quadratically to zero. Namely, V®(Z;) = f(&) which is a
nonlinear function. Z* is the solution of m]iRn ®(Z) and &* is also the solution of f(Z) = 0.
FeRn

e We have the following

Tpr1 = Tk + Pr
B = —V20(2,) " V()

where Z* is the minimizer that satisfies V®(2*) = 0 and

Tpyp1 =T =T+ Pp — 7
=T, — & — V2O(F,) V(L)
= V20 (%) T V2O(Fh) (Fy — &) — V(Th)]
= V20(Z) H[V2O(T) (T), — T°) — (VO(T) — VO(TY))]

RHS

By the Taylor’s series, we have

1
V(@) - VO) = [ Ve + @ - )@ - )
0

1
|RHS|| = ||V2® () (&) — &) — / V2O(Fy + H(Ty — 7)) (T — T°)dt||
0
1
= / [Vz@(fk) — V2<I>(fk + (& — ) (& — Z)dE]|
0
1
< / V20 (2y) — V20T + (i — )| — 7 |t
0
1

< [ Ll -l - 7 ar
0

1
| | L

1
ZL|| @ — 2.
5 7 — 2
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Hence ||Tjq1 — || = ||T% + Pr + || < L[| V2R(Z5) || |Z% — Z*||*>. We need to bound [|[V2®(Z;)!|. Since V2®(Z
is nonsingular, there exists an € > 0 such that |[V2®(Z;,) || < 2||V2®(7*) 7| as long as | T — 7| < e. || Tk — T
32 L||V2® (&)~ H|||# — &*||* for all [|F, — Z*|| < e. It is known that

")
<

Tpp1 — T
H‘gil‘:;jﬁ <C,
125 — 2|
then {Zx} converges to £* quadratically. We can choose &y so that ||Zo — Z*|| < min(e, ﬁ), where L = L||V2®(i*) 1],
then [|#; — 7| < L||@ — &*|| < L,..., %% — & < (%)k — 0 as k — oo and hence {Z} — #*. We can show

IV®(Fy1) — VO(T)| < CIVE(k) — VO(T)|* = [[VE(Tp4a)|| < CIVE(T)].

3.9 Backtracking condition for step length
Choose @ > 0, p € (0,1), C € (0,1). Set o + @.

do until
$\Phi (\vec{x}_{k} + \alpha \vec{p}_k) \leq \nabla \Phi(\vec{x}_{k}) + C \alpha \nabla \Phi(\vec{x}_{k})"T \
$\alpha \leftarrow \rho \alpha$

end do

$\alpha_k \leftarrow \alpha$

3.10 Algorithm (line search method)
Given initial point &y, tolerance € < 1.

for k =0, 1, 2,
($\nabla \Phi(\vec{x}_{k}) < \epsilon), return)
determine $\vec{p}_k$:
1. $- \nabla \Phi(\vec{x}_{k})$
2. $- \nabla"2 \Phi(\vec{x}_{k})"{-1} \nabla \Phi(\vec{x}_{k})$
3. $- B_k"{-1} \nabla \Phi(\vec{x}_{k})$
(8\ I\vec{p}_k\| \leq \epsilon (1 + \|\vec{x}_k\|[)$, return)
choose $\alpha_k$ that satisfies: backtracking condition or Wolfe condtions.
(In practice, $\alpha_k = 1$, for Newton’s method and Quasi-Newton’s method) .
set $\vec{x}_{k+1} = \vec{x}_k + \alpha_k \vec{p}_k$
end

e Example: 9.5, p.p. 261 ®(Z) = 1([1.5 — z1(1 — 22)]* + [2.25 — 21 (1 — 2)%]? + [2.265 — 21 (1 — 23)]?), &* = ﬂ is a

unique minimizer. V®(7*) = 0, and V2®(Z*) is positive definite. 7 = [(1)] a saddle point V®(Z) = 0, but V2&(Z) =
8

0 27.25] . o o . I8 . S
[27.25 0 ], eigenvalues = £27.25. V2®(Z) is “not” positive definite. Ty = [_0.2} — T, Ty = [0.8} — Zog = 1).

3.11 Line search Newton modification
Algorithm:

Given initial $\vec{x}_0$

for k = 1l:nmax
modify the matrix
$B_k = \nabla"2 \Phi(\vec{x}_{k}) + E_k$
where $E_k = 0% if $\nabla"2 \Phi(\vec{x}_{k})$ sufficiently positive definite,
otherwise, $E_k$ is chosen to ensure that $B_k$ is sufficiently positive definite.
Solve $B_k \vec{p}_k = - \nabla \Phi(\vec{x}_{k})$ for $\vec{p}_k$
set $\vec{x}_{k+1} = \vec{x}_k + \alpha_k \vec{p}_k$ where $\alpha_k = 1% satisfies the
Wolfe or Amijo backtracking conditionms.

end


ljin1@uwyo.edu

Libao Jin (1jinl@uwyo.edu) MATH 5310 - Computational Methods Lecture Notes 1 12

3.12 Linear conjugate gradient (CG) method

e As known previously, —r (&

o Let ®(%) = ;7T AT — bT #, where matrix A is symmetric positive definite (S.P.D.). Our goal is to solve the following

minimization problem

L B(E
min (),
which is equivalent to find # such that V®(Z) =0, i.e. A¥ = b. If Z* satisfies AT = b, then AZ* = b.

l||

) Vo(x ) AT —b. In particular, at Z = &y, r(Zx) = 7 = b — AF, = —V®(Z,). Since

Po L —VO(#) = pli=0=7 = b— ATy = AT* — AT, = A(Z* — ;). That is to say, e = pg AT — F) = 0.
~
71

Choose py such that pyAp; = 0 is satisfied, then p) is the direction of ©* — 71 or &* — ¥ = ap.

e We say p; is A-conjugate (A-orthogonal) to py. For the line search algorithm. We choose pj, so that pj_1Apk and

Try1 = Tk + QDk-

e To get the step length, we need solve the following minimization problem

1
min ®(Zy, + ap)) = min = (Z, + aﬁk)TA(fk + apy) — I_JT(fk + apy) (10)
a€R a€R 2
.1 L. 7ro
:mel]%(2 P Apy)a? +(2 T Az, + xkApkfb pk)oz+(2xkAxk — b Z). (11)

Since A is symmetric positive definite, AT = A, then p} A%y = (Apk)T T = T Apy. Hence (11) becomes

1 . N 1 1 1 .+, . R
meln( Dy Apk) (pfok — ngk)a + (2xk ATy, — br Tg) = meln( Dr Apk)a —l—pk (A% — b)a + (ngAa:k — I;Txk)

1 S L s -
= meln( PrAPR)A? + Py (—=7)a + (ingxk - BTxk)
Next, we take the derivative of ® (&) + ap)) with respect to «, we have

d . TN o
@Mzk + api) = a(ph Apr) — pj 7k = 0.
T

Solve for a, we have oy, = %. To update Py, we assume an iterative process
k

Dk = k +Ak—1 P-1 - (12)
known after Zpy=Tk_1+ak_1Pk—1 known

To find Ar_1 we use ﬁ,{Aﬁk,l =0, then (12) becomes
(7 + Ae—1Pk—1)" Apx—1 = 0.

Solve for \,_1 we have
7L Apr—1

M1l = ——— 5.
17;::_1Apk—1

3.13 Algorithm of linear conjugate gradient method

Choose a guess $x_0$

r_0

p-0
for

end

=Db-Azx_0

=r_0

k=1, 2,... until convergence

alpha_{k-1} = (p_{k-1}’ r_{k-1}’)/(p_{k-1}’ A p_{k-1})
x_k = x_{k-1} + alpha_{k-1} p_{k-1}

rk=>b-Azxk

if norm(r_k) < eps then stop

lambda_{k-1} = - (r_k’ A p_{k-1})/(p_{k-1}’ A p_{k-1})
p_{k-1} = r_k + lambda_{k-1} p_{k-1}
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3.14 Make the algorithm efficient

Recall
Ty =—(AZp —b) = b— A% = b — A(Tr—1 + ap—1Dk—1) = Th—1 — Ap—14Pk—1,
hence Apy_1 = —ﬁ(vz}C — 7k—1). Then we have
Pr_1APk—1 = by, 1[_L(Fk_f”k )] =— ! Pr—1(Th — Th—1)] = — Pr_17k + Pp_1Th—1 = ! Ph_1Th—1
B e Qg1 o1 " -1 -1 "

Then we take a look at why pr_,7% = 0,

T o
Pp_1Tk—1 o

I L T o - o ~r - o -
P17k = Pp—1(Fh—1 — k-1 ADk—1) = Pp1Th—1 — Ok 1P 1 APk—1 = Pjp_1Th—1 — T ap Pk—1ADk-1=0
k—14Pk—1

Then, consider

T o o _, T > 7 T 7 T o
Pr—1 - Th1 = (The1 + Me—1Dk—2)" Tho1 = Tp_17h—1 + Me—1Pp—2Th—1 = Tp_1Th—1 + Ao—10 = 71 Th—1.

update for pr_1

Next,
?5%717716—1 7";{,171@—1
ap—1 = —T = = —T = .
Pr_1APk—1 D1 APk—1
Then,
T A= T — - T (= — T —
A\ 7 APr—1 — (7% Jok—1)(Th — Th—1) 75 (T — Th—1) T Tk
k-1 = ——p = = - —T = = T = = T = 3
pk71Apk71 (Pk,l/akq)mq Pr_1Tk—1 Te_1Tk—1

where 7} 7,_1 = 0 since V¢(Zy) L Vo (Zx_1). To sum up,
ey TR_1
(1) axr = m=35—
(2) 7o = Th—1 — g1 ADp—1.
(3) )\k_l - Flfki”;k
k

4 Tk—1"

3.15 The linear conjugate gradient method
e Algorithm

Choose $\vec{x}_0$, $\vec{r}_0 = \vec{b} - A \vec{x}_0%, $\delta_0 = \vec{r}_0"T \vec{r}_0$, $\vec{p}_ 0 =
for k =1, ..., until convergence

s_{k-1} = A p_{k-1}

alpha_{k-1} = delta_{k-1} / p_{k-1}’ s_{k-1}

x_k = x_{k-1} + alpha_{k-1} p_{k-1}

r_k = r_{k-1} - alpha_{k-1} s_{k-1}

if |lr_kl| < eps then stop.

delta_k = r_k’ r_k

p_k = r_k + (delta_k / delta_{k-1}) p_{k-1}
end

1 3/4
3/4 1
1/2(ZTAZ) — bTZ, b = [7/4,7/4]T.

Let &y = [0,0]7, 7o = b— ATy = [7/4,7/47, 6 = 7Lry = 49/8, po = [7/4,7/4]T, 5o = Apy = [49/16,49/16],
Qo = 60/(]3%150) = 4/7, fl = .fo + Oéoﬁo = [1, I}T, Fl = ’I?o - aogo = [O,O}T Hence * = fl = [1, I]T.

e Example: A = [ }, which is symmetric positive definite. The eigenvalues are \; = 4/7, o = 1/4, ¢(&) =
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e Remark: The vectors generated in the conjugate gradient method have the following properties:

(1) px is A-conjugate to all previous search directions, i.e. pf Ap; =0 for j =k —1,k—2,...,1,0.
(2) The residual 7 is orthogonal to all the previous residuals i.e. 77 =0 for j =k — 1,k —2,k—3,...,1,0.
(3) Ky = span{py, p1,---,Pk_1} = span{ry, Ary, A%, ..., AF"1i} = span{ A&y, A%y, ..., AFéy}.

e Theorem: For any Z; € R", the sequence {Z}} generated by the conjugate gradient method converges to the soution

—.

V&(Z) =0 (AZ = b) in at most n steps.
Proof. {po, 1, .,Pn—1} is A-conjugate, i.e. ﬁfAﬁj = 01if ¢ # j. This set S is linearly independent (exercise). S spans

the whole space R™ and
" — T = copo + c1p1 + -+ Cam1Pn—1- (13)
Then multiplying (13) by 7. A on the left-hand side yields

_ pp AT — To)

— ye =01if 4 £ k.
ﬁ%Apk

Ck
Goal: show ¢ = «ay, because Ty = o + ag + a1p1 + - - 1Pk _1, therefore
T —To = o + 1Pt + - Qg 1Pk—1- (14)

Multiplying (14) by pf A on the left-hand side gives pf A(#, — o) = 0, since pL Ap; = 0 if i # k. Therefore,

e = Py A(Z* — &) _ ﬁgA(.f* — T + T, — To) ﬁgA(f* — &)

Pr Apj, Pi Apr Pr Apy
:ﬁg(Af*—Afk):ﬁz(b—Afk): ﬁgfk _ Fgfk .
PrAp), PrAp), PLAp, DL AP

e Definition: ||¢]|} = T Ae.

VE(A)-1

k
e Theorem: Convergence of the conjugate gradient method. ||éx]|la < 2 <> l€olla, & = b — Ay, where

K(A)+1
R(A) = [|All2| A7 |2 = qme.

min

€k o —2" ||

T 0 superlinearly convergence.

e Definition: lim
k—o0

e The conjugate gradient method is superlinear convergent (STAM, Numerical Analysis 2001, Vol 39(1), p.p. 300-329).

Solving linear systems (iterative methods)

e Consider the protoype problem . .
AZ =b,A e R"™™ 7 beR"

e Theorem (Fixed-point theorem): If g is continuous on [a,b] (g € Cla,b]) and a < g(x) < b for all x € [a, b], there is
a fixed point Z* € [a, b] such that g(z*) = *. Moreover, if ¢’ exists and there is a constant p > 1 such that |¢'(z)| < p
for x € [a,b] then z* is unique.

Proof. ¢(z) = g(z) — z = g(x) = z = ¢(x) = 0. Assume g(a) > a, g(b) < b, the equality holds either a or b is a fixed
point. When ¢(a) > 0 and ¢(b) < 0 by the intermediate value theorem, there exists a point 2* such that ¢(z*) = 0 and
g9(x*) = x". Let y* € [a, ] is another fixed point (z* = y*), [2* —y*| = |g(z*) — g(y")| < |g'(§)|]=" —y| < pla” —y*| =
¥ =y*.

e Definition: Define the iterative process Zx11 = g(Zx),k = 0,1,2, ..., the “fixed-point” iteration.
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4.1 Stationary iteration methods

e Solve AZ=b. Let A= M — N (M~! exists), then AZ = (M — N)Z = b, then MZ = NZ+b= 7= M 'Ni+M b=
9(Z).
e The fixed-point iteration is

L1 = M_lNa'fk + M5,
Let =5 — AZ, then

9(F) =M INE+M b=MYM—-A)Z+M 'b=F—- M AT —b) =&+ M 'F.

e Then the iteration is Ty 1 = T + M~ 17.
e The Jocobi method: choose M = D, the diagonal matrix consisting of the diagonal elements of A, £1,11 = T +D~17%.

e In component form

k+1 1 . k

j=1j#i
Notice if j =1, x; — %aiimi =0.
Tx1+ 30 +23 =3 7 3 1 X 3
—3x1 + 1022 + 223 =4 = |—-3 10 2 To| = |4
1+ Twe — 1523 = 2 L7 —15] [as 2

Hence here is the iteration form

k k
xgk-&-l) _ B—mg )—mé )

7
N - 1 (k) _o, (k)
L1 = Th + D 17,k = xék—‘—l) _ 443z 225

o
a:gkﬂ) _ 22—z —Ta”

—15
Notice
70 0
= [rimoxs]', M =D= [0 10 0
0 0 -15

e The Gauss-Seidel method: choose M = E, the lower triangular matrix of A (including diagonal entries). Then the
iteration becomes ¥y 1 = & + E~!7,. The corresponding component form is

k41 1 k1 k
= L Y )
17

Jj<i Jj>i

Hope that |x§-k+1)

* k *
-} < |x§ ) — .
e Example:

Tx1+ 312 +x3 =3
—3z1 4+ 1029 + 223 = 4

r1 + Txeg — 1523 = 2

Hence, the iteration is

- k k
Zl'gk+1) . dfx; )7z(3 )

7
k41 k
L) 443D g (M)
2 (k+%o (k+1)
l'(k+1) _ 2-xy )77x2
3 —15

e Red-Black Gauss-Seidel method
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e Example: 7; | — 27; + ;11 = (Ax)?b;, 2(0) = 2(1) = 0. Then

—1| |z3 _

X1 —
i) —

Ty —

X1 bl
T3 bs
Z2 b
T4 by

The partitioned matrix would be

Then the Red-Black Gauss-Seidel iteration is

{fgj*l) = Di'lbr — CT#W]

T'p

HE = Dyl - )

Convergence of stationary iteration:
Ty = Tpo1+ M Fooy = Fp1 + M1 (b— ATj_1) = Mo+ (I — M~ A)T_,.
Since AZ* = b= 7* = M~ 'b+ (I — M~1A)*,
e =T — I = (I — MYA)(Tpqy — ) = T(Fppr — T°) = TF(Zy — 7).

We want €, — 0 as k — 0, the necessary condition is that ||T||* — 0, since ||ex|| = ||T%&] < ||T||¥||€o]] where
|T|| = max; |A;]| = p(T). For convergence, p(T) < 1.

n
Let €y = Y ¢;U;,U; are linearly independent eigenvectors of T. TU; = \;¥;, A\; are the corresponding eigenvalue.
i=1
n

n n
Téy = Y i, |T%é0| = || 3o cdfvi]| < (max; [N])F| Y2 eitill.
=1 =1 1=1

Theorem: For the linear problem AZ = b. Consider the iterative method

Tpp1 = Tp + M7, k=0,1,...
Define the iteration matrix T = I — M ~'A. Then the method (15) converges if and only if
p(T) = max|Aif <1,
where \; are the eigenvalues of T
Fixed-point iteration: Zyy; = g(&). For 1-D, Newton’s method:

Lk
Th+1 =Tk — %77~

f'(xk)
The Newton’s method give z* where f(2*) = 0. Equation (16) solve f(Z) = 0= V®(Z) = 0, which is equivalent to

(16)

min () < £() = 0.
xX
In general, the mapping ¢ is a contraction mapping, then {Zy} — &* fixed point, where contraction mapping is
equivalent to g is Lipschitz continuous with L < 1, say |lg(z) — g(v)|| < L||z — y||. Then
1Z* = Zsall = lg(@) — g(@n)l|l < LI|ZT* — Zxl| < L& — Zo.

If L <1, LF*' - 0 as k — cc.
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4.2 Least Square Problem

e Given the observation data b € R™, we’d like to fit the data by polynomial, then we need to compute the coefficients
Z € R™ and A is m x n matrix. AZ represents the model. We want to find & such that

min [|b— AZ|.
ZER™

e Example: {b;}7,. Fit {b;} with a quadratic curve. V(t) = z1 + zot + x3t%. This is a “linear” fitting in terms of the

coefficients of V'(¢). The grid points are t1,ts,. .., t,,; observations are by,ba, ..., b,,. Then
(11 + woty + 2313) — by 1t 1 by
: = v -
(1‘1 + CCth + $3t$n) - bm 1 tm tgn 3 bm

Find = [z1 2 mg]T such that mingeps ||b — AZ]|, whose solution is the solution of the following normal equation,
AT Az = A"D.

e Claim: 7 satisfies the normal equation, that is, & solves mingegn ||b — AZ|, b € R™, i.e. ||b — AZ|| < ||b — AZ| for all

FeR™. (b—b L a;), aj is the jth column of A. Then, we have

—

)=a;-(b— AZ) = al (b — AT) =0 = AT(b— AZ) = 0.

SR

a; - (b—
then, i satisfies the normal equation
AT AZ = ATE [ —B)| < ||f — AZ|| for all 7 € R™.
For the normal equation: B = AT A, BZ = 7 is called ill-conditioned if ko(B) = |[B~!||2||B|l2 = % > 1L

e Example:

1 1 1
e 0 O
A= 0 ¢ 0|’
0 0 ¢
which is numerically full rank even ¢ < 1. Let
1+ 1 1
B=A"A=| 1 1+ 1 |,
1 1 14e

where B is normal singular if n < e,/7, 7 is the computer rounding unit, x2(B) > 1. Solving BZ = 7 is not easy.
Consider a linear system AZ = b. Let us perturb gby b+ 0b (55 < 1). Let Z* + 6% be the solution of the perturbed
system AT = b+ b, where 7 is the solution of AT = b. A(Z* + 6%) = b+ 0b = AT = §b = 0% = A~167.

16| < |A~"] 58]l (17)
Known that AZ* = l_;, we have
LANIE ) > (1Bl = &~ < [LAllB)~ (18)
Multiply (17) by (18), . -
1] < pana B — o 0.
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If K(A) ~ O(1), then Hf” HHb”” <1 Ifr>1, ””b‘“ does not imply small permutation \I|m =~ We can perturb A to

obtain the perturbed system (A + 6A)Z = b. Let Z* 4 67 is the solution of the pertrubed system (A + 0A)Z = b. * is
the solution of AZ = b. Then

(A+ GA) (T + 0F) = AT* + AT + SA(T* + 67) = b= 67 ~ —A"'SA(Z* + 0%)
Therefore, we have

[0A]
1Al

15A]l

182 < A7 |6 Al + 62| = A

or
7Ly amrppag Al _ )

||+ + o
e Recall that the least square problem

min b — AZ||, A € R™ "™ m > n,beR™,
reR™

where m represents the number of data points and n denotes the number of parameters.

e Orthogonal vectors: i and ¥ are said to be orthogonal if the inner product (@, %) = @’ ¢ = 0. Further, if ||@| =
||| = 1, then we say the vectors are orthonormal.

1 i=j

. Therefore, QTQ = I, xn,
0 iti QTQ x

e Let Q = [(j’l G - cj’n} nxn @ € R™ and @ is orthogonal matrix if qarq = {

QT = Q~'. Hence,
1QT|3 = (Q7)" QT = 7' QT QT =77 = | 7|3
Now let @ be an orthogonal matrix of m x m, then
[b— AZ]|2 = [|Q(b — AZ)||2.
Suppose that A can be decomposed into
A= Quen |

where R, x5 is an upper triangular n x n matrix. Then

Rpxn :|
O(mfn) xXn

107 G- A2l = 1075~ 0@ [§] 12 = 175 - ] a1

- - T -
Partitioning QT'b into QTb = [5’ di , where ¢ = [cl cy - cn]T, d = [dl dy - dm_n]T. Then let ||7]|2 =
|b — AZ||y = ||¢ — RE|| + ||d]|2. There is no control for ||d||s, but if we make [|é — RZ||2 = 0. Then
min [|b— AZ|s = ||d||2.
xER™

Then solution # that satisfies ||b— AZ]|; is the solution of RZ = & which is very easy to solve by using back substitution,
however the time complexity is O(n?).

e Algorithm (QR decomposition for least square problem)

(1) Decompose

RTL n
Amxn = mem |:O x :| . (19)

(m—n)xn

(2) Compute

(3) Solve the upper triangular system

we can get the solution of the least square problem Z.
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(4) Then || = |ld].

e For equation (19),
Rn)(’ﬂ

(m—n)xn

Rn)(’ﬂ }

(m—n)xn

A= Qmxm |:O :| = [men me(mfn)] [O
where Q,,xn» With n columns of orthonormal vectors. Then

Amxn = QanRan'

For the normal equation
AT Az = AT, 7 = (ATA)~1ATD. (20)

By (19), (20) becomes
(RTQTQR)—lRTQTg _ (RTR)—lRTQTE _ R_lQTg.

The solution of the least square problem is the solution of
RE=QTb=2¢
e Algorithm (Economic size QR decomposition for least square problem)

(1
(

Decompose Apxn = QmxnBRnxn, where Ry« is an upper triangular matrix, Q,,x, with n orthogonal columns.

)
2) Compute ¢ = QTE.
(3) Solve RZ =¢.
(4) [I71] = [|b — AZ|, (% from step (3)).

e Gram-Schmidt Process for QR decomposition:

ail a2 q11  q12 1 1o
azi Q| = |g21 Qo2 {0 7“22} & la dy = [irn @rie + @rae
asiy  as2 q31  g32
where we require (71, %) =@ 2 = @2 q1 =0, ||q1| = ||@:]| = 1.
(1) @y = r11da, then ||@1]| = r11||q1]|, which gives us ¢ = fl—ll = ﬁ

(2) do = qiri2+ Garae, then solve (¢1,da). (q1,d2) = (q1,T12q1 +T2202) = T12{q1, @1) +T22{q1, Go) = r12- 147220 = 712.

. - o - —  _ do—ri12q) _ — _ Nlaa—ri2q1 = —
Once 713 is known, ro9gs = @ — 11241, o = 220 1 = ||ga|| = ”7, [ras| = ||d2 — r12¢1]]. Therefore, we
r22 [722
have
s
q1 r
= _ d2—Ti2q1
q2 = oz
_ g — @3=T13q1-123G
q3 = ras .
n—1
Gn— 3 TinG;
— G, = = (*). Compare the last equation with @;.
S S\ o T\ = Iy
Uj = aj (@1 a]) 1— (¢ aj)fh - (q]'—laj)Qj—l (21)

U; is orthogonal to {q1, ¢, ...,qn}, U; = Pd;, where P =TI — Qj,lQ;fF_l, Qj—1 = [(jl ) (]]_1] Then (*)
and (21) are equivalent with r;; = (7}, q}), ¢ = Hg]:gj\l'
)

e Classical Gram-Schmidt Process (Column-base):

for j =1
v_]
for

‘n
a_j
= 1:n-1

_{ij} = \langle qg_i, a_j \rangle (CGS)
_{ij} = \langle qg_i, v_j \rangle (MGS)

R H e
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r_j=v_j-r_{ij} q_i
end
r_{jj}r = Ilv_jll
a-j = v_j / llr_jjll
end

e Modified Gram-Schmidt Process: P; =P, , P14 _, P 3P4, where P, g =1 — qqr.

e Modified Gram-Schmidt Process (Row-base):

—
=]

for i =
v_i = a_i
end
for i = 1:n
r_{ii} = |Iv_il|
q_i = v_i / r_{ii}
for j = (i+1):n
r_{ij} = \langle q_i, v_j \rangle
v_j =v_j - r_{ij} q_i
end
end

OExample:A:[dl Qo &3},Whered'1:[l e 0 O]T7d’2:[1 0 € O] , 3:[1 0 0 e}

~ Classical Gram-Schmidt: , = [1 ¢ 0 0] ,ri=Vi+te~lL,g=2=[1 ¢ 0 0] ,5%a=[1 0 € 0]
JEN - - = T . 7 -
re = (@) =1, T =0 —req1 = [0 —€ € 0], ro=1V2 =2 = {0 %2 % 0| , 75 = V2,

=

T
G=2=[0 5 0 | Then (@.@) = 4.
- MGS (rowbase)ﬁlz[l e 0 O]T,r11:\/1—|—62%1. 7 = 2 —[1 e 0 O]T,ﬁzz 1 0 € 0],

Lo L L o T . 5 r
rg = (q1,0) = 1, O = T —riefi = [0 —€ € 0], ron = V26, $ = 2 = [O —5 % 0} , Uz =
T Lo L L T I ¢ - o 4
1 0 0 € ,rs=(q,03)=1,03=03—risa = [0 — 0 €, ry=(Ra) = 75 Us = U3 —T3Qa =
e —e T oo \Ee o~ _ w5 _[g — 1 21" o oy g _1 L _ 1
o3 F dim=fa=-2=0 -% % FH - @u=0 -% 5 0 % %

0.

e A projector is a square matrix that satisfies P2 = P. If ¢ = PZ%, then P = P?% = P¥ = v. If ¥ # PZ, then Pv # .
P(P7— ) = P*5 — P7=0.

e Complementary projectors: If P is a projector, I — P is a complementary projector of P, I — P is a projector such
that (I — P)?> = I — P. If P is a projector, then Null(P) = range(I — P). For any ¢ € Null(P) and ¢ € Null({ — P),
we have ¥ = 0. That implies range(P) N Null(P) = {0}.

e A projector seperate a space into S; and Sy and S; NSy = {0}. Hence there is a projector P such that range(P) = S,
and Null(P) = S,. Given ¥, we can find vector ¥; € S1, U2 € Sy such that 07 + U2 = 7.

e The projector P¥ gives ¥, (I — P)¥ gives 0. These vectors U; and ¥ are unique

(PT+03)+[(I — P)0—¥3] = 0.
—_—
651 €S2

Hence, U3 € S7 and U3 € Sy, that implies U3 = 0.

e S; and S; are orthogonal.
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e Theorem: A projection P is orthogonal if and only if P = P*, where P* is conjugate transpose. If P can be
decomposed as follows, P = QXQ*, where

1

Y= , P e R™™ @ is unitary.

0

Therefore, ¥ = Q*PQ, P* = (QEQ*)* = Q¥*Q* = P. P = QQ*, which gives us P; = ¢¢* with ||| = 1. Then
Pi=% = Pa=1-2

a*

Q

e For any given ¥, we can find a projector so that Pv = ¥; € Sjrange(P)) and (I — P)¥ = ¥ € Sy(Null(P)). An
orthogonal projector is one that projects onto the subspace of S; along a subspace of S and S; L Ss.

e Theorem: A projector is orthogonal if and only if P = Px.

e Let P be a orthogonal projector of size m x m. We can find a unitary matrix @) so that Q* PQ) = X, where

o _ _ Ixn Onx(m—n)
Q= Qmxm, X = Ymxm = |:O(mn)><n O(mfn)x(mfn) .
Then,
o x A ~ Inxn Onx(m—n) Q*nxm
P= QEQ B [men me(m—n)] |:O(mn)><n O(mfn)x(mfn) Q*(TYL—H)Xm
. Q*
= Qm n Om m—n |:~* nxm
[ x x( )] Q (m—n)xm

= menQ*nxm

Note that Q has orthonormal columns. A special case, when n = 1, this is the rank-one projection, i.e.
Pp=qq", llgl =1 and Prg=1T—-qq"

For an arbitrary vector d, we have
- -
aa aa

P;=—-—=and Pig=1-

a a

4.3 Gram-Schmidt and Householder
e AR\Ry---R, = Q, where R = R;'R;'| --- R;'R;"*. Therefore, A = QR.
—_——

R-1

e The Householder reflector:

T T T T T T T T T
A T 0 =z T 0 0 T
A= = . = =

T T T 0 =z T o o0 -+ =«

| S — | —

Q1A QnQ2Q1A
e The standard approach is choosing Q) as
Op = I O
F~lo F|°

where I is the (k—1) x (k—1) identity matrix, F is an (m—k+1) x (m—k+1) unitary matrix. The idea: multiplication
of F must introduce zero into the kth column. F' is chosen to be a particular matrix called Householder reflector.
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e Suppose at the kth step, the entries (from k,...,m) of the kth column are given by

@ ]
— z O || =
T 0

where € is the first column of identity matrix I(,, k) x (m—k)

e The reflector F will reflect the space R™~*+! across a hyperplane H orthogonal to ¥ = ||Z||€] — #1. When the reflector
is applied, every point on one side of H is mapped to its mirror image on the other side. To achieve this, we apply an
T
orthogonal projection P¥ = (I — 27=)7.

e The reflection F'Z should be twice as far FZ = (I — 2:’;22)33’ Hence the matrix F = (I — 2%) is the Householder

reflector.
e Idea: Reflect across hyperplane H, which is orthogonal to ¥ = ||Z||€1 — & by the reflector FF = I — 2?75, then Pz =
I- ?7; =F=1- 2;’;}?77 F reflects Z to ||Z||€}. For numerical stability, we don’t want & and ||Z||€; too close, i.e. we

want

|U]| as large as possible. Choose ¥ = —sign(z1)||Z||€1 — Z, x1 is the first component of Z, where

+ 1f9€1207
— if x4 <0

sign(z1) {

Notice: we want sign(0) = 1, but in MATLAB, sign(0) = 0.

e Let A e C™*™ m > n. The following is the algorithm of Householder reflection for R.

for k = 1:n
\vec{x} = A_{k:m, k};
\vec{v}_k = sign(x_1) \|\vec{x}\|_2 \vec{e}_1 + \vec{x}

\vec{v}_k = \vec{v}_k / \l\vec{v}_k\|_2
A_{k:m, k:n} = A_{k:m, k:n} - 2 \vec{v}_k (\vec{v}_k~{*} A_{k:m, k:n})
end

This gives the upper triangular matrix R and the final A.

e For the minimization problem, min ||I;— AZ|l, R=Qn--- Q1 A, A= QR. We want to compute Q*b, R¥ = Q*b for 7.
——
Q*
Here is the corresponding algorithm:

for k = 1:n
b_{k:m} = b_{k:m} - 2 \vec{v}_k (\vec{v}_k"{*} \vec{b}_{k:m})
end

e Forming (): For the minimization problem, min ||5— AZ||, R=Qn - Q1 A, A = QR. We want to compute Q*b,
~——

Q*
RZ = Q*g for . Here is the corresponding algorithm:

for k = 1:n
b_{k:m} = b_{k:m} - 2 \vec{v}_k (\vec{v}_k {*} \vec{b}_{k:m})
end
Notice Q* = Q*I = [cj‘f a5 q_j*n] =Q* [€1 €y - é’m}, where ¢} = Q*€;. Therefore, we just need to replace b

with €; in the above algorithms, and repeat n steps.
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4.4 Singular Value Decomposition (SVD)

e For any matrix A € R"™*"(m > n), there exists orthogonal matrices U € R™*™ and V € R"*" and a “diagonal matrix”
3 € R™*"™ where

by
2 — nxn ,
{Omn)m}
where } )
01
02
Y= o
0
L 0_
and O(m_n)xn is an (m — n) X n zero matrix, o1 > 09 > -+ > 0, > 0py1 = - -+ = 0, = 0 are the singular values such
that A = UXVT, where r = rank(A).
e Remark:

1) The decomposition A = ULV is called singular value decomposition (SVD), which tells us the structure of A.
2) The columns of U and V are called left and right singular vectors, respectively.
3) Let the SVD of A be given by

A=UN V] = oyil;i] |
i=1
where r = rank(A4). And we have the “truncated” SVD

k

T — ST

A, = UkEka = E o;UuU;v; ,
i=1

where 01 > 09 > -+ > 0 > 041 > -+ O

e Recall the least square problem
min |§ — A3,
xr

Let A=UXVT,
T m T m
15— AZ|3 = [UT G- AVVTE)|3 = [UT5-SVT &3 = S @ b—odl 7+ S @752 = S (@ 5-0i2)?+ Y (@5,
i=1 i=r+1 i=1 i=r+1
where 7= VT #. The least square solution is given by
_,Tb
z; = Y a=1,...,r
oi
and . .
HTb
F=vz=Y %y
0;

5 Polynomial interpolation

5.1 Basic interpolation concepts

e Given a set of data points, {(z;,y:)}1,. Find a reasonable function v(z) that interpolates (fits) the data points, i.e. the
function v(x) passes through the data points exactly, or

v(z;) =y, =0,1,...,n.

n
Andv(z) = ) cj¢;(x) is said to be the “linear form” of interpolation, where ¢; are constants and ¢; are basis functions.

7=0
Usually, we choose polynomials or trig (trigonometric) functions as the basis functions.
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e In general, interpolation problem is to find ¢; by the following linear system.

do(zo) ¢1(x0) -+ @nlwo)]| [co Yo
do(z1) ¢1(z1) -+ @alz1)]| |a Y1

d)O (xn) ¢1 (In) e ¢n (.xn) C'n yn

5.2 Basis functions
e What are ¢;(x)?
1) The simplest function is ¢;(z) = 27,7 =0,1,...,n. Then
v(x) =co+ 1+ cpr? + -+ cp12" T e,

which we called monomial basis.
2) Lagrangian polynomial ¢;(x) = L;(x) such that
0 ifs ]
Liey) =" 17
1 ifi=j

Then, v(z) = Y ¢;j¢;(z) = > ¢jL;(x). Hence, we can obtain the following

7=0 7=0

v(z0) = coLo(x0) = Yo = co = Yo
v(z) =cali(z) =y =a=u
v(xg) = caLa(x2) = Y2 = c2 = Yo

’U(wn) - CnLn(-rn) =Yn = Cp = UYn

Now let’s construct

() = L) = (x—zo)(x—z1) - (x —xjo1) (@ —2jp1) - (x — zp)
¢j(x) = Lj(z) : (z; —m0) (x5 — 1) (2 — 1) () — Tjy1) - (X — )

3) Newton’s polynomial

6,(x) :j:[[:(m —25) = (2 — o) (z — w1) (& — w2) -+ (x — 1), = 0,1,2,....n
go(z) =1

Therefore, we can construct the interpolation recursively.

e Theorem (Uniqueness and existence): For any real data points {(x;,y;)}?, with distinct z;, there exists a unique
polynomial P(z) of degree at most n, which satisfies the interpolation considtions P(z;) = y;.

5.3 Monomial interpolation, Lagrangian interpolation and Newton’s polynomial interpola-
tion

e Three types of interpolations:

n .
1) Monomial interpolation: P, (z) = ) c¢;jz?. In general, the linear system for monomial interpolation is
3=0

1 2 n
x5 x5 - x| [co Yo
1 o 22 - a2l |a Y1
1 ozl 22 o 2] e, Yn

Vandermode matrix
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n—1 n
For Vandermode matrix X, we have det(X) = [] [ I (z; - xl)] # 0.
i=0 | j=i+1

2) Lagrangian interpolation: For data points {(z;, y:) iy, Pn(z) = Y cj0;(x),

Jj=0
0, ifi#j
@(xi)Lj(xi)—{l He7
, ifi=j

n . .
and ¢; =y;,7 =0,1,...,n. So P,(z) = > y;L;(z), where L;(z) (@=z0)@—o))(e—0;-1)(@—e;11) (z=zn)

= Gy—wo)(wj—w1) (w5 —w; 1) (@5~ 1) (@5 —wn) °
i(x) = [[(x—z;), forj=1,2,...

3) Newton’s divided difference: ¢ i=0 . Therefore, we have

(bj(-ri) :0, ifi:O,l,...,j—l
¢j(xi) 7é OaZ :.]
¢j(z;) #0, if ¢ > j in general

The linear system for c; is

do(zo) ¢1(z0) -+ @nlwo)]| [co Yo
L | %o(@) di(@1) oo dulmr)| |a i
Pc=y < . . . . =]
where @ is a lower triangular matrix, which is invertible, and the diagonal ¢;(z;) # 0,9 =0,1,...,n.

e Example: provided data points (1,1), (2, 3), (4, 3).

1) Monomial interpolation: plug in the data points, we have

1 1 1 Co 1 2

—22% + 122 —
12 4] |e|=|3 :PQ(x)z%“.
1 4 16| |e2| |3

2) Lagrangian interpolation:

Lo(x) = aolw — 2)(z — ) = Lo(zo) = Lo(1) = ao(~1)(~3) =1 = ap = 3,
Li@@)=a(e— 1)z —4)= Li(z1) = Li(2) =a1 - 1-(-2) =1 = a; = _%,

)l-

Lg(l‘) = ag(a: — 1)(37 — 2) = LQ(.’L‘Q) = L2(4) =a2:-3-2=1=a9 =

Plw) = 1[5(e ~ 2)( — )] + 31 5(r = V(& = 4)] + 3o )z -

N O~

3) Newton’s interpolation:

Paw) = 3 ¢j65(a).

Py (x0) = codo(w0) = co = 1,
PQ(Il) =1+ cl(bl(xl) =1+ Cl¢1(2) =3=c = 2,
Py(w2) = 14 2¢1(w2) + cada(w2) = 1+ 2¢1(4) + cad2(4) =3 = 2 = —;

—222 4+ 120 —7

Py(x) = co + c1¢1(x) + cagpa(z) = 3
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5.4 Newton’s divided difference table

e Newton’s divided difference table (adaptive): We have the condition y; = f(x;),i = 0,1,...,n, P,(z;) = f(x;).
Then for Newton’s basis, we have the following

Pp(zo) =co+0+---+0= f(20)
Pn('rl) = Cp +Cl(l‘1 7560) + - +0 == f(l‘l)
Pn(J?Q) =co + Cl(l‘g — .230) + CQ(J?Q — xo)(xg — 1'1) 4+ 4+0= f(.]?g)

Py (xn) = co+ c1(xn — x0) + c2(xy — x0)(xn —21) + -+ cn(@n — 20)(Tn —21) -+ (Tn — Tn—1) = f(zn)

flxo)—f(x1) _ fl=1)—f(=g)
Then, we have ¢; = M, cg = —2 =20 .... We can obtain this through the following table

T1—To T2 —To
(Newton’s divided difference table),
iz flw] = flr) flrie @) flri2, wio1, 4]
0 xo f(zo)
1 = f(z1) 7]0(321):%%)
flzo)—f(x1) _ f(z1)—f(=g)
I (O I =T
e Divided difference formula: Given points xg, 21,...,2, with z; # x; if i # j and 0 <i < j <n. Set flz;] = f(x;),
then we have fl |l |
Titly ooy Ti] — flxsy . o @i
f[xi7"'7xj]: i+1 J i j—1 )
Tj — X4
e The coefficients of Newton’s polynomial:
co = f[wo]

Cc1 = f[l'o,l’l]
c2 = flzo, w1, 2]
Cn = f[l'(),l'l,...,l'n]

Hence, P, (x) = fzo] + flxo, x1](x — zo) + - - + flxo, 21, ..., Tp](@ — 20) (@ — 21) - -+ (T — p).
e Example: Given data points (1,1), (2,3), (4, 3)

iz fla] = @) flrionw] fleio,vionw] fleies, w2, wio, o)

0 1 1
1 2 3 2

2 4 3 0 -2

3.5 4 1 3 i

e Interpolation error: Recall the Mean Value Theorem, we have f|xg,z1] = fea]=flzol 1), € € [a,b].

T1—2To

e Theorem: Let f have k bounded derivatives in [a, b] and let g, 21, ..., 2, be k+ 1 distinct points in [a, b]. Then there
exists a point £ € [a, b] such that

f[$0,$17--~7$k]=
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5.5

Proof. Let a = 29 < 21 < 2 < -+ <z, = b. Let Py be the interpolation polynomial of degree at most k satisfying
Pi(x;) = f(x;),i =0,1,...,k. Denote the interpolation error ex(x) = f(x) — Py(x). Then ex(z;) = 0,i =0,1,...,k.
ex(x) has k + 1 zeros, e}, (z) has k zeros, e} (x) has k — 1 zeros, e(kfl)(x) has [ 4+ 1 zeros. Look at | =0, e,(ck)(x), the kth
derivatives of e (z) has one zero. Let the zero be £ € [a,b]. So e,ik)(g) = (&) — P,gk) (&) = 0. Note that

Pi(z) = Poo1(z) + flao, @1, ax]a”.

Then we have

)
Kl

Suppose that P, is the polynomial that interpolates at the points zg,x1,...,z,. Furthermore, suppose P* is the
polynomial that interpolates at zg,x1,...,Zn,t,

P,gk)(x) = klflxo,x1,..., 28] = f(k)(f) = flxo,x1,..., 2k

€ € a,b].

n

P*(SC) = Pﬂ(z) + f[x();xla s 7xn>t} H(x - xz)
=0

n
at t, P*(t) = f(t) = P.(t) + flxo, @1, ..., Zn,t] [[ (z — ;). Replace ¢ with z, and rearrange the equation,
=0

Apply the previous theorem, we have
f(z) = Pu(z) = [T — ). (22)

FAGRIRI(3)
(n+1)!

‘We have no control on

xo)(x —x1) - (T — Tp).

. To control the interpolation error, we need to control the polynomial w(z) = (z —

Definition: A polynomial is monic if its leading coefficient is 1. We denote the set of all monic polynomial of degree
n as m,.
Therefore, w(x) € m,(x). For example, the error function (22) in the maximum norm

n

1
—P,(z) < ——— (n+1) (¢ — ;).
max, | f () (z)| < I |f U';?ﬁ,’i] i:O(S ;)

to find minimum error, we want to find the minimum of this term by choosing proper x;.

Chebyshev polynomials
Theorem: The monic Chebyshev polynomial Tn, n > 1 satisfies
1 .

— T.(2) < P,
T men[lf‘ffu‘ (x)l_wg[ljxffl]\ ()]

for any P, (x) € m,(z). The equality holds if and only if P, = T,.
Definition: The Chebyshev polynomial T}, is defined by

T, (x) = cos (narccosz),x € [-1,1],n € N.
Note: T}, (z) is not monic for n > 1. But T, (z) = 521 Tn(z),n > 1 is monic.

Definition: Define

- ) To(=), n=20

as the monic Chebyshev polynomial.
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e Let 0 = arccosz,x = cosz. Therefore,

{Tnﬂ(x) = cos[(n + 1)0] = cos(nf) cos f — sin(nh) sin f
T—1(x) = cos[(n — 1)0] = cos(nf) cos § + sin(nh) sin §

Adding the above two up yields,
Tnt1(x) + Thoi(x) = 2cos(nb) cos 0 = 22T, (z) = Thy1 = 22T, (x) — Th—1().

In particular, To(x) = cos(0 - arccos(x)) = 1, Ty (x) = cos(1 - arccos(z)) = z. Then we can deduce T,,(z),n = 2,3,... by
the above recursive formula.

e Remark:

1) T, (x) is an n*® order polynomial.
2) For n > 1, the leading coefficient in T}, (z) is 2" 1.
3) T,(x) is even (odd) when n is even (odd).

e We observe that
w(z) = (x —xo)(x — 1)+ (x — xp)

in the maximum norm ||w(z)|leo has the minimum min ||w(z)||w if and only if w(x) = T),+1(z). So we want to choose
the roots of Ty, 11(x) for xg,z1,...,2, to obtain the minimum interpolation error.

e Theorem: The Chebyshev polynomial T),(x) of degree n > 1 has n simple roots on the interval [-1,1] at z; =
cos(%w) for j=1,2,...,n.

Proof.

25 -1
T, (z;) = cos {n arccos {cos < J 7T):| }
2n
27 —1
o (B4

207

for j=1,2,...,n.

e Thus to minimize w(x) in [, norm the interpolation point must be chosen as

2741
T; = COS Lﬂ' ,0=0,1,2,...,n.
2(n+1)

With this choice of z;,
w(@)]loe =27"

Hence, over the interval [—1,1],

[l

min || f — Pyl < (n+1)l-27°

e Theorem: 1
on—1 ze[—aifl] ‘ (SL’)l - re[—afl] ‘ (.’1?)|

for P,(x) € m, holds when P, (z) = T,,(z).
Proof. Suppose P, (z) € m, with

1 -
P ()] < — T.(x)|.
) é?f‘ffl]‘ (z)| < =T = g[l};fl]l ()]

Let q(z) = T,,(z) — Py(x), ¢ is a polynomial of degree at most n — 1.
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e T, (z) has absolute extreme values at

Zj = cos (ﬂ) on[-1,1],7=0,1,2,...,n,
n
with T),(z;) = (—1)7.

e Pluging in gives q(zj) = Tn(zj) — Pu(2;) = 3= (=1)7 = P,(2;), since |P,(2;)| < 5=, hence

q(z4) if j odd.

Therefore, ¢ has at least one root between zj, z;41 for j =0,1,...,n — 1. This implies ¢ has at least n roots which is
not possible, since ¢ is a polynomial of degree n — 1, unless ¢ = 0. In this case, P, = T),.

q(z;) >0, if j even,

e Example: f(z) = sin (wz). Interpolating at most 4. Find the interpolating points that will have the least error in o,
norm. xz;,i =0,1,...,4 should be the roots of T5(x),

i.e.
™ T 51 s 97

Tg = COS —, X1 = COS —,T9 = COS — , X3 = COS —, Ty = COS — .

10’ 10° 10’ 10’

e What if the interval under construction is [a, b] for arbitrary a and b?

e Define a linear function f(x) = c¢ix + ¢ that maps = € [—1,1] to f(z) € [a, ],
f()=-ate=a o =25
f(1)261+02=b CQZQTH)

e The function f(z) = 5%z + %t maps z in [—1,1] to f(z) in [a, b], z; = cos [(22(1:37;] on [—1,1]. Then the interpolation

points on [a, b] are

b—a (2i+1)m a+b
12t 2
5.6 Legendre polynomial

e Legendre polynomial gives the smallest interpolating error in /o norm.
e Definition: Legendre polynomial forms an orhtogonal set on [—1, 1] with respect to w(z) =1, i.e.

1 o
0, ifj#k
| PP @@ - { ,
-1 51 "I =
e Remark: For Chebyshev polynomial, we have the following
1 0, ifj#k
/ Ty(0) T (@)w(@)de = {7, if j—k =0
-1 T ifj=k#0

where w(z) = (1 — 22)~1/2,
e The Legendre polynomial P, (x) satisfies the recurrence relation
2n —1 n—1

P, (x) = - xP,_1(x) —

P, _o(x) with Py(z) =1, P (z) = x.

Therefore, we can get Py(z), Ps(x), Py(x), ete.
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e Remark: {Py, P1,..., P} forms a linearly independent set and hence spans the space of polynomial of degree at most
k.

e The Legendre polynomial gives the smallest interpolation error for Iy norm, i.e.
min lw(z)|l2 = [|Poyall2,

where ]5n+1 is the monic Legendre through leading coefficient.

Hence

Now let’s calculate ||w(z)]|3,

lw(@)[13 = | Pas1(2) + a(2)|3

— [ (Pes(@) + ao)Pds

—1

P ()3 + 2 / Puna(a)a(w)ds -+ (e

= [|Pas1 ()13 + lla(@)13

Thus, min ||w(z)||3 occurs when ||g||2 = 0 (or ¢ = 0), i.e. w(z) = Poy1(z) = |w(@)|3 = || Pogi(x)]|3.
5.7 Piecewise polynomial interpolation
e Given the data points, x :a < xp < x1 <2 < -+ < xp =0b, ¥ :Yo,Y1,Y2,---,Yn, the basic idea is
1) Use lower order polynomial that interpolate each sub-interval [z;, 2;41],4 =0,1,...,n — 1.

2) Enforce the polynomial to join up as smoothly as possible.
3) The lower order polynomial (n < 3).

e Definition: Cubic spline (n = 3). A cubic spline S(z) is a piecewise defined function that satisfies the conditions

1) S(z) = S;(x) on each sub-interval [z;, z;11],i =0,1,...,n — 1.
2) S(z;) =9:;,1=0,1,2,...,n.
3) Enforce the continuity for S(z), S'(z), S”(z) at x1,...,2,—1 on [a,b], i.e. smoothness.

e For each piecewise polynomial we have
Si(z) = ai + bi(x — z;) + ci(z —2;)* + di(z —2;)*,i = 0,1,...,n— 1

How many unknowns (coefficients) do we need to calculate for S(x)? Ans: 4n.
e Number of equations:

1) Interpolation and continuity of S(z).

Si(z;) =y;,i=0,1,...,n— 1= number of equations: n
Si(xi41) = Yit1,:=0,1,...,n —1 = number of equations: n
2) Derivative continuity:
Si(zi41) = S (wig1),i=0,1,...,n —2 = number of equations: n — 1

Si'(wiy1) = Si' 1 (®iy1),i=0,1,...,n —2 = number of equations: n — 1
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Hence the toal number of equations is 4n — 2.
e The expression for cubic spline:

Si(x) = a; + bi(x — ;) +ci(x — ) + di(x — ;)3
Si(x) = b; + 2¢i(x — x;) + 3d;(x — x)?
S (x) = 2¢; + 6d;(z — ;)

e Remark: a; = S(x;) = y;, by = Si(x;), ¢; = %SZ”(:E,)

e We have 4n unknowns and 4n — 2 equations. We want to rewrite the system into solving “one” coefficients ¢; and
backward substitution to find a;, b;, d;.

e Alternate formulations: Define m; = S} (z;) = 2¢;,4=0,1,...,n— 1. Impose the smoothness condition S} (z;4+1) =
S 1(#i41),4=0,1,...,n — 2. Then we have the following
2¢; + 6hid; — 2¢ip1 = 0,hi = xip1 — 23 = m; + 6hidi —mip =0=d; = mi+21h_ =

By continuity, we have S;(x;) = yi, Si(it1) = Yiz1,

l<y,+1 =Rl —h3dy) = YL Vi himi — hi(miy1 —m;)
i i i Ci s i) = .

i+hibi+hici+hidi = yiy1,i=0,1,...,n—1=b; =
Yithibi+hicithidi = Yir1,0 n—1= I I 5 6

1\I€X1J7 Sz/'(‘ri-‘rl) = S£+1(SCZ‘+1),7; = O, 1, e, — 27 i.e.

Substitution of b;, ¢; and d; in terms of m; gives

himi + 2(hs + Bis1 )it + hig1miss = 6 (ym — Yt Yi1 — yz-) G=0,1,....m—2
hiy1 h;
Now we have n + 1 unknowns [mo mi ... mn] and n — 1 equations, we need two more.

¢ Endpoint conditions

1) Natural spline (zero curvature at the endpoints < the second derivative are zero): mg = m, = 0. In the matrix
form, we have

! 0 0 o 0 Mo Y2—y1 ’ Y1—yY

ho 2(ho+hi1) h e 0 my 6 ( o 0)

0 o Bo—o 2(hp—o 4+ Pn_1) Pn_1| |mMn_1 6 (yn—ynq _ yn—l_yn—2>
0 o 0 0 1 mp hn—1 0 hn—2

2) Clamped endpoint condition: first derivative at the endpoints are specified by

a1 Yo — —Omo — —O(ml — mo) = 2h0m0 + h0m1 =6 0 Yo —Al.
ho 2 6 hO

Similarly,
S! (xp) =B = by 1+2n 1(2n—2n_1)+3dn_1(2n—2n_1)> = B = hp_1mp_1+2hn_1m, =6 (B - ynh_y”l) )
n—1

In the matrix form, we have

- 6 (y1h;yo B A) -
2hg ho 0 S 0 mo 0
ho 2(h0 + hl) hl e 0 mq 6 (% - %)
0 ce hp—o Q(hn_g + hn—l) hp_1 Mp—1 6 (ynh*yn—l _ yn—}z*%kz)
0 . 0 - Wy 1| | my . ”E g
| s(momn)
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3) Not-A-Knot endpoint condition: third derivative matching i.e.

and

"

Sgl(fl) = Si"(xl) = hl(ml - mo) = hO(mQ - ml)

mi41—M;

—h1 ho+h —ho e 0
ho 2(h0 —+ hl) hl e 0
0 o hn—? Q(hn—Q + hn—l) hn—l
0 e _hn—l hn—l + hn—2 _hn—Q

Mp—1
s

d

n—l('rn—l) = S;ZLQ(xn—l) = hn—l(mn—l - mn—Z) = hn—Q(mQ - mn—l)

by using S}’(x) = 6d; and d; =

. Then in the matrix form, we can obtain

0
Y2—Y1 _ Yi1—Yo
6 (e - )

Yn—Yn—-1 _ Yn—-1"Yn-2 )

h7171

0

hn72

e Summary of Cubic Spline: Starting with a set of n + 1 data points (o, ¥0), (Z1,91), - - (Tn, Yn)-

1)
2)

Compute h; = ;41 —x; for i =0,1,...,n—1.
Set up the matrix equation (matching the first and second order derivatives, we have n — 2 equations for n + 1
unknowns mg, my, ..., m,) with two extra endpoint conditions. Hence we have matrix equation of n +1 x n + 1.

3) Solve Am = r, where m; = 2¢;.
4) Compute the coefficients a; = y;, b; = ¥ — i — hi(mjgl_mi'), ci =gty dy = TG
5) To use spline function, for z; < z < z;41, gi(z) = a; + bi(z — x;) + ¢i(zw — 23)? + di(x — 2;)3.

6 Numerical differentiation

6.1 Basic ideas

e Approximating the first derivative of an arbitrary function f at x = zg i.e. finding an approximation for f’(xo).

£(@) = 2= o) + T f(ar) + flao, o0,)(w = )z — 1)
= f'(z) = pra—— fxo) + ﬁf(ml) + flzo, z1,2](22 — 20 — x1) + (2 — x0)(z — J;l)%f[xo,xl,x].
= f'(z0) = flen) = Flzo) +  flzo, z1, o] (zo — 21)

L1 — Zo
error term for the approximation

For flzo,x1,x0](zo — x1), recall that

flxo, x1,20] = f 2@),3?0 <€ <.
Hence we have ) — o)
/ 1) — Zo To — X1 .y
Fao) = HE L1 e).

Let 1 = 2o + h, we have

(o) = / S£(6).
Let 1 = o — h, we have
f/(IO) _ f(IO) B i(xo - h) + ;Lf/,(f)

By Taylor’s expansion, we have
h2
f(xo+h) = fzo) + f(x0) - h+ 7f”(§)-

e Numerical approximation for derivatives
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1) Approximate f'(x¢) = P’(zo).
2) General finite difference approximation by the Taylor’s series truncation.
e Consider the derivative of a approximation format involving the points xg, 1, ..., 2, and f(xo), f(z1),..., f(xn). The

interpolation polynomial of degree at most n for f(x) is

= fla;)Lj(@)
§=0

where L;(x) is the Lagrangian polynomial. So

=3 Flay) L (o

§=0
Note that xg,x1,...,2, need not to be equidistant.
e Consider x; = x¢ + th and h = x;41 — z;,7 = —I, ..., u, where [, u are non-negative integers.
L7 _ ) _ (z—mo)(z—zj 1) (x—zj41) - (T—2n)
e Example: | =0,u = 2,z¢,21,22. By L;j(z) = TRy I yerrsey | sy oo sy BN have
_ _(z=m)(z—=2) / _ 1 1
Lo(z) = (;,g(, xlggmim?) = Ly(zo) = o T 5o
Ly(w) = 7 xZ%xo %) = Li(20) = G=ioytme—en)
f ZTo)(x—T1 i €T T
La(@) = tamaoyea—s0 = L2(20) = Grmiim—any-

e To generalize this, assume x; = xg + ih, we have the following

u

Ly(wo)= Y 2=+

h
k=—1,k#0 k=—1,k#0

—~

%)

u u
’ _ 1 To—Tp _ L1 —k
Lj(xo) Ty —wo I iz — gh Il ; (j_k> ’
k=—1,k=0,kj k=—1, k0, k]

e Example: Approximate f'(x¢) by 2_1,x0, 21, f(x_1), f(z0), f(z1) with z_; = 29 — h and 21 = z¢ + h.

= feo) =5+ feo) (= 1)+ fen) s
_ —f@) + f(=)
2h
_ flwo+h) — flwo—h)
2h

e Question: What is the error e(zg) = |f'(x0) — P'(20)|? Recall the interpolation error,

u

f(@) = Pp(z) = flz—i, ..., 20, ..., Tu, 7] - H (z — zp).

k=—1

Then, we take the first derivative on both sides and evaluate at xg, we have

f/(xo) — P7I1<x0) = % {f[l‘l,. RPN/ s TR ,LCU,CC} . H (117 — xk)} ’z:”ﬂo

k=-1

:%{f{x,l,...,xo,---,xmx]}' H(g;_xk)|z_m0+f[xl7...,x0,...,xu,x}-;i{ H(I—xk)}|z_mo

k=—1
u

:O"‘f[l'_l,-.-,LEQ,...,JL‘u,JfO]' H (170—117k)

k=—1,k#0

k=—1
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6.2

0O T (- )

(n+1)! b= Tk
= m (=D R,
where £ € (z_;,z,,). Therefore,
e(xg) = f(::_l)l()f') kL
Summary: Suppose that on the grid points z; = x¢ + ih,i = —I,...,u, where | + u = n, an n'" order formula

approximating f’(zq) is given by

where "
%7 J= 07
a =1 k==l k0 )
7 I1 (m) J#0
k=—1,k#0,k#j
The error is
, 1 u < ! (n+1) B
£ = 5 D asf )l < G gy I @l

i=-1

Taylor’s Series for numerical derviatives

Suppose we want to approximate f’(xg) by f(xo), f(xo — h), f(xo — 2h):
f(x0) = Df(xo) = af(zo) + bf(xzo — h) + cf(xo — 2h).
Taylor’s series expansion for f(xg — h), f(xo — 2h), then
Df(xo) = (a+b+c)f(zo) — (b+2c)hf (o) + %(b +4e)h? ' (zo) — é(b +8¢)h3 f" (x0) + h.o.t. (higher order terms).

Then we obtain,

a+b+ec=0 a:%
b—|—2c:—% = b:—%
b+4c=0 c:%

The leading-order error is O(h?). Then D f(zo) = 5 [3f(z0) — 4f(zo — h) + f(xo — 2h)].

The general approach for the method of undetermined coefficients: we assume that f(x) is sufficiently smooth
i.e. at least C"1[a, b] where zg € [a,b]. The Taylor’s series expansion of f at x; about zq (the point where we want to
approximate the derivative).

f(z;) = f(mo) + (i — x0) f'(x0) + M‘f”(%) +- 4 %(mZ —20) f®) (x0) + hot.,i=1,...,n.

We want to find a linear combination of f(z;),i =1,...,n that agree with f*)(z() as well as possible i.e.
crf (@) + eaf (x2) + -+ eaf (xa) = f*) (20) + O(")

where p is as large as possible. Then we have

FPNao) ~ (1 4+ 2+ -+ cn) f@o) + [er (1 — w0) + ca(wa — 20) + -+ + cnl@n — 20)]f (20)

1
4+ oo+ H[cl(ml — :Eo)k =+ 02(1‘2 — Io)k + -+ Cn(l'n - xO)k]f(k)(‘rO)
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1 — n— n— n—
ool = a0) T b ealer = o) 4 enon = o) (o).
We choose
1 & .- 1 ifi-1=k
O S Y i=1,2,...,n.
(t—1)! = G {0 otherwise. ! "

e Remark: max |z; — 2| < Ch for some constant C'.
1<i<n

7 Numerical integration

7.1 Trapezoidal rule, Newton-Cole formula, Simpson rule

n

e Trapezoidal rule: I; = fab f(xz)dx = Y ajf(x;), we use trapezoidal rule to approximate it,
§=0

[f(a) + f(b)] = fla) +

e Newton-Cole formula:

=0 k=0 ktj 1k
b b n n b n
Paade = 3 ) L@de =Y 5w [ L =3 f)a;
a @ j=0 j=0 a j=0

When j =1, xg = a,x1 = b, then

b
If:/f(:v)dx: 5

where a9 = a1 = 17_7‘1 Then

LO(I‘) = ﬁ = 27:2 = a9 = f;;Lo(x dx bga
Li(e) = 522 = 5 = oy = [ La()de = 5
Therefore,
b—a
Iy =~ IN(f) = aof(wo) + a1 f(z1) = 5 [f(a) + f(b)]

2
e Closed-form Simpson rule (n =2): In(f) = Y a;f(z;).

j=0

Therefore,
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7.2 Error analysis
e Basic quadrature error: The kernel is f(z) — P,(z) = flzo, 21, .., Zn,z] [ (z — ;).

n

b b b b
E(f):If—IN(f):/ f(as)dz—/ Pn(x)dx:/ [f(z)—Pn(m)]dz:/ Flz0, 31,y [ [ (& — 1)

i=0

e Theorem: If f is continuous on [a,b], g is integrable on [a, b] and g does not change sign on [a, b], then there exists a
number £ € [a, b] such that

e The error for trapezoidal rule (n =1)

b
E f):/ fla,b,z] (x — a)(xz — b) dz.
f(=) g(x)

g(x) = (x — a)(xz — b) is non-positive for all z € [a, b]. Here there exists a& such that

b " —a 3 "
B() = flab.8) [ (o - oo —vyaw = LI LZ0D) - L g

e Theorem: Let [,,(f) denote the Newton-Cole quadrature rule (open or closed) with n + 1 given points.

1) If nis even and f has n + 2 continuous derivatives, then there exists a constant ¢ and a& € [a,b] such that
E(f) =1t = In(f) = —c(b — a)" " fO D (g),

eg. x=1, E(f) = _f1(2£) (b—a).

7.3 Composite New-Cole quadrature, Simpson rule

e Composite Newton-Cole quadrature: Composite Trapezoidal rule:

1) = o, i $) = 2521 51a) + £0) amd BP) = Iy~ 1) = P2 )

e Let [a,b] be split into n subinterval by defining h = Z’_Ta and z; = a+ jh,0 < j < n. The trapezoidal rule is applied to
each subinterval [z;_1,z;].

b

f(x)dx

a
n

D X — T (2 —xjq)?
= 3 B ) ) - Y )

=1

.

h h3 n
= 5lf (o +2Zf z3) + f@n)] - 35 Zf”(gj).
Jj=1 =1
where z; —x;_1 =hforall j =1,2,...,n.
e Let f € C?a,b] and f"(Cy) = Igai{bf”( x), f(Cq) = I<mr<1bf”( x). For each j, we have
n 1 n
F1(Ca) < f1(&) < f7(Cr) = nf"( _Z (&) <nf"(Cr) = <= Z (&) < £1(Cy).
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By the Intermediate Value Theorem, there exists £ € [a,b], f(C2) < f"(€§) < f”(Cy) and f"(§) = 2 3 f/(¢) =
j=1
n
> f"(&) = nf"(€). Then the error term becomes
j=1
h & h? b—a)/n]? b—a
75 Zf//(gj) _ 75“.]0”(5) — [( 12)/ ] nf”(f) _ 7[ 5 h,zf”(f).
j=1
Thus, E(f) = If — ICN(f) § Ch2
e The Simpson’s Rule
b—a b+a b—a)?
I = Isumy + B(P) = =217 + 475 + 50 - L2 e,
e Composite Simpson’s Rule
h m m—1 b—a
Iy = S [f (@) + 4D flwaj1) +2 Y flway) + flwam)] = oW FD (),
j=1 j=1
where n = 2m is the number of subintervals.
7.4 Method of undetermined coefficients
e Gaussian quadrature (method of undetermined coefficients)
b n
I = / f@de =S a;f(ay),
a =0
where a; and x; are unknowns, j = 0,1,...,n. Therefore, we have 2(n + 1) unknowns. We want to determine the
mn
unknowns so that Iy = > a;f(z;) for f(z) =1,z,22,... 2"
j=0

Example: starting from n = 0, we have two unknowns x¢ and ag. Iy is exact for f(z) =1, f(z) = 2. Then

f(x)zl,fjldm:aolzbfa N a+b
o = .
flx) = x,f; zdr = apw = £b* — a? 0 2
The quadrature rule is
b
a+b
[ t@dex o= ) 150

which is the mid-point rule. The error associated with this method is %f”(f), a<&<h.
Consider integration on canonical interval [—1, 1].

n-/ 11 flayds ~ [ 11 P, (x)dz = gamm

where a; and z; are to be determined.
Example: n =1, zg,x1,a9,a;. We have

/_1 f(x)dz = aof(xo) + a1 f(z1)

for f(x) =1,x,22%, 23. We have

flx)=1 ap+a =2

fl)=2 apro+ajz1 =0
f(x)=12% apzd + a12? = %
f(x) =23 aoxg +a123 =0

using symmetry with respect to zero xg = —x; and ag = a1, we can obtain ag =1 = a7 and zg = —% = —x.
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e Suppose —1<zg <z <--- <z, <1,

1 1
B = [ 7@ - Pu@lde = [ flavar,...anal [[@ = ada

-1

i=0
el (3) ; ;
Recall flzg,z1,..., 25, 2] = DT Suppose f(x) is a polynomial of degree n.
1) m <n, flxg,z1,...,2n,2] =0.
2) m >mn, flro,x1,...,Tn,x] is a polynomial of degree m — (n + 1).
e Our idea is to pick x; such that f[zo,z1,...,2n, 2] as ¢, and [] (z — z;) as ¢,41 where ¢, and ¢, 11 is orthogonal.
i=0
Note that for f(x) a polynomial of degree 2n + 1, flxo,z1,...,Z,,x] is a polynomial of degree m — (n + 1) which
is at most n. If we pick [[(z —z;) = iqﬁnﬂ(m) where ¢,,+1 is an orthogonal polynomial of degree n + 1. Then
i=0 "
f_ll flxo, 21, ..., T, 2] _1:[0(1‘ —x;)dz = 0.
e Two-point formula, xo = —%, T = %, which are roots of (22 — %) which can be obtained from Gram-Schmidt

orthogonalization. It is similar to Legendre polynomial, ¢2(x) = 3(32% — 1). Legendre polynomial has following form:

2j+1

do(z) =1,¢1(x) = z,¢;41(x) = ﬁfﬂ%(fc) - jjﬁ@-,l(x)?j > 1.

e Summary:

1) On canonical interval [—1,1] the Gaussian quadrature uses the roots of the degree n 4+ 1 to generate the points
o, T1,T2,...,T,. This ensures to formula is exact up to a polynomial of degree of 2n + 1.
2) The corresponding quadrature weights are computed as

2(1 — 22
P Ct R S

[(n+ 1)¢n (;)]*

3) The corresponding error is

1 - B 22nH3[(n + 1)!)4 n
/4 Jlwde = j;o %l () = (2n 4+ 3)[(2n + 2)!)? f(2 +2)(€).

e Remark: For f; f()dt = 3 bjf(t;). Set
§j=0
b—a b+a
=—zx; + ——.
2 2
where z; is the root of the Legendre polynomial on [—1,1]. Thus,

b—a
bj = Taj,
where a; is the weight computed on [—1,1].

e Example: [y = fol 1+%dt = arctan 1 = 7. Use two-point Gaussian quadrature,

TR T LT Ty Ty T )
Therefore,
PN B L, 111 111
aO_ _a17 0 — - 17:1;0_ f’ml_ 37 0 — 2\/5 2’ 1 2 3 2
Hence,
I~ L 1 + ! ! ~ 0.786885245901639
214+ (55) +3)° 21+(55)+3)°
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8 Numerical methods for solving differential equations

8.1 One-step methods

e The forward Euler method: Consider the first-order scalar differential equation

(6 = Su(0) = Fu(),).

Let t; = to + jk,y" = y(t,),y° = y(to), where k is the step. The simplest method is the forward Euler method, i.e.

yn—i-l _yn
yo= T and fly(), ) = fy" tn) = v =y kY =y R ).

One-step method is an explicit method, which depends on y",t,,.
e The backward Euler method:

n

yn—i-l —y

P F@" ) =y =y k(Y ).

This is a one-step implicit method, if f is nonlinear, we need to solve a nonlinear equation for y™*!, by method like
Newton’s method.

8.2 Multi-step methods
e The mid-point method:

yn+1 _ ynfl
o = [ ) = Yyt =y 42k f(y ).

Note that when n = 1,
v =y’ +2kf(y" 1) = y(to) + 2kf(y(tr), tr),
where y! = y(t1) is unknown, that is, this method is not self-starting. Therefore, we can use Euler method to find y?,

ie. y! =9+ kf(y° to). Note that this method is O(k?) while Euler method is O(k), however, it does not propagate.

e BDF: We can approximate y/ by

gyntl_gyn n—1 1
/z%:ﬂywr tnt1)-

Y
This is a member of the backward differentiation formula (BDF) for differential ODE.

e Summary:

update dependence
one-step yntt y Ly
multi-step ~ yntt oyt ogn ynl o ynoT

One-step methods have certain advantages over multi-step methods:

1) One-step methods are self-starting while multi-step methods need one-step methods to start.
2) If f(y,t) is discontinuous at t*, one-step methods are possible to get full accuracy if ¢* is a grid point.

However, one-step methods have lower order of accuracy.

8.3 Omne-step multi-stage methods
e 2-stage explicit Runge-Kutta method:

vo=y" Sk, y =y +kf(y) = y" T =y +kfly +5kfy").


ljin1@uwyo.edu

Libao Jin (1jinl@uwyo.edu) MATH 5310 - Computational Methods Lecture Notes 1 40

e Classical 4*" order Runge-Kutta method: given v' = f(y,t), Fo = f(y", tn), F1 = f(y" + %kFo,tn + %k)Fg =

f<yn + %kFlatn + %k),F?) = f(yn —|— kjF27tn+1)’ then we haVe

k
y"“ =yt 6(FO + 2F; + 2F5 + F3).

e From the viewpoint of numerical integration: y' = f(y(t),t). Consider the integral [t,,, tn+1] With k = t,41 — tn,

8.4

we have

tht1 tnt1
/ y'dt = / [y, t)dt.
t t

n n

The left-hand side is y(t, 1) — y(tn) ~ y™*! — ™. And the right-hand side, for example, using the trapezoid rule, we
have

| 0.0t = S0 ) + £ )]

n

Then we have

k ¥ n
Yyt =y 4 S tn) + f(y T tg1)]

This is an implicit method.

Numerical integration for autonomous system

We have a autonomous system ' (t) = f(y(¢)). Then

y(thrl) - y(tn)

y'(t) ~ 2 =y =y + kf(y")
with y" ™ ~ y(t,11),y"™ ~ y(t,). Then
k? tni1) — y(tn k
Ultain) = ult) + b/ (0) + () + O(k7) = W) 200 g o Ry o)

| S —

Z(tn+1)local truncation error

We say the method is consistent if z — 0 as k¥ — 0. Moreover, let’s consider the test problem.
y'(t) =0
y(0) =0

yn+2 _ 3yn+1 + Qyn
k

Let’s approximate y’(t) by following

y'(t) ~ =0=y"? =3yt 424" = 0.

We need y° and y' to start. Assume y° = y(0), for y', we need y* — 0 as k — 0. Then

y2 _ 3y1 _ 2y0
y?=3y" — 2yt = (20" —y") +2%(y" — ")
yt=3y" — 2y = (200 —y) +2*(y' — ")

yr=3y" Tt =2y = (20 — ) + 2 (v = 0°)

nt2 — ¢7+2 Plug into the difference equation, we have

Suppose y(t,) = y" =" (n*" power of &), y* ™ ="ty
€n+2 _ 3§n+1 4 2£n — é-n(é-Q _ 35 + 2) =0.

Define p(§) = €2 — 3¢ + 2 as the characteristic equation. The roots of p(£) are the solution of the difference equation:
Hence, y" = 1€} + c2€%, where & and & are roots of p(§). Therefore,

y"=c1-14co -2
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To determine ¢; and ¢y by

=c; =2y° —y! and ¢, = y' —¢°.

n=0,"=c1 +c
nzl,ylzcl+202

In general, for the r-step method, the characteristic equation

p(€) = (€ -&)E—&) (€= &)-
is from the difference equation in the test problem (trivial L.V.P.) e.g. y"*2? — 3y" 1 + 2y = 0 = p(&) = €2 — 3¢ + 2.
Then take backward Euler method for example, we have y" ™ —y™ =0, p(§) = £ — 1,
y" =&l + by + g

We want 4™ — 0 as k — 0 (n — 00).
The zero-stability condition: |£;| < 1for j =1,...,7. [§] < 1if §; is a repeated root. This condition is weaker,
because we still have cg,cq,...,c, to play with.

e Consistency + Zero-stability = Convergence.
e A-stable method: Consider ' = Ay (A is a scalar and can be complex number).

8.5

— Forward Euler method: y"*! = y" + kM\y"™ = (1 + k)\)y". Note that E, 1 =y —y" = E,y1 = (1 + kN E,.
Eniq decays if 1+ kN <1= -1<1+kA<1=-2<k\<0. If\= 10 then k¥ < 2 x 10719, which is
impractical. In the Euler’s case, let kA = z, we have |1 + z| < 1, which is a circle centered at —1 with radius 1.
The A-stable region of forward Euler method is inside the circle.

— Backward Euler method: y"™' = y" + kAy"™!, then E, 1 = 25 E,. We require |5 < 1, let kXA = z, it
becomes \i\ < 1, which is a circle centered at 1 with radius 1 on complex plain. The A-stable region of backward
Euler method is outside of this circle.

Suppose S is the A-stable region. For numerical methods for ODE. We need require kA € S (the equivalence of the
test problem), e.g. Euler’s method |1 + kA| < 1, Backward Euler’s method || < 1.

Numerical methods for PDE

1-D heat equation: u; = vug,,v > 0. We approximate UZ-”Jrl ~ u(x;, t").

wt Tty

Uy ~ —+——+ T L ’

s o MO
where x; = ih,t" = nk,i = 1,2,...,;m. Then we have Uy, Uy, ...,Uns1 (m + 2 points), Uy and U,,+1 are boundary
conditions. Plug the above back into the heat equation, we have

wrtl —yn ut o —2u? +ul k
: L L= = hQL Tt =+ ﬁ(u?—l = 2ui +uity).

It is an explicit 2"-order method for heat equation.
Method of line (MOL) for PDE: MOL has two steps 1)We approximate the spatial derivatives ., by

1 .
Ugg A ﬁ[ui—l(t) —ui(t) +uia(t)],i=1,...,m.
Then the heat equation becomes U’(t) = AU(t) + g(t), where

-2 1 uy go(t)

1 -2 1 Ug ) 0

A=| o om=| o [ee=1]

1 -2 -1 U1 0
1 —2 Um 9 (t)

2) We approximate temporal derivative U’ (t) by Euler’s method. Then U™ = Un+kf(U™), where f(U) = AU+g(t)
or uf Tt =l + K (ul | —2uP +u?, ). In step (2), we use trapezoidal method to approximate U’(t),

Urtt =un + §[f(U )+ fUH] = ui ™ =l + Thz(“i—l —2u} 4wy +upt = 20 ulhh).

This is called Crank-Nicolson method. Note: A depends on 5.
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