
Lab 14: Built-in ODE Solvers in MATLAB

MATH 3341: Introduction to Scientific
Computing Lab

Libao Jin

University of Wyoming

May 05, 2021

Libao Jin MATH 3341 Lab 14



Lab 14: Built-in ODE Solvers in MATLAB Built-in ODE Solvers for Stiff/Nonstiff ODEs

Lab 14: Built-in ODE Solvers in MATLAB

Libao Jin MATH 3341 Lab 14



Lab 14: Built-in ODE Solvers in MATLAB Built-in ODE Solvers for Stiff/Nonstiff ODEs

Built-in ODE Solvers for Stiff/Nonstiff ODEs

Libao Jin MATH 3341 Lab 14



Lab 14: Built-in ODE Solvers in MATLAB Built-in ODE Solvers for Stiff/Nonstiff ODEs

Stiff ODEs

Definition
A stiff equation is a differential equation for which certain numerical
methods for solving the equation are numerically unstable, unless
the step size is taken to be extremely small. It has proven difficult
to formulate a precise definition of stiffness, but the main idea is
that the equation includes some terms that can lead to rapid
variation in the solution.

Libao Jin MATH 3341 Lab 14



Lab 14: Built-in ODE Solvers in MATLAB Built-in ODE Solvers for Stiff/Nonstiff ODEs

Choose an ODE Solver

Nonstiff ODE Solvers: ode45, ode23, and ode113

Stiff ODE Solvers: ode15s, ode23s, ode23t, and ode23tb

Fully Implicit ODE Solvers: ode15i

Libao Jin MATH 3341 Lab 14



Lab 14: Built-in ODE Solvers in MATLAB Built-in ODE Solvers for Stiff/Nonstiff ODEs

Choose an ODE Solver

Some ODE problems exhibit stiffiness, or difficulty in evaluation.
For example, if an ODE has two solution components that vary on
drastically different time scales, then the equation might be stiff.
You can identify a problem as stiff if nonstiff solvers (such as
ode45) are unable to solve the problem or are extremly slow. If you
observe that a nonstiff solver is very slow, try using a stiff solver
such as ode15s instead. When using a stiff solver, you can improve
reliability and efficiency by supplying the Jacobian matrix or its
sparsity pattern.

Libao Jin MATH 3341 Lab 14



Lab 14: Built-in ODE Solvers in MATLAB Built-in ODE Solvers for Stiff/Nonstiff ODEs

ode45: Solve non-stiff ODEs, medium order method
[t, y] = ode45(f, [t0 tfinal], y0) integrates the
system of differential equations y′ = f(t, y) from time t0 to
tfinal with initial conditions y0. f is a function handle.
[t, y] = ode45(f, t_span, y0) with t_span = [t0,
t1, t2, ..., tfinal] integrates the system of differential
equations y′ = f(t, y) from time t0 to tfinal with initial
conditions y0. f is a function handle. In this case, t is same as
t_span.
Example: Solving a separable ODE y′ = 4t with y0 = 0.

y′ = dy

dt
= 4t =⇒ dy = 4t dt =⇒

∫
1 dy =

∫
4t dt.

Therefore, y = 2t2 + C and
y0 = y(0) = 0 =⇒ C = 0 =⇒ y(t) = 2t2. In MATLAB:
f = @(t, y) 4 * t; y0 = 0; t_span = linspace(0, 5, 50);
[t, y] = ode45(f, t_span, y0);

Libao Jin MATH 3341 Lab 14



Lab 14: Built-in ODE Solvers in MATLAB Built-in ODE Solvers for Stiff/Nonstiff ODEs

ode45: Solving higher order ODEs
Convert the higher order ODEs into a system of first-order
ODEs, then solve it using ode45.
Example: y′′ − (2− y2)y′ + y = 0 with y(1) = 2, y′(1) = 0.
Let y1 = y and y2 = y′, rewriting the second order ODE gives

y′′ = (2− y2)y′ − y =⇒
{

y′
1 = y′ = y2

y′
2 = y′′ = (2− y2

1)y2 − y1

In matrix form, we have

y′ =
[
y1
y2

]′

=
[
y′

1
y′

2

]
=

[
y2

(2− y2
1)y2 − y1

]
.

In MATLAB:
f = @(t, y) [y(2); (2 - y(1)^2) * y(2) - y(1)];
t_span = linspace(1, 3, 100); y0 = [2; 0];
[t,y] = ode45(f,t_span,y0) % y(:,1) is the solution

Libao Jin MATH 3341 Lab 14


	Lab 14: Built-in ODE Solvers in MATLAB
	Built-in ODE Solvers for Stiff/Nonstiff ODEs


