MATH 3341 — Spring 2021 ## Lab 11: MATLAB Integration Routines & Gauss Quadrature If you haven't downloaded and unzipped Math.3341.zip. Download and unzip it under H: (H Drive if you are working on the Remote Lab). Change the current working directory by typing cd H:\Math.3341\Math.3341.Lab.11 in the Command Window, and type edit lab_11_script in the Command Window to edit lab_11_script.m. ## 1 Built-in Integration Functions - (a) Use both polyint and integral to evaluate $\int_{-1}^{3} (x^2 2x + 1) dx$. - (1) Define the lower bound a and upper bound b. - (2) Define the polynomial P as $p(x) = x^2 2x + 1$. - (3) Integrate $p(x) = x^2 2x + 1$ using polyint and store the result to pI. - (4) By fundamental theorem of calculus, evaluate the integral pI on [a, b] using polyval and store the result to pI_value . - (5) Define the anonymous function f by $f(x) = x^2 2x + 1$, and then use integral to evaluate $\int_{-1}^{3} (x^2 2x + 1) dx$ and store it to I. - (b) Evaluate the previous integral again, now using trapz and cumtrapz. - (c) Use integral 2 to evaluate $\int_{-\pi}^{-3\pi/2} \int_{0}^{2\pi} (y \sin x + x \cos y) \, dy \, dx.$ - (d) Use integral3 to evaluate $\int_0^1 \int_{x^2}^x \int_{x-y}^{x+y} y \, dz \, dy \, dx$. ## 2 Gauss Quadrature (a) Implement Gauss quadrature using n Gauss nodes, which is given by Equation (2.1), in the function file gauss_quad.m. $$\int_{-1}^{1} f(x) dx \approx \sum_{i=1}^{n} w_i f(x_i).$$ (2.1) (b) Use gauss_quad to evaluate the integral $$\int_{1}^{1.6} \frac{2x}{x^2 - 4} \, dx,$$ with n = 1, 2, ..., 15 Gauss nodes. Note: legendre_pair.m is provided to calculate x_i and w_i . Use help legendre_pair to check the usage. At last, call diary('lab_11_output.txt'), run the scripts lab_11_script.m, then call diary off. You will upload the script files lab_11_script.m, lab_11_output.txt, and gauss_quad.m to Overleaf. Then recompile, and submit the generated .pdf file on WyoCourses.