MATH 3341: Introduction to Scientific Computing Lab

Libao Jin

University of Wyoming

February 05, 2020

and Scripts

Lab 02: Variables, Arrays, and Scripts

script Files Variables Arrays Additional Functions and Commands AT_PX Primer

Lab 02: Variables, Arrays, and Scripts

Lab 02: Variables, Arrays, and Scripts

Variables

Arrays

Additional Functions and Commands

MT=X Primer

Lab 02: Variables, Arrays, and Scripts

Script Files Variables Arrays Additional Functions and Command: MT_EX Primer

A script file is simply a file that contains a chain of commands that you edit in a separate window, then execute with a single mouse click or command. This is where we can define variables, perform calculations and leave commands to remind us what the file calculates.

File Naming Conventions

- "The rules are exactly the same as for variable names: start with a letter, followed by letters or numbers or underscore, maximum 63 characters (excluding the .m extension), and must not be the same as any MATLAB reserved word."
- "None of the conventions matter to MATLAB itself: they only matter to the people writing the code, and the people maintaining the code (usually a much harder task), and to the people paying for the code (you'd be amazed how much gets written into contract specifications.)"

Reference:

https://www.mathworks.com/matlabcentral/answers/30223-what-are-the-rules-for-naming-script-files

Put Comments to Your Script File

```
% MATH 3341, Spring 2020
```

% Lab 02: Variables, Arrays, and Scripts

% Author: first_name last_name

% Date: 02/05/2020

Lab 02: Variables, Arrays, and Scripts

Script Files
Variables
Arrays
Additional Functions and Commands
ATEX Primer

Script Files
Variables
Arrays
Additional Functions and Command:
LATEX Primer

Variables help us represent quantities or expressions in order to make their use and re-use more convenient.

Naming Variables

- Must start with a letter.
- Followed by letters (a-z, A-Z) or numbers (0-9) or underscores (_).
- Maximum 63 characters (excluding the .m extension).
- Must not be the same as any MATLAB reserved word.
- Space is not permitted.
- Case sensitive, i.e., a ~= A.

Naming Variables

- Be as descriptive as possible with your variable names.
- Avoid built-in function/variable names (reserved keywords) such as pi, sin, exp, etc.
- Check if a name is already in use: which variableName or exist variableName.

Naming Conventions

- snake_case: writing compound words or phrases in which the elements are separated with one underscore character (_) and no spaces, e.g. "foo_bar".
- camelCase: writing compound words or phrases such that each word or abbreviation in the middle of the phrase begins with a capital letter, with no intervening spaces or punctuation, e.g. "fooBar"
- Other conventions: Hungarian notation, positional notation, etc.

Reference: https://en.wikipedia.org/wiki/Naming_convention (programming)

/ariables Arrays Additional Functions and Commands AT_EX Primer

Default Variable Definitions

Command	Description
pi	variable defining π
i or j	imaginary number $i = \sqrt{-1}$

Lab 02: Variables, Arrays, and Scripts

Script Files Variables **Arrays** Additional Functions and Commands LATEX Primer

Array, Vectors, and Matrices

- An array is a data form that can hold several values, all of one type.
- A vector is a 1-D array: we can define row vectors, column vectors.
- A matrix is a 2-D array.
- Also, we can define N-D array.

The general notation for a vector or matrix is a list of values enclosed in square brackets [] separated by commas (space) or semi-colons (or the combination).

Vectors

- Row vector, e.g., $x = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$
 - x = [1,2,3,4]
 - x = [1 2 3 4]
- Column vector, e.g., $x = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ or $x = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}^{\mathsf{T}}$

 - $x = [1 \ 2 \ 3 \ 4]$ ' where ' is the infix notation for transpose operation in MATLAB.

Script Files Variables Arrays Additional Functions and Commands &T_EX Primer

Matrices

• Define a matrix, e.g., $A=\begin{bmatrix}1&2\\3&4\end{bmatrix}$ A = [1,2;3,4]

Generate a Subarray using Slicing

- \bullet a = [1,2,3;4,5,6;7,8,9]
- b = a(1,1) % b = [1]
- c = a(:,1) % c = [1;4;7] same as c = a(1:3,1)
- d = a(2:end, 2:end) % d = [5,6;8,9] same as d = a(2:3,2:3)

Generate a 3-D Array using Slicing

- \bullet A = [1,2;3,4]
- \bullet B = [5,6;7,8]
- \circ C(:,:,1) = A or C(:,:,1) = [1,2;3,4]
- C(:,:,2) = B or C(:,:,2) = [5,6;7,8]

Concatenate Arrays

- \circ a = [1,2,3]
- \bullet b = [4,5,6]
- \circ c = [a,b] % c = [1,2,3,4,5,6]
- od = [a;b] % d = [1,2,3;4,5,6]
- \bullet e = [d;d] % e = [1,2,3;4,5,6;1,2,3;4,5,6]
- f = [d,d] % f = [1,2,3,1,2,3;4,5,6,4,5,6]

String: Array of Characters

```
s = 'abc'
t = ['a' 'b' 'c']
s == t  % return logical 1
[s t]  % return 'abcabc'
[s;t]  % return ['abc';'abc']
```


Cell Arrays

- s1 = {'abc', 'def'} vs. t1 = ['abc', 'def']
 s2 = {'abc'; 'def'} vs. t2 = ['abs'; 'def']
 s3 = {'ab', 'cd'; 'ef', 'gh'}
 s3{1,1} % 'ab'
- cell(n): create 1-D cell array of length n
- cell(m,n): create 1-D cell array of size m by n

Functions for Vectors & Matrices

Command	Description
linspace	Linearly spaced vector
logspace	Logarithmically spaced vector
colon or :	Colon
transpose or '	Non-conjugate transpose of a vector
eye	Identity matrix
ones	Ones array
zeros	Zeros array
rand	Uniformly distributed pseudorandom numbers
randn	Normally distributed pseudorandom numbers
magic	Magic square
diag	Diagonal matrices and diagonals of a matrix
reshape	Reshape array
size	Size of array
length	Length of vector

Lab 02: Variables, Arrays, and Scripts

Script Files
Variables
Arrays
Additional Functions and Commands
LATEX Primer

Additional Functions and Commands

Command	Description
iskeyword	Check if input is a keyword
who	List current variables
whos	List current variables, long form
which	Locate functions and files
clear	Clear variables and functions from memory
clc	Clear command window
clf	Clear current figure
close	Close figure
exist	Check existence of variable/script/function/folder/class
disp	Display array

Useful Functions for Homework 1

Command	Description
dot	Vector dot product
eig	Eigenvalues and eigenvectors
transpose or '	Transpose
fplot	Plot 2-D function
find	Find indices of nonzero elements
intmin	Smallest integer value
intmax	Largest positive integer value
realmin	Smallest positive normalized floating point number
realmax	Largest finite floating point number

Useful MATLAB Shortcuts

- Windows shortcuts
 - Press Ctrl + A to select all
 - Press Ctrl + I to adjust indentation
 - Press |Ctrl| + |R| to comment
 - Press Ctrl + T to uncomment
- macOS shortcuts
 - Press command + A to select all
 - Press command + I to adjust indentation
 - Press command + / to comment
 - Press command + T to uncomment

Lab 02: Variables, Arrays, and Scripts

cript Files ariables rrays dditional Functions and Commands √EX Primer

table Environment

```
\begin{table}[!hbtp]
  \caption{This is a table}
  \begin{tabular}{rcl}
  \toprule
  Column 1 & Column 2 & Column 3 \\
  \midrule
           & 1
  12
           & 12
                       & 123
  123
           & 123
  \bottomrule
  \end{tabular}
\end{table}
```

Variables
Arrays
Additional Functions and Command:

MTEX Primer

table Environment

Table 1:This is a table

Column 1	Column 2	Column 3
1	EQUÂLITY	1008
12	12	12
123	123	123

figure Environment

```
\begin{figure}[!hbtp]
  \centering
  \includegraphics[height=0.3\textheight]{figure.pdf}
  \caption{Plot of $\sin{x}$}
  \label{fig:sin}
\end{figure}
generates
```


Figure 1:Plot of $\sin x$

extstyle ext

```
\begin{align*} \\ |x|_2 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}, \\ |x|_2 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}, \\ |x|_2 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}, \\ |x|_2 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}, \\ |x|_2 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}, \\ |x|_2 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_3 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_4 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_5 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|_6 & = \Big(\sum_{i = 1}^{n} x_i^2 \Big)^{1/2}. \\ |x|
```

generates

$$||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}, ||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2},$$
$$||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}, ||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}.$$

Links

```
\href{https://www.google.com}{Google}
Google
Or simply
\url{https://www.google.com}
https://www.google.com
```


case Environment

```
$$
f(x) =
\begin{cases}
5 x + 4  & \text{if^} x \leq 1, \\
3 x^2 + 6 & \text{if^} x > 1
\end{cases}
$$
```

generates

$$f(x) = \begin{cases} 5x + 4 & \text{if } x \le 1, \\ 3x^2 + 6 & \text{if } x > 1 \end{cases}$$

Cross-Reference

```
\begin{equation}
\label{eq:ls}
A \mathbf{x} = \mathbf{b}.
\end{equation}
```

The expression \eqref{eq:ls} is a linear system.

generates

$$A\mathbf{x} = \mathbf{b}.\tag{1}$$

The expression (1) is a linear system.

Cross-Reference

```
\begin{table}[!hbtp]
\operatorname{xy} = 2x
\label{tab:xy}
  \begin{tabular}{cc}
  \toprule
  $x$ & $y$ \\
  \midrule
  $6$ & $12$ \\
  $7$ & $14$ \\
  $8$ & $16$ \\
  \bottomrule
  \end{tabular}
\end{table}
Table \ref{tab:xy} gives the result of y = 2x.
```

Cross-Reference

Table 2 gives the result of y = 2x.

