
Lab 03: Control Flows and Functions

MATH 3341: Introduction to Scientific
Computing Lab

Libao Jin

University of Wyoming

September 09, 2020

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Lab 03: Control Flows and Functions

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Control Flows

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Relational Operators

Symbol Meaning
== equal to
~= not equal
> greater than
< less than
>= greater than or equal to
<= less than or equal to

logical 1 true
logical 0 false

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Relation Operators: Conditional Statement for Scalars

num1 == num2 or eq(num1, num2): logical 1 if num1 is
equal to num2, otherwise logical 0.
num1 ~= num2 or ne(num1, num2): logical 1 if num1 is
not equal to num2, otherwise logical 0.
num1 > num2 or gt(num1, num2): logical 1 if num1 is
greater than num2, otherwise logical 0.
num1 >= num2 or ge(num1, num2): logical 1 if num1 is
greater than or equal to num2, otherwise logical 0.
num1 < num2 or lt(num1, num2): logical 1 if num1 is less
than num2, otherwise logical 0.
num1 <= num2 or le(num1, num2): logical 1 if num1 is
less than or equal to num2, otherwise logical 0.

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Relation Operators: Conditional Statement for Scalars

Example: Compare two scalars:

2 <= 2 % logical 1 (true)
2 >= 2 % logical 1 (true)
2 > 1 % logical 1 (true)
2 ~= 1 % logical 1 (true)
2 == 1 % logical 0 (false)
'a' == "a" % logical 1 (true)
'a' == 'b' % logical 0 (false)
'a' ~= 'b' % logical 1 (true)
'abc' == "abc" % logical 1 (true)

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Relation Operators: Conditional Statement for Arrays

comparison = vec == num: comparison is an array of
which comparison(i) = vec(i) == num.
comparison = vec ~= num: comparison is an array of
which comparison(i) = vec(i) ~= num.
comparison = vec > num: comparison is an array of which
comparison(i) = vec(i) > num.
comparison = vec >= num: comparison is an array of
which comparison(i) = vec(i) >= num.
comparison = vec < num: comparison is an array of which
comparison(i) = vec(i) < num.
comparison = vec <= num: comparison is an array of
which comparison(i) = vec(i) <= num.

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Relation Operators: Conditional Statement for Arrays

Example: Compare a vector to a scalar:

x = [0 1 2 3 4 5 6]
x < 3 % [1 1 1 0 0 0 0]
x <= 3 % [1 1 1 1 0 0 0]
x > 3 % [0 0 0 0 1 1 1]
x >= 3 % [0 0 0 1 1 1 1]
x == 3 % [0 0 0 1 0 0 0]
x ~= 3 % [1 1 1 0 1 1 1]

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Relation Operators: Conditional Statement for Arrays

Example: Define a piecewise function:

h(x) =
{

f(x) = x + 2 if x < 3,

g(x) = 6 − x if x ≥ 3.

x = [0 1 2 3 4 5 6]
x < 3 % [1 1 1 0 0 0 0]
f = [2 3 4 5 6 7 8] % x + 2
x >= 3 % [0 0 0 1 1 1 1]
g = [6 5 4 3 2 1 0] % 6 - x
fx = f .* (x < 3) % [2 3 4 0 0 0 0]
gx = g .* (x >= 3) % [0 0 0 3 2 1 0]
h = fx + gx % [2 3 4 3 2 1 0]

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Relation Operators: Conditional Statement for Arrays

comparison = vec1 == vec2: comparison is an array of
which comparison(i) = vec1(i) == vec2(i).
comparison = vec1 ~= vec2: comparison is an array of
which comparison(i) = vec1(i) ~= vec2(i).
comparison = vec1 > vec2: comparison is an array of
which comparison(i) = vec1(i) > vec2(i).
comparison = vec1 >= vec2: comparison is an array of
which comparison(i) = vec1(i) >= vec2(i).
comparison = vec1 < vec2: comparison is an array of
which comparison(i) = vec1(i) < vec2(i).
comparison = vec1 <= vec2: comparison is an array of
which comparison(i) = vec1(i) <= vec2(i).

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Relation Operators: Conditional Statement for Arrays

Example: Compare two vectors:

x = [1 2 3 4 5 6]
y = [3 2 1 6 5 4]
x == y % [0 1 0 0 1 0]
x ~= y % [1 0 1 1 0 1]
x > y % [0 0 1 0 0 1]
x >= y % [0 1 1 0 1 1]
x < y % [1 0 0 1 0 0]
x <= y % [1 1 0 1 1 0]
'abc' == ['a', 'b', 'c'] % [1 1 1]
'abc' == ['a', 'b', 'd'] % [1 1 0]

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Logical Operators

Symbol Meaning
& element-wise logical AND
| element-wise logical OR
&& short-circuit logical AND
|| short-circuit logical OR
~ logical NOT

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Logical Operators

condition1 & condition2: logical 1 if both condition1
and condition2 are logical 1, otherwise, logical 0.
condition1 | condition2: logical 1 if either
condition1 or condition2 is logical 1, otherwise,
logical 0.
~condition: logical 1 if condition is logical 0,
otherwise, logical 1.
condition1 && condition2: same as condition1 &
condition2 but condition2 will be skipped if condition1
is logical 0.
condition1 || condition2: same as condition1 &
condition2 but condition2 will be skipped if condition1
is logical 1.

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Conditional Branch

This kind of control flow executes a set of statements only if some
condition is met. There are if statements and switch statements
in MATLAB.

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Conditional Branch: if Statements

if statements conditionally execute statements. The general forms
of the if statement are

Single branch
if conditionIsMet

blockStatements
end
Two branches
if conditionIsMet

blockStatements1
else

blockStatements2
end

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Conditional Branch: if Statements
if statements conditionally execute statements. The general forms
of the if statement are

N branches
if conditionIsMet1

blockStatements1
elseif conditionIsMet2

blockStatements2
elseif conditionIsMet3

blockStatements3
.
.
.

else
blockStatementsN

end
L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Conditional Branch: if Statements

Example: Check whether n is even.

n = 5;
if mod(n, 2) == 0

disp('n = 5 is an even number');
else

disp('n = 5 is an odd number');
end

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Conditional Branch: if Statements

Example: Check whether year is a leap year.

year = 2020;
if mod(year, 400) == 0

is_leap_year = true;
elseif mod(year, 4) == 0 && mod(year, 100) ~= 0

is_leap_year = true;
else

is_leap_year = false;
end

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Conditional Branch: if Statements

Example: Check whether year is a leap year.

Combining the first and second branches:

year = 2020;
if mod(year, 400) == 0 || ...

(mod(year, 4) == 0 && mod(year, 100) ~= 0)
is_leap_year = true;

else
is_leap_year = false;

end

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Conditional Branch: switch Statements

switch statements switch among several cases based on expression.
The general form of the switch statement is

switch switch_expr
case case_expr1,

blockStatements1
case {case_expr2, case_expr3, ..., case_exprN}

blockStatements2
.
.
.

otherwise,
blockStatementsN

end

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Conditional Branch: switch Statements

Example: Check whether day is weekday.

day = 'Monday';
switch day

case {'Monday', 'Tuesday', 'Wednesday', ...
'Thursday', 'Friday'}

fprintf('%s is weekday.\n', day);
otherwise

fprintf('%s is weekend.\n', day);
end

Bug: What about day = 'Sunnyday'?

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Conditional Branch: switch Statements

Example: Check whether day is weekday.

Fix our first bug by adding a new case:

day = 'Monday';
switch day

case {'Monday', 'Tuesday', 'Wednesday', ...
'Thursday', 'Friday'}

fprintf('%s is weekday.\n', day)
case {'Saturday', 'Sunday'}

fprintf('%s is weekend.\n', day)
otherwise

fprintf('Error!\n')
end

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Loop

A loop executes a set of statements zero or more times, until some
condition is met. There are for and while loops in MATLAB.

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Loop

Question: What should we do if we want to disp('Repeating is
BORING!') for 100 times?

disp('Repeating is BORING!')
disp('Repeating is BORING!')
disp('Repeating is BORING!')

.

.

.
disp('Repeating is BORING!')

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Loop: for-loop

A for-loop repeats statements a specific number of times. The
general form of a for statement is:

for loopCounter = expr
blockStatements

end

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Loop: for-loop

Example: Loop over an array and display the value of each entry:

array = [1,3,5,7]
for i = 1:length(array)

disp(array(i))
end

or

array = [1,3,5,7]
for i = array

disp(i)
end

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Loop: for-loop

Example: Loop over an array and display the value of each entry:

for i = [1,3,5,7]
disp(i)

end

or

for i = 1:2:7
disp(i)

end

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Loop: for-loop

Question: What should we do if we want to disp('Repeating is
BORING!') for 100 times?

Use a for-loop:

for i = 1:100
disp('Repeating is BORING!')

end

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Loop: while-loop

A while-loop repeats statements an indefinite number of times.
The general form of a while statement is:

while conditionIsMet
blockStatements

end

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Loop: while-loop

Question: What should we do if we want to disp('Repeating is
BORING!') for 100 times?

Use a while-loop:

i = 1;
while i <= 100

disp('Repeating is BORING!')
i = i + 1;

end

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Functions

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Anonymous Functions

An anonymous function is a function associated with a variable
whose data type is functionHandle. Anonymous functions
can accept inputs and return outputs.
To define an anonymous function:
functionHandle = @(variableList) expression
Except for the cases when the function is meant to perform
matrix operations, the operators in the expression would
usually be element-wise operators , e.g., .*, ./, .ˆ. We usually
assume that the inputs are arrays rather than just scalars.

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Anonymous Functions

Anonymous function of one variable:
f(y) = sin(y)
f = @(y) sin(y)

Anonymous function of two variables:
g(x, y) = x2 + y2 − 1
g = @(x, y) x .^ 2 + y .^ 2 - 1

Composition of anonymous functions:
h(z) = esin z = ef(z)

h = @(z) exp(f(z))
same as h = @(z) exp(sin(z))

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Anonymous Functions
Example: Define a piecewise anonymous function:

h(x) =
{

f(x) = x + 2 if x < 3,

g(x) = 6 − x if x ≥ 3.

x = [0 1 2 3 4 5 6]
x < 3 % [1 1 1 0 0 0 0]
f = [2 3 4 5 6 7 8] % x + 2
x >= 3 % [0 0 0 1 1 1 1]
g = [6 5 4 3 2 1 0] % 6 - x
fx = f .* (x < 3) % [2 3 4 0 0 0 0]
gx = g .* (x >= 3) % [0 0 0 3 2 1 0]
hx1 = fx + gx % [2 3 4 3 2 1 0]

h = @(y) (y + 2) .* (y < 3) + (6 - y) .* (y >= 3)
hx2 = h(x) % same as hx1

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Function Files

Defining functions can save you from writing the same code over
and over again. Here is the syntax to define a function:

function [outputList] = functionName(inputList)
%FUNCTIONNAME Summary of the function
% Details of the function goes here such as
% syntax, author, date, copyright info, and etc.

% function body goes here
% define every variable in the outputList
% using variables in the inputList

end

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Function Files: Naming Convention

The naming convention of function files is similar to that of script
files. However, it is strongly recommended that the function name
of function definition should be same as the filename.

For example, if we define a function with header

function thisIsAFunction(a, b, c)

then it should be store to a file named thisIsAFunction.m. If the
function name and the file name are not consistent, MATLAB would
take the file name as the function name.

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Function Files: sumProd

function [summation, product] = sumProd(x)
%SUMPROD Calculate the summation and product of
% all elements in x
% Syntax:
% [summation, product] = sumProd(x)
% summation = sumProd(x)

% Initialize variables summation and product
summation = 0;
product = 1;
for i = 1:length(x)

summation = summation + x(i);
product = product * x(i);

end

end
L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Function Files: isEven

Recall the script for the example: Check whether n is even.

n = 5;
if mod(n, 2) == 0

disp('n = 5 is an even number');
else

disp('n = 5 is an odd number');
end

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Function Files: isEven

We can convert the script to a function as below:

function isNEven = isEven(n)
%ISEVEN Check whether n is even

isNEven = mod(n, 2) == 0;
if isNEven

fprintf('n = %d is an even number', n);
else

fprintf('n = %d is an odd number', n);
end

end

Then we can call the function: is4Even = isEven(4).
L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Function Files: isLeapYear

Recall the script for the example: Check whether year is a leap
year.

year = 2020;
if mod(year, 400) == 0

is_leap_year = true;
elseif mod(year, 4) == 0 && mod(year, 100) ~= 0

is_leap_year = true;
else

is_leap_year = false;
end

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Function Files: isLeapYear

We can convert it to a function as below:

function is_leap_year = isLeapYear(year)
%ISLEAPYEAR: Check whether year is a leap year.

if mod(year, 400) == 0
is_leap_year = true;

elseif mod(year, 4) == 0 && mod(year, 100) ~= 0
is_leap_year = true;

else
is_leap_year = false;

end

end

Then we can call is_2020_leap_year = isLeapYear(2020).
L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Function Files: isWeekday

Recall the script for the example: Check whether day is weekday.

day = 'Monday';
switch day

case {'Monday', 'Tuesday', 'Wednesday', ...
'Thursday', 'Friday'}

fprintf('%s is weekday.\n', day)
case {'Saturday', 'Sunday'}

fprintf('%s is weekend.\n', day)
otherwise

fprintf('Error!\n')
end

L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Function Files: isWeekday

We can convert it to a function as below:

function isWeekday(day)
%ISWEEKDAY Check whehter day is a weekday.

switch day
case {'Monday', 'Tuesday', 'Wednesday', ...

'Thursday', 'Friday'}
fprintf('%s is weekday.\n', day)

case {'Saturday', 'Sunday'}
fprintf('%s is weekend.\n', day)

otherwise
fprintf('Error!\n')

end

end
L. Jin MATH 3341

Lab 03: Control Flows and Functions Control Flows
Functions

Anonymous Function vs. Function File

Anonymous functions are helpful when you are using functions
with a simple definition.
Otherwise, writing a function file is recommended.

L. Jin MATH 3341

	Lab 03: Control Flows and Functions
	Control Flows
	Functions

