D _

MATH 3341: Introduction to Scientific
Computing Lab

Libao Jin

University of Wyoming

September 02, 2020

1/47

o _

Lab 02: Variables, Arrays, and Scripts

2/47

\ELELIES

Lab 02: Variables, Arrays, and Scripts

Variables

3/47

\ELELIES

Lab 02: Variables, Arrays, and Scripts

Variables help us represent quantities or expressions in order to
make their use and re-use more convenient.

4/47

\ELELIES

Lab 02: Variables, Arrays, and Scripts

Naming Variables

o Must start with a letter.

o Followed by letters (a-z, A-Z) or numbers (0-9) or underscores
()

Maximum 65 characters (excluding the .m extension).

Must not be the same as any MATLAB reserved word.

Space is not permitted.

© © o o

Case sensitive, i.e., a “= A.

5/47

\ELELIES

Lab 02: Variables, Arrays, and Scripts

Naming Variables

o Be as descriptive as possible with your variable names.

o Avoid built-in function/variable names (reserved keywords)
such as pi, sin, exp, etc.

o Check if a name is already in use: which variableName or
exist variableName.

6/47

Naming Conventions

\ELELIES

Lab 02: Variables, Arrays, and Scripts

snake_case: writing compound words or phrases in which the
elements are separated with one underscore character (-) and
no spaces, e.g. “foo_bar”.

camelCase: writing compound words or phrases such that each
word or abbreviation in the middle of the phrase begins with a
capital letter, with no intervening spaces or punctuation,

e.g. "fooBar"

Other conventions: Hungarian notation, positional notation,
etc.

Reference: https://en.wikipedia.org/wiki/Naming_
convention_(programming)

7/47

https://en.wikipedia.org/wiki/Naming_convention_(programming)
https://en.wikipedia.org/wiki/Naming_convention_(programming)

Command

Lab 02: Variables, Arrays, and Scripts

Default Variable Definitions

\ELELIES

Description

pi
iorili
jorij

variable defining 7
imaginary number ¢ = /—1
imaginary number j = +/—1

8/47

Arrays

Lab 02: Variables, Arrays, and Scripts

Arrays

9/47

Arrays

Lab 02: Variables, Arrays, and Scripts

Array, Vector, and Matrix

o An array is a data form that can hold several values, all of one
type.

o A vector is a 1-D array: we can define row vectors, column
vectors.

(*]

A matrix is a 2-D array.

(*]

Also, we can define N-D array.

©

The general notation for a vector or matrix is a list of values
enclosed in square brackets [] separated by commas (space) or
semi-colons (or the combination).

10/47

Lab 02: Variables, Arrays, and Scripts

o Row vector: = = {1 2 3 4]

X = [132a3,4]
x = [12 3 4]

1
2 T
o Column vector: y = || ory = [1 2 3 4] ory=ux'.
4
y = [1;2;3;4]
y = transpose([1 2 3 4])
vy =[1234]"
y = x'
y = x(:)
Note: ' and .' are the infix notation for ctrasnpose, %

transpose operation.

11/47

Arrays

Lab 02: Variables, Arrays, and Scripts

Vector: linspace vs. colon

o linspace(from, to, n) generates n points between from
(inclusive) and to (inclusive). For example,
a = linspace(2, 6, 5) 7 same as a = [2 3 4 5 6]

o colon(from, step, upper_bound) generates points
between from (inclusive) and upper bound (may not be
inclusive) with spacing step. For example,

a = colon(2, 1, 6) % same as a = [2 3 4 5 6]
a = colon(2, 2, 6) Y same as a = [2 4 6]

a = colon(2, 1, 7) % same as a = [2 345 6 7]
a = colon(2, 2, 7) 7% same as a = [2 4 6]

o from:step:upper_bound is same as colon(from, step,
upper _bound).

12/47

Arrays

Lab 02: Variables, Arrays, and Scripts

Vector: linspace vs. colon

o linspace(from, to, n) is equivalent to colon(from, (to
- from) / (n - 1), to)

o colon(from, step, upper_bound) is equivalent to
linspace(from, floor((upper_bound - from) / step)
* step + from, floor((upper_bound - from) / step))

o Use linspace when the number of points is given.

o Use colon when the spacing/step size is given.

13/47

Lab 02: Variables, Arrays, and Scripts CEYE

Vector: Slicing

o Define a row vector rowVec:

rowVec = [2,4,6,8,10]
rowVec = linspace(2,10,5)
rowVec colon(2,2,10) % or rowVec = 2:2:10

o array(i): the i-th entry of array, where i is called the

index:

i 1 2 3 4 5
rowVec(i) 2 4 6 8 10

14 /47

Lab 02: Variables, Arrays, and Scripts Ay

Vector: Slicing

i 1 2 3 4 5
rowVec(i) 2 4 6 8 10

o Extract one entry from a vector: For example, to extract 6
from rowVec and assign it to x:
x = rowVec(3)
o Extract multiple entries from a vector: For example, to extract
2, 6, 8 from rowVec and assign it to x:
x = rowVec([1,3,4])
o Extract multiple continguous entries from a vector: For
example, to extract 4, 6, 8 from rowVec and assign it to x:
x = rowVec([2,3,4]) %

x = rowVec(2:4)
15 /47

Lab 02: Variables, Arrays, and Scripts Ay

Vector: Append/Delete Element

% 1-D array

rowVec = 1:5

rowVec(end + 1) = 6 % append 6 to rowVec

rowVec = [rowVec,7] % append 7 to rowVec
rowVec(5) = [] % delete 5 from rowVec
rowVec(2:4) = [] % delete 2, 3, 4 from rowVec

16 /47

Vector Operations

Arrays

Lab 02: Variables, Arrays, and Scripts

sum(vec) /prod(vec): sum/product of all elements of vec.
max (vec) /min(vec): maximum/minimum of vec.

rowVec = rowVecl .* rowVec2: elementwise multiplication,
where rowVec(i) = rowVecl(i) * rowVec2(i).

rowVec .* colVec: Kronecker product. If rowVec has length

m and colVec has length n, then the resulting matrix is m-by-n.

dot (vecl, vec2): dot product of vecl and vec2, vecl and
vec2 must be of the same length.

sum(rowVecl .* rowVec2): dot(rowVecl, rowVec?2).
rowVecl * rowVec2': dot(rowVecl, rowVec2).

indices = find(vec > n): find indices of elements greater
than n in vec. Note: > can also be <, ==.

17/47

Arrays

Lab 02: Variables, Arrays, and Scripts

Dimension: size, length, reshape

o size(array): size of array. If array is n-dimensional, size
will return a vector of length n.

o size(array, 1): number of rows of array.
o size(array, 2): number of columns of array.

o length(vec): length of vector vec, equivalent to
max (size(vec)).

o reshape(array, diml, dim2, dim3, ...).

rowVec = 1:8
matrix = reshape(rowVec, 2, 4)
% same as matrix = [1,3,5,7;2,4,6,8]

o reshape(array, prod(size(array)), 1) issame as

array(:). %

18/47

Lab 02: Variables, Arrays, and Scripts

Define a 2 x 3 matrix A = [

A =1[1,2,3;4,5,6]
or

rowl = [1,2,3]
row2 = [4,5,6]
A = [rowl;row2]

or

coll = [1;4]
col2 = [2;5]
col3 = [3;6]

A = [coll,co0l2,co0l3]

19/47

Lab 02: Variables, Arrays, and Scripts

Arrays

Matrix: zeros, ones, eye, rand, randnmag

o zeros(m, n): define a m-by-n matrix with zeros.

zeroRowVec =
zeroColVec =
zeroMatrix =

zeroMatrix

zeros(1, 5)
zeros(5, 1)
zeros(5, 5)
zeros(5)

o ones(m, n): define a m-by-n matrix with ones.

o eye(m, n): define a m-by-n matrix with diagonals being ones.

o rand(m, n): define a m-by-n matrix with uniformly distributed

numbers.

o randn(m, n): define a m-by-n matrix with normally
distributed numbers.

o magic(n): define a n-by-n magic square with row sums,
column sums and diagonal sum being equal. %

20/47

Arrays

Lab 02: Variables, Arrays, and Scripts

Matrix: Slicing

o Define a matrix mat
mat = reshape(1:8, 2, 4)

o array(i, j): the entry of array at row i and column j,
where i is colled row index, j is called column index:

mat (i, j)\J 4

N

12 3
1 1 3 5
2 4 6

i

oo

21/47

Lab 02: Variables, Arrays, and Scripts Ay

Matrix: Slicing

mat(i, j)\j

: 1 2 3 4
1
1 T /BRENT
2 2 4 6 8

Extract multiple rows and multiple columns from mat: For example,
to extract entries at row 1, row 2, and column 2, column 4:

mat([1,2], [2,4])

mat(1:2, [2,4])

mat(1l:end, [2,4])

mat(:, [2,4]) %

o
I

22/47

Lab 02: Variables, Arrays, and Scripts Ay

Matrix: Append/Delete Element

% 2-D array
matrix = magic(b)

matrix(:, end + 1) = 1:5 % append a column vector
matrix = [matrix,[6:10]'] % append a column vector
matrix(end + 1, :) = 1:7 7% append a row vector
matrix = [matrix;8:14] % append a row vector
matrix(:,6) = [] % delete column 6
matrix(:,3:5) = [] % delete column 3, 4, 5
matrix(2:4,:) = [] % delete row 2, 3, 4

23 /47

Matrix Operations

© 06 06 66 o o o

Arrays

Lab 02: Variables, Arrays, and Scripts

mat = matl .* mat2: elementwise multiplication, where
mat(i, j) = matl(i, j) * mat2(i, j).

mat = matl * mat2: matrix multiplication, where mat1 is
m-by-p, mat2 is p-by-n, and mat is m-by-n.

sum/prod(mat, 'all'): sum/product of all elements of mat.
sum/prod(mat, 1): column sums/products.
sum/prod(mat, 2): row sums/products.

max/min(mat, [], 'all'): maximum/minimum of mat.
max/min(mat, [], 1): column maximums/minimums.
max/min(mat, [], 2): row maximums/minimums.
[row, col]l = find(mat > n): find indices of elements

greater than n in mat, row/col stores row/column indices. %

24 /47

Matrix Operations

©

Arrays

Lab 02: Variables, Arrays, and Scripts

[V, D] = eig(mat): V(:, i) and D(i, i) are the i-th
eigenvector and eigenvalue of mat.

d = diag(mat, k): extract k-th diagonal elements that is
above (k > 0) / below (k < 0) the main diagonal.

mat = diag(d, k): construct a matrix with k-th diagonal
elements being d.

mat = diag(diag(mat, k), k): set elements to zero except
the k-th diagonal elements.

fliplr(mat): flip mat in left/right direction.
flipud(mat): flip mat in up/down direction.
rot90(mat, k): rotate mat k * 90 degrees.

25 /47

N-D array: reshape and slicing

Lab 02: Variables, Arrays, and Scripts Ay

Define 3-D array using reshape:

rowVec = 1:8
array = reshape(rowVec, 2, 2, 2);
length(size(array)) % check the dimension

or using slicing:

slicel = [1,2;3,4]
slice2 [5,6;7,8]
C(:,:,1) = slicel
C(:,:,2) = slice2

26 /47

Lab 02: Variables, Arrays, and Scripts

Char Array vs. String Array

str = "abc"

array0OfCharsl = 'abc'
array0fChars2 = ['a','b','c']
array0OfCharsl == array0fChars2
array0OfCharsl == str
class(str)
class(array0fChars1)

[array0fCharsl,array0fChars?2]
[array0fCharsl;array0fChars2]

[str,str]
[str;str]

Arrays

b
b
b
b
b
b
b
b

return
return
string
char

return
return
return
return

logical 1 (true)
logical 1 (true)

'abcabc'

['abc'; 'abc']
["abC" s llabCH]
[Ilabcll ; llabCH]

27 /47

Lab 02: Variables, Arrays, and Scripts

Arrays

Cell Array: array of elements of different type

0 cell(n): create 1-D cell array of length n

0 cell(m,n): create 2-D cell array of size m by n

o Create a cell array of types char, string, double:
cellArray = {[1,2,3], "abc", 'def'}

cellArray{1}
cellArray{2}
cellArray{3}
cellArray{4} = 'ghi'
cellArray{4}

h
b
h

h

return [1,2,3]
return "abc"
return 'def'

return 'ghi'

28/47

Arrays

Lab 02: Variables, Arrays, and Scripts

Application: Image Processing

o A grayscale image is a 2-D array of pixels, each pixel has a
integer value that represent depth of color.
o A colored image is a 3-D array of pixels with RGB channels,
each channel is a 2-D array.
0 img = imread(filename): read image from graphics file
filename and assign it img.
o imshow(img): display image img in handle graphics figure.
o imwrite(img, filename): write image img to graphics file
named filename.
uw = imread('UW.png');
uwFlipud = flipud(uw);
imshow (uwFlipud) ;
imwrite (uwFlipud, 'UW_flipud.png'); %

29/47

Command

Lab 02: Variables, Arrays, and Scripts

Description

transpose or ’
linspace
logspace
colon or :
zeros
ones

eye

rand
randn
magic
size
length
reshape

Non-conjugate transpose of a vector

Linearly spaced vector

Logarithmically spaced vector

Colon

Zeros array

Ones array

Identity matrix

Uniformly distributed pseudorandom numbers
Normally distributed pseudorandom numbers
Magic square

Size of array

Length of vector

Reshape array ﬁ

30/47

Lab 02: Variables, Arrays, and Scripts

Command Description
diag Diagonal matrices and diagonals of a matrix
cell Create cell array
sum/prod Sum/Product of elements
min/max Minimum/Maximum of elements
dot Vector dot product
find Find indices of nonzero elements
eig Find eigenvalues and eigenvectors
diag Diagonal matrices and diagonals of a matrix
fliplr/flipud Flip an array
rot90 Rotate an array 90 degrees
imread/imwrite Read/Write image from graphics file
imshow display image in Handle Graphics figure
uint8 Convert to unsigned 8-bit integer Q&

31/47

Lab 02: Variables, Arrays, and Scripts

Additional Commands

Arrays

Command Description
iskeyword Check if input is a keyword
who List current variables
whos List current variables, long form
which Locate functions and files
clear Clear variables and functions from memory
clc Clear command window
clf Clear current figure
close Close figure
exist Check existence of variable/script/function/folder/class
disp Display array

%

32/47

Lab 02: Variables, Arrays, and Scripts

Script Files

Script Files

33/47

Lab 02: Variables, Arrays, and Scripts

Script Files

A script file is simply a file that contains a chain of commands that
you edit in a separate window, then execute with a single mouse
click or command. This is where we can define variables, perform
calculations and leave comments to remind us what the file
calculates.

3447

Lab 02: Variables, Arrays, and Scripts e Fils

File Naming Conventions

o Start with a letter, followed by letters or numbers or underscore,
maximum 63 characters (excluding the .m extension), and
must not be the same as any MATLAB reserved word.

o None of the conventions matter to MATLAB itself: they only
matter to the people writing the code, and the people
maintaining the code (usually a much harder task), and to the
people paying for the code (you'd be amazed how much gets
written into contract specifications.)

o Reference:

https://www.mathworks.com/matlabcentral/answers/
30223-what-are-the-rules-for-naming-script-files

%

35/47

https://www.mathworks.com/matlabcentral/answers/30223-what-are-the-rules-for-naming-script-files
https://www.mathworks.com/matlabcentral/answers/30223-what-are-the-rules-for-naming-script-files

Lab 02: Variables, Arrays, and Scripts e Fils

Put Comments to Your Script File

% MATH 3341, Semester Year

% Lab 02: Variables, Arrays, and Scripts
% Author: first_name last_name

% Date: mm/dd/yyyy

36/47

Lab 02: Variables, Arrays, and Scripts e Fils

Useful MATLAB Shortcuts

o Windows shortcuts

o Press =+ to select all

o Press + to adjust indentation
o Press + E to comment

o Press + to uncomment

o macOS shortcuts
o Press | command | + to select all
o Press | command | + to adjust indentation

o Press + to comment
o Press -+ to uncomment

37/47

Lab 02: Variables, Arrays, and Scripts

IATEX Primer

BTEX Primer

38 /47

Lab 02: Variables, Arrays, and Scripts
IATEX Primer

table Environment

\begin{table}[!hbtp]
\caption{This is a table}
\begin{tabular}{rcl}
\toprule
Column 1 & Column 2 & Column 3 \\
\midrule
1 & 1 & 1 A\
12 & 12 & 12 A\
123 & 123 & 123 A\
\bottomrule
\end{tabular}

\end{table}

39/47

Lab 02: Variables, Arrays, and Scripts
IATEX Primer

table Environment

Table 1:This is a table

Column 1 Column 2 Column 3

1 1 1
12 12 12
123 123 123

40 /47

Lab 02: Variables, Arrays, and Scripts
IATEX Primer

figure Environment

\begin{figure}[!hbtp]
\centering
\includegraphics[height=0.3\textheight]{figure.pdf}
\caption{Plot of \sin{x}}
\label{fig:sin}

\end{figure}

generates

Figure 1:Plot of sinx

41/47

Lab 02: Variables, Arrays, and Scripts
IATEX Primer

\left and \right vs. \big, \Big, \Bigg

\begin{align*}
\Ix\I_2 & = \big(\sum_{i = 1}"{n} x_i"2 \big) "{1/2},

\Ix\I_2 = \Big(\sum_{i = 1}"{n} x_i"2 \Big) "{1/2}, \\
\Ix\I_2 & = \Bigg(\sum_{i = 1} {n} x_i"2 \Bigg) "{1/2},
\Ix\I_2 = \left(\sum_{i = 1} {n} x_i"2 \right) "{1/2}.
\end{alignx}

generates

lalle = (322) % lalle = (3 22) ",

i=1 1=

el = (gﬂ) " el = (zm >/ .

=1

42/47

Lab 02: Variables, Arrays, and Scripts

\href{https://www.google.com}{Google}

Google
Or simply

\url{https://www.google.com}

https://www.google.com

43 /47

https://www.google.com
https://www.google.com

Lab 02: Variables, Arrays, and Scripts
IATEX Primer

case Environment

$$

f(x) =

\begin{cases}

5 x +4 & \text{if"} x \leq 1, \\
3 x"2 + 6 & \text{if"} x > 1
\end{cases}

$$

generates
br+4 ifx<1,
fl@)=19_, .
3z +6 ifz>1

44 /47

Lab 02: Variables, Arrays, and Scripts
IATEX Primer

Cross-Reference

\begin{equation}
\label{eq:1s}

A \mathbf{x} = \mathbf{b}.
\end{equation}

The expression \eqref{eq:1s} is a linear system.
generates

Ax =b. (1)

The expression (1) is a linear system. %

Lab 02: Variables, Arrays, and Scripts
IATEX Primer

Cross-Reference

\begin{table}['hbtp]
\caption{$y = 2x$}
\label{tab:xy}
\begin{tabular}{cc}
\toprule
x & y \\
\midrule
6 & $128 \\
$78 & $14% \\
$8% & $16% \\
\bottomrule
\end{tabular}
\end{table}
Table \ref{tab:xy} gives the result of $y = 2x$.

%

46 /47

Lab 02: Variables, Arrays, and Scripts
IATEX Primer

Cross-Reference

Table 2:y = 2z
r oy
12
tUAL4

8 16

Table 2 gives the result of y = 2z.

47 /47

	Lab 02: Variables, Arrays, and Scripts
	Variables
	Arrays
	Script Files
	 Primer

