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Formulae you may find useful:

n

Zc:cn, Zk— n—i—l Zkg

k=1

/xpda:: + C, where p # —1.
p+1

™ dr = In|z|+C.

e dr=¢e"+C.
sinzdr = —cosx + C.

cosxzdr =sinx + C.
1

5 dxr = arctanz + C.

—_
+
=8

dr = arcsinz + C.

vV1—22

secxtanx dr = secx + C.

sec? xdr = tanx + C.

e

1 20
cos? 6 = —i—c%.
1— 20
sin? ) — %

sin?@ + cos?6 = 1.
sin 20 = 2sin 0 cos 6.
cos 20 = cos? f — sin? 6.

+1)(2n+1)

COY K=
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1. (15 points) Circle TRUE if the statement is true or FALSE if it is not, and justify your
choice briefly.

(a) TRUE or : Suppose that f is defined on the interval [a,b] which is
partitioned to n subintervals of equal length. The right Riemann sum for f on
[a,b] is always greater than the left Riemann sum for f on [a, b].

When f is constant function, left Riemann sum equals right Riemann sum.

if0<zx<1
(b) TRUE or |FALSE|: The piecewise function f(z) = * 1 ==
3r+6 fl<zx<2

not integrable on [0, 2].
f is bounded function with only 1 discontinuity.

1 1
(c) | TRUE | or FALSE: / "2 gy = 2 / e” dx.
0 0

1 1 1
/ eem? dx :/ 2¢* dx = 2/ e® dx.
0 0 0

(d) or FALSE: If the function f is always nonnegative on the interval [a, b],
then the area and the net area between the curve and the z-axis from a to b are
equal.

Yes! The net area is the area above the x-axis minus the area below x-axis, now
the area below the z-axis is 0.

1000000 1000000
(e) [TRUE|or FALSE: ) (k+2)(k+ k= Y (k+2)(k+ 1)k

k=-2 k=1
1000000 0 1000000
S k+2)(k+ k=Y (k+2)(k+Dk+ Y (k+2)(k+ 1)k
k=—2 k=—2 k=1

1000000
=0+ Y (k+2)(k+ 1)k
k=1
1000000

= > (k+2)(k+ k.

k=1
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2. (20 points) Evaluate the following integrals.
20

(a) > (3k+2)%

k=1
SOLUTION.
20 20
> Bk +2)* = (9 + 12k + 4)
k=1 k=1

20 20 20
=9 K +12) k+4) 1
k=1 k=1 k=1

n(n+1)

:gn(n+1)(2n+1) 112
6 2
n=20
20 x 21 x 41 20 x 21
- 9OXTX 412202 g
— 28430.
50
(b) > 3(2k+1).
k=11
SOLUTION.
50 50
D 32k +1) =) (6k+3)
k=11 k=11
50 10
= (6k+3) = > (6k+3)
k=1 k=1

50 50 10 10
=6 k+3> 1-6) k-3) 1
k=1 k=1 k=1 k=1

1
:6@ +3%50—6"
n=>50
P05l 0%
— 7440.

(n+1)

n=20

+4 x 20

—3x10

n=10

-3 x10
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(c) / 3 wsin(z? + 2) dx.

—1
SOLUTION.

|
—

N = N N

L3

v@-
=
£
QU
<

I
|
|
Q
o
n
8

3

1
= _i(COS 11 — cos 3)

~ —0.49721.
O
w/2
(d) / z(e” + e ") + 2cos’(z) dx.
—7/2
SOLUTION. Observe that z(e” + e*) is odd, and 2 cos®(z) is even on [—Z, Z].
w/2 /2 /2
/ z(e* +e ") + 2cos’(x) dr = / z(e” +e 7)) dr + / 2 cos?(x) dx
—7/2 —7/2 —7/2
w/2
:O+2/ 2 cos®(z) dx
0

w/2
= 2/ cos(2z) + 1dz
0

w/2 w/2
/ cos(2x) dx + / ldx
0 0

1 w/2
—/ cos(2z)2dx + /2
2 Jo
u(r/2)
/ cos(u) du + /2

(0)
+ 7T/2)
0

2

2

2

1
2

L.
—sinu
2

N N N N
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3. (10 points) Use right Riemann Sum to approximate the net area of the region bounded
by the graph of f(z) = (z + 4)(z — 4)x and z-axis on [0, 20] for n = 10.

SOLUTION. The interval [0, 20] is partitioned to n = 10 subintervals of the same length

Ax, where Ax = ”’Ta = % = 2. We are using right Riemann sum, so we let

x} = o, = 9 + kAx = 2k. Then the right Riemann sum is

10

Zf(a:}i)Aa: = Zf(xk)Aa:
=> f(2k)-2

=2 (2k +4)(2k — 4)2k

10
=2 (4% — 16)2k
k=1

10

=2 (8k® — 32k)

k=1
10 10
=2 Z8k3—232k>
k=1 k=1
10 10
=2 82k3—322k>
k=1 k=1

2 2
_o (g™ (n+1) _32n(n+1) )
4 2
n=10 n=10
100 x 121 10 x 11
=2(8 — 32
= 44880.
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4. (10 points) Here is a picture containing the graphs of three functions. Which is larger,

the area between the curves y = —2% + 22 +4 and y = 4 — 22, or the area between the
curves y = 4 — 2% and y = 4 — 227

SOLUTION. Let f(z) = —2® + 2% + 4, g(x) = 4 — 2%, and h(x) = 4 — 2z. The area
between y = —a® + 22 + 4 and y = 4 — 22 is

/abf(m) —g(z)dx = /02(—x3+x2+4) — (4 —2%)dx

2
= / —23 4+ 222 dx
0

_ xt 23
4 3
0
1
4416
3
_4
=3

And the area between y =4 — 2% and y = 4 — 2z is

/abg(x) — h(z)dz = /02(4—332) — (4—22)dx

2
/ —2? 4+ 2z dx
0

The area between y = —23 + 22 +4 and y = 4 — 2? is same as the area between
y=4—2?andy =4 — 2x. [
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3
5. (10 points) Let R be the region bounded by y = 1732 xr =1, z-axis and y-axis.
x

Indicate (by shading) the region R in the graph below. Find the volume of the solid
generated when R is revolved about the y-axis.

Y
5
3
5 B 3
y_1+3x2
1 T =
\ )

SOLUTION. Note that both Disk Method and Shells Method is applicable to this prob-
lem. However, if we use Disk Method, we need to split the region into two subregions.
So Shells Method is preferred. Therefore, the interval we integrate on is [0, 1], then

1 1
3
2 = 2
/o mxf(x)dx /0 T e dx

1
:7r/ 26xdx
N——  du

u

u(1) 1
= 7T/ —du
u(0) U

u(l)=4

= mln|ul

u(0)=1
=7ln4
~ (0.69315.
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1
6. (10 points) Find the arc length of the curve y = E(eac + e %) on [—1n3,1n 3] by inte-

grating with respect to z.

1
SOLUTION. Let f(z) = 5(635 +e77), then

Fla)= 5o ) = flaf = 1 24 e)

Hence we can apply the formula to calculate the arc length as follows,

In3 In3 [ 1 1/2
\/1—|—f’(x)2dx:/ 1+—(62x—2—|—6_2x):| dx
—1n3 —In3 L 4
In3 1/2
4 1, , 9
= -4+ —(e** =2 x d
/—1n3_4+4(6 +e )] T
In3 '1 1/2
= / (e —2+4+e )| dx
—1In3 _4

1 In3 ) . 1/2
:5/1 3[(e’”+2+e D] da
1 In3
= _/ [(e" +e7)?] Y2 dy
2 —1In3
1 In3
= —/ (e®+e ") dx
2 —In3
1 In3
= 5" —e™)
—In3
1
— 5[(elnS - 671n3> o (671n3 o elnS)]
1
— 5[2(61113 . 6—1113)]
— e1n3 - 671n3
=3 1
-3
_8
=3
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7. (10 points) The graph of f(x) = 51/ on the interval [1, 3] is revolved about the z-axis.
What is the area of the surface generated?

SOLUTION. Provided that f(z) = 5/ = 52'/2, then

1 5 52 25
f/(ZL‘) —5x 51,1/2—1 _ éx—l/Q — f’(CL’)Q _ ﬁ(x—1/2)2 _ ZI_I'

Then we can apply the formula to obtain the surface area as follows,

A:/1 on f(a)/1+ J/(2) da

3 25 12
= / 21 x 5t/? (1 + —x_l) dx
1 4
3T 25 1/2
= 107T/ T (1 + —x_1>] dx
1L 4

1/2
3
25
= 107r/ T+ — dx
1 4 ~—~
SN—— du
u(3)
= 107r/ u'’? du
u(1)
0052 u(3)=37/4
= 107
u(1)=29/4
- 37/4
_ _7Tu3/2
29/4

-2 ()]

~ 180.35997.
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8. (15 points) Physical Applications.

(a) Find the mass of the thin bar with the given density function p(z) for

0<x< 1.

(b) A spring, which obeys Hooke’s law, on a horizontal surface can be stretched and
held 0.4 m from its equilibrium position with a force of 40 N. Is the work done
in stretching the spring 0.25 m from its equilibrium position equal to the work
done in stretching the spring 0.35 m if it has already been stretched 0.1 from its
equilibrium position?

B 1+ a2

SOLUTION. (a) The mass of the thin bar is

1
m:/ p(x) dzx
0
1
4
:/ dx
0 1+$2

|
:4/ dx
0 1+ZE2

1

=4 arctanz

0
= 4(arctan 1 — arctan0)

7
13-
4
=T.
(b) By Hooke’s law, we can find the spring constant as follows,

F(x) 40
= — =100.
T 0.4 00

F(x)=kr = k=

The work done in stretching the spring 0.25 m from its equilibrium position is

SORUE

While the work done in stretching the spring 0.35 m from 0.1 m is

0.35=7/20 7/20 7 2 1 2
Wy = /0 F(z)dz = /1 100z dz = 502*| =50 (%) - (E) =
45 25

1=1/10 /10
It is shown that W5 = 3 >W; = 3 then two works are not equal.

0.25=1/4 1/4 14
Wy = / F(z)dx = / 100z dz = 502
0 0

0

7/20

1/10



