MATH 2205 - Calculus II Lecture Notes 21

Last update: June 28, 2019

Sequences and Series 1

Review of Comparison, Limit Comparison, Alternating Series Tests

Theorem 1.1 (Comparison Test). Let $\sum a_k$ and $\sum b_k$ be series with positive terms.

- (a) If $0 < a_k \le b_k$ and $\sum b_k$ converges, then $\sum a_k$ converges. (b) If $0 < b_k \le a_k$ and $\sum b_k$ diverges, then $\sum a_k$ diverges.

Theorem 1.2 (Limit Comparison Test). Let $\sum a_k$ and $\sum b_k$ be series with positive terms and let

$$\lim_{k \to \infty} \frac{a_k}{b_k} = L.$$

- (a) If $0 < L < \infty$ (that is, L is a finite positive number), then $\sum a_k$ and $\sum b_k$ either both converge or both diverge.
- (b) If L = 0 and $\sum b_k$ converges, then $\sum a_k$ converges. (c) If $L = \infty$ and $\sum b_k$ diverges, then $\sum a_k$ diverges.

Theorem 1.3 (Alternating Series Test). The alternating series $\sum (-1)^{k+1}a_k$ converges provided

- (a) the terms of the series are nonincreasing in magnitude $(0 < a_{k+1} \le a_k)$, for k greater than some index N) and
- (b) $\lim_{k\to\infty} a_k = 0$.

Theorem 1.4 (Alternating Harmonic Series). The alternating harmonic series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

converges (even though the harmonic series $\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots$ diverges).

1.2 Convergent Series

Theorem 1.5 (Properties of Convergent Series).

- (a) Suppose $\sum a_k$ converges to A and c is a real number. The series $\sum ca_k$ converges, and $\sum ca_k = \overline{c} \sum a_k = cA.$
- (b) Suppose $\sum a_k$ converges to A and $\sum b_k$ converges to B. The series $\sum (a_k \pm b_k)$ converges, and $\sum (a_k \pm b_k) = \sum a_k \pm \sum b_k = A \pm B$.
- (c) If M is a positive integer, then $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=M}^{\infty} a_k$ either both converge or both diverge. In general, whether a series converges does not depend on a finite number of terms added to or removed from the series. However, the value of a convergent series does change if nonzero terms are added or removed.

Example 1.1 (Using properties of series). Evaluate the infinite series

$$S = \sum_{k=1}^{\infty} \left[5 \left(\frac{2}{3} \right)^k - \frac{2^{k-1}}{7^k} \right].$$

SOLUTION.

$$S = \sum_{k=1}^{\infty} \left[5 \left(\frac{2}{3} \right)^k - \frac{2^{k-1}}{7^k} \right]$$

$$= \sum_{k=1}^{\infty} 5 \left(\frac{2}{3} \right)^k - \sum_{k=1}^{\infty} \frac{2^{k-1}}{7^k}$$

$$= \sum_{k=1}^{\infty} 5 \left(\frac{2}{3} \right)^k - \sum_{k=1}^{\infty} 2^{-1} \left(\frac{2}{7} \right)^k$$

$$= \frac{5 \cdot \left(\frac{2}{3} \right)^1}{1 - \frac{2}{3}} - \frac{\frac{1}{2} \left(\frac{2}{7} \right)^1}{1 - \frac{2}{7}}$$

$$= \frac{10 - \frac{1}{5}}{1 - \frac{2}{3}}$$

$$= \frac{49}{5}.$$

Definition 1.1 (Absolute and Conditional Convergence). If $\sum |a_k|$ converges, then $\sum a_k$ converges absolutely. If $\sum |a_k|$ diverges and $\sum a_k$ converges, then $\sum a_k$ converges conditionally.

Theorem 1.6 (Absolute Convergence Implies Convergence). If $\sum |a_k|$ converges, then $\sum a_k$ converges (absolute convergence implies convergence). Equivalently, if $\sum a_k$ diverges, then $\sum |a_k|$ diverges.

Example 1.2 (Absolute and conditional convergence). Determine whether the following series diverge, converge absolutely, or converge conditionally.

(a)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\sqrt{k}}$$
.

(b)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\sqrt{k^3}}.$$
(c)
$$\sum_{k=1}^{\infty} \frac{\sin k}{k^2}.$$

(c)
$$\sum_{k=1}^{\infty} \frac{\sin k}{k^2}.$$

(d)
$$\sum_{k=1}^{\infty} \frac{(-1)^k k}{k+1}$$
.

SOLUTION.

(a) Identify that $a_k = \frac{(-1)^{k+1}}{\sqrt{k}}$, then test the absolute convergence by considering the convergence of $\sum_{k=1}^{\infty} |a_k|$,

$$\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} \left| \frac{(-1)^{k+1}}{\sqrt{k}} \right| = \sum_{k=1}^{\infty} \frac{1}{k^{1/2}},$$

which is a p-series with p=1/2, therefore, $\sum_{k=1}^{\infty} |a_k|$ diverges. Note that $\sum_{k=1}^{\infty} a_k$ is an alternating series. Then we perform Alternating Series Test, noting that $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} (-1)^{k+1} b_k$, of which $b_k = \frac{1}{\sqrt{k}}$ is decreasing and $\lim_{k \to \infty} b_k = \lim_{k \to \infty} \frac{1}{\sqrt{k}} = 0$. Hence $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\sqrt{k}}$ converges. By definition, the given series converges conditionally.

(b) Similarly, let $a_k = \frac{(-1)^{k+1}}{\sqrt[3]{k}}$, and

$$\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} \left| \frac{(-1)^{k+1}}{\sqrt{k^3}} \right| = \sum_{k=1}^{\infty} \frac{1}{k^{3/2}}$$

which is a convergent p-series for p = 3/2 > 1. Therefore, $\sum_{k=1}^{\infty} |a_k|$ converges, and thus $\sum_{k=1}^{\infty} a_k$ converges absolutely.

(c) In this series, $a_k = \frac{\sin k}{k^2}$ and consider $|a_k| = \left|\frac{\sin k}{k^2}\right|$. It is known that $|\sin k| \le 1$, then dividing both sides by k^2 gives

$$|a_k| = \left| \frac{\sin k}{k^2} \right| = \frac{|\sin k|}{k^2} \le \frac{1}{k^2}.$$

Let $b_k = \frac{1}{k^2}$, and $a_k \le b_k$ for $k = 1, 2, 3, \ldots$ We see that $\sum_{k=1}^{\infty} b_k = \sum_{k=1}^{\infty} \frac{1}{k^2}$ is a p-series with p = 2 > 1, which is convergent. Therefore, by Comparison Test, $\sum_{k=1}^{\infty} |a_k|$ converges, which forces $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} \frac{\sin k}{k^2}$ converges. In other words, the series converges absolutely.

(d) Let $a_k = \frac{(-1)^k k}{k+1}$, and

$$\lim_{k \to \infty} a_k = \lim_{k \to \infty} \frac{(-1)^k k}{k+1}$$

$$= \left[\lim_{k \to \infty} (-1)^k\right] \cdot \left(\lim_{k \to \infty} \frac{k}{k+1}\right)$$

$$= \left[\lim_{k \to \infty} (-1)^k\right] \cdot \left(\lim_{k \to \infty} \frac{k/k}{k/k+1/k}\right)$$

$$= \left[\lim_{k \to \infty} (-1)^k\right] \cdot \left(\lim_{k \to \infty} \frac{1}{1+1/k}\right)$$

$$= \left[\lim_{k \to \infty} (-1)^k\right] \cdot 1$$

$$= \lim_{k \to \infty} (-1)^k,$$

which does not exist. By Divergence Test, $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} \frac{(-1)^k k}{k+1}$ diverges, and by Theorem 1.6, $\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} \frac{k}{k+1}$ also diverges.

1.3 Properties of Power Series

Definition 1.2 (Power Series). A power series has the general form

$$\sum_{k=0}^{\infty} c_k (x-a)^k = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \cdots,$$

where a and c_k are real numbers, and x is a variable. The c_k 's are the *coefficients* of the power series and a is the *center* of the power series. The set of values of x for which the series converges is its *interval of convergence*. The radius of convergence of the power series, denoted R, is the distance from the center of the series to the boundary of the interval of convergence.

Example 1.3 (Interval and radius of convergences). Find the interval and radius of convergence for each power series.

(a)
$$\sum_{k=0}^{\infty} \frac{x^k}{k!}$$
.
(b) $\sum_{k=0}^{\infty} \frac{(-1)^k (x-2)^k}{4^k}$.
(c) $\sum_{k=0}^{\infty} k! \, x^k$.

SOLUTION.

(a) The center of the power series is 0 and the terms of the series are $x^k/k!$. Due to the precence of the factor k!, we test the series for absolute convergence using the Ratio Test:

$$r = \lim_{k \to \infty} \frac{|x^{k+1}/(k+1)!|}{|x^k/k!|} = \lim_{k \to \infty} \frac{|x^{k+1}|}{|x^k|} \frac{k!}{(k+1)!} = \lim_{k \to \infty} |x| \frac{k!}{k! \cdot (k+1)} = |x| \lim_{k \to \infty} \frac{1}{k+1} = 0.$$

Notice that in taking the limit as $k \to \infty$, x is held fixed. Because r = 0 for all real numbers x, the series converges absolutely for all x. By Theorem 1.6, we conclude that the series converges for all x. Therefore, the interval of convergence is $(-\infty, \infty)$ and the radius of convergence is $R = \infty$.

(b) We test for absolute convergence using the Root Test:

$$\rho = \lim_{k \to \infty} \sqrt[k]{\left| \frac{(-1)^k (x-2)^k}{4^k} \right|} = \lim_{k \to \infty} \left[\left(\frac{|x-2|}{4} \right)^k \right]^{1/k} = \lim_{k \to \infty} \frac{|x-2|}{4} = \frac{|x-2|}{4}.$$

In this case, ρ depends on the value of x. For absolute convergence, x must satisfy

$$\rho = \frac{|x-2|}{4} < 1,$$

which implies that |x-2| < 4. Using standard technique for solving inequalities, the solution set is -4 < x - 2 < 4, or -2 < x < 6. We conclude that the series converges on (-2,6) by Theorem 1.6. The Root Test does not give information about convergence at the endponits x = -2 and x = 6, because at these points, the Root Test results in $\rho = 1$. To test

for convergence at the endpoints, we substitute each endpoint into the series and carry out separate tests. At x = -2, the power series becomes

$$\sum_{k=0}^{\infty} \frac{(-1)^k (x-2)^k}{4^k} = \sum_{k=0}^{\infty} \frac{4^k}{4^k} = \sum_{k=0}^{\infty} 1 = \lim_{n \to \infty} \sum_{k=0}^{n} 1 = \lim_{n \to \infty} n + 1 = \infty.$$

Therefore, the series diverges at the left endpoint (or by Divergence Test, $\lim_{k\to\infty} a_k = \lim_{k\to\infty} 1 = 1 \neq 0$). At x=6, the power series is

$$\sum_{k=0}^{\infty} \frac{(-1)^k (x-2)^k}{4^k} = \sum_{k=0}^{\infty} (-1)^k \frac{4^k}{4^k} = \sum_{k=0}^{\infty} (-1)^k.$$

By Divergence Test, the series diverges at the right endpoint. Hence, the interval of convergence is (-2,6), excluding the endpoints, and the radius of convergence is R=4.

(c) In this case, the Ratio Test is preferable:

$$r = \lim_{k \to \infty} \frac{|(k+1)! \, x^{k+1}|}{|k! \, x^k|} = \lim_{k \to \infty} (k+1)|x| = |x| \lim_{k \to \infty} (k+1) = \begin{cases} \infty & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

We see that r > 1 for all $x \neq 0$, so the series diverges on $(-\infty, 0)$ and $(0, \infty)$. The only way to satisfy r < 1 is to take x = 0, in which case the power series has a value of 0. The interval of convergence of the power series consists of the single point x = 0, and the radius of convergence is R = 0.