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1 Sequences and Series

1.1 Review of Comparison, Limit Comparison, Alternating Series Tests
Theorem 1.1 (Comparison Test). Let

∑
ak and

∑
bk be series with positive terms.

(a) If 0 < ak ≤ bk and
∑

bk converges, then
∑

ak converges.
(b) If 0 < bk ≤ ak and

∑
bk diverges, then

∑
ak diverges.

Theorem 1.2 (Limit Comparison Test). Let
∑

ak and
∑

bk be series with positive terms and let

lim
k→∞

ak
bk

= L.

(a) If 0 < L < ∞ (that is, L is a finite positive number), then
∑

ak and
∑

bk either both converge
or both diverge.

(b) If L = 0 and
∑

bk converges, then
∑

ak converges.
(c) If L = ∞ and

∑
bk diverges, then

∑
ak diverges.

Theorem 1.3 (Alternating Series Test). The alternating series
∑

(−1)k+1ak converges provided

(a) the terms of the series are nonincreasing in magnitude (0 < ak+1 ≤ ak), for k greater than
some index N) and

(b) lim
k→∞

ak = 0.

Theorem 1.4 (Alternating Harmonic Series). The alternating harmonic series
∞∑
k=1

(−1)k+1

k
= 1− 1

2
+

1

3
− 1

4
+ · · ·

converges (even though the harmonic series
∞∑
k=1

1

k
= 1 +

1

2
+

1

3
+ · · · diverges).

1.2 Convergent Series
Theorem 1.5 (Properties of Convergent Series).

(a) Suppose
∑

ak converges to A and c is a real number. The series
∑

cak converges, and∑
cak = c

∑
ak = cA.

(b) Suppose
∑

ak converges to A and
∑

bk converges to B. The series
∑

(ak ± bk) converges,
and

∑
(ak ± bk) =

∑
ak ±

∑
bk = A±B.

(c) If M is a positive integer, then
∞∑
k=1

ak and
∞∑

k=M

ak either both converge or both diverge. In

general, whether a series converges does not depend on a finite number of terms added to or
removed from the series. However, the value of a convergent series does change if nonzero
terms are added or removed.
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Example 1.1 (Using properties of series). Evaluate the infinite series

S =

∞∑
k=1

[
5

(
2

3

)k

− 2k−1

7k

]
.

Solution.

S =

∞∑
k=1

[
5

(
2

3

)k

− 2k−1

7k

]

=

∞∑
k=1

5

(
2

3

)k

−
∞∑
k=1

2k−1

7k

=

∞∑
k=1

5

(
2

3

)k

−
∞∑
k=1

2−1

(
2

7

)k

=
5 ·

(
2
3

)1
1− 2

3

−
1
2

(
2
7

)1
1− 2

7

[

∞∑
k=m

ark =
arm

1− r
]

= 10− 1

5

=
49

5
.

Definition 1.1 (Absolute and Conditional Convergence). If
∑

|ak| converges, then
∑

ak converges
absolutely. If

∑
|ak| diverges and

∑
ak converges, then

∑
ak converges conditionally.

Theorem 1.6 (Absolute Convergence Implies Convergence). If
∑

|ak| converges, then
∑

ak con-
verges (absolute convergence implies convergence). Equivalently, if

∑
ak diverges, then

∑
|ak|

diverges.
Example 1.2 (Absolute and conditional convergence). Determine whether the following series
diverge, converge absolutely, or converge conditionally.

(a)
∞∑
k=1

(−1)k+1

√
k

.

(b)
∞∑
k=1

(−1)k+1

√
k3

.

(c)
∞∑
k=1

sin k

k2
.

(d)
∞∑
k=1

(−1)kk

k + 1
.

Solution.

(a) Identify that ak =
(−1)k+1

√
k

, then test the absolute convergence by considering the convergence

of
∞∑
k=1

|ak|,

∞∑
k=1

|ak|=
∞∑
k=1

∣∣∣∣(−1)k+1

√
k

∣∣∣∣ = ∞∑
k=1

1

k1/2
,
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which is a p-series with p = 1/2, therefore,
∞∑
k=1

|ak| diverges. Note that
∞∑
k=1

ak is an alternating

series. Then we perform Alternating Series Test, noting that
∞∑
k=1

ak =
∞∑
k=1

(−1)k+1bk, of which

bk = 1√
k

is decreasing and lim
k→∞

bk = lim
k→∞

1√
k
= 0. Hence

∞∑
k=1

ak =
∞∑
k=1

(−1)k+1
√
k

converges. By

definition, the given series converges conditionally.

(b) Similarly, let ak =
(−1)k+1

3
√
k

, and

∞∑
k=1

|ak| =
∞∑
k=1

∣∣∣∣(−1)k+1

√
k3

∣∣∣∣ = ∞∑
k=1

1

k3/2

which is a convergent p-series for p = 3/2 > 1. Therefore,
∞∑
k=1

|ak| converges, and thus
∞∑
k=1

ak

converges absolutely.
(c) In this series, ak =

sin k

k2
and consider |ak|=

∣∣ sin k
k2

∣∣. It is known that |sin k|≤ 1, then dividing
both sides by k2 gives

|ak|=
∣∣∣∣sin kk2

∣∣∣∣ = |sin k|
k2

≤ 1

k2
.

Let bk = 1
k2

, and ak ≤ bk for k = 1, 2, 3, . . .. We see that
∞∑
k=1

bk =
∞∑
k=1

1
k2

is a p-series with

p = 2 > 1, which is convergent. Therefore, by Comparison Test,
∞∑
k=1

|ak| converges, which

forces
∞∑
k=1

ak =
∞∑
k=1

sin k
k2

converges. In other words, the series converges absolutely.

(d) Let ak = (−1)kk
k+1 , and

lim
k→∞

ak = lim
k→∞

(−1)kk

k + 1

= [ lim
k→∞

(−1)k] ·
(

lim
k→∞

k

k + 1

)
= [ lim

k→∞
(−1)k] ·

(
lim
k→∞

k/k

k/k + 1/k

)
= [ lim

k→∞
(−1)k] ·

(
lim
k→∞

1

1 + 1/k

)
= [ lim

k→∞
(−1)k] · 1

= lim
k→∞

(−1)k,

which does not exist. By Divergence Test,
∞∑
k=1

ak =
∞∑
k=1

(−1)kk
k+1 diverges, and by Theorem 1.6,

∞∑
k

|ak|=
∞∑
k

k
k+1 also diverges.
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1.3 Properties of Power Series

Definition 1.2 (Power Series). A power series has the general form

∞∑
k=0

ck(x− a)k = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · · ,

where a and ck are real numbers, and x is a variable. The ck’s are the coefficients of the power
series and a is the center of the power series. The set of values of x for which the series converges
is its interval of convergence. The radius of convergence of the power series, denoted R, is the
distance from the center of the series to the boundary of the interval of convergence.

Example 1.3 (Interval and radius of convergences). Find the interval and radius of convergence
for each power series.

(a)
∞∑
k=0

xk

k!
.

(b)
∞∑
k=0

(−1)k(x− 2)k

4k
.

(c)
∞∑
k=1

k!xk.

Solution.

(a) The center of the power series is 0 and the terms of the series are xk/k!. Due to the precence
of the factor k!, we test the series for absolute convergence using the Ratio Test:

r = lim
k→∞

|xk+1/(k + 1)! |
|xk/k! |

= lim
k→∞

|xk+1|
|xk|

k!

(k + 1)!
= lim

k→∞
|x| k!

k! ·(k + 1)
= |x| lim

k→∞

1

k + 1
= 0.

Notice that in taking the limit as k → ∞, x is held fixed. Because r = 0 for all real numbers
x, the series converges absolutely for all x. By Theorem 1.6, we conclude that the series
converges for all x. Therefore, the interval of convergence is (−∞,∞) and the radius of
convergence is R = ∞.

(b) We test for absolute convergence using the Root Test:

ρ = lim
k→∞

k

√∣∣∣∣(−1)k(x− 2)k

4k

∣∣∣∣ = lim
k→∞

[(
|x− 2|

4

)k
]1/k

= lim
k→∞

|x− 2|
4

=
|x− 2|

4
.

In this case, ρ depends on the value of x. For absolute convergence, x must satisfy

ρ =
|x− 2|

4
< 1,

which implies that |x− 2|< 4. Using standard technique for solving inequalities, the solution
set is −4 < x − 2 < 4, or −2 < x < 6. We conclude that the series converges on (−2, 6) by
Theorem 1.6. The Root Test does not give information about convergence at the endponits
x = −2 and x = 6, because at these points, the Root Test results in ρ = 1. To test
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for convergence at the endpoints, we substitute each endpoint into the series and carry out
separate tests. At x = −2, the power series becomes

∞∑
k=0

(−1)k(x− 2)k

4k
=

∞∑
k=0

4k

4k
=

∞∑
k=0

1 = lim
n→∞

n∑
k=0

1 = lim
n→∞

n+ 1 = ∞.

Therefore, the series diverges at the left endpoint (or by Divergence Test, limk→∞ ak =
limk→∞ 1 = 1 ̸= 0). At x = 6, the power series is

∞∑
k=0

(−1)k(x− 2)k

4k
=

∞∑
k=0

(−1)k
4k

4k
=

∞∑
k=0

(−1)k.

By Divergence Test, the series diverges at the right endpoint. Hence, the interval of conver-
gence is (−2, 6), excluding the endpoints, and the radius of convergence is R = 4.

(c) In this case, the Ratio Test is preferable:

r = lim
k→∞

|(k + 1)!xk+1|
|k!xk|

= lim
k→∞

(k + 1)|x|= |x| lim
k→∞

(k + 1) =

{
∞ if x ̸= 0,

0 if x = 0.

We see that r > 1 for all x ̸= 0, so the series diverges on (−∞, 0) and (0,∞). The only
way to satisfy r < 1 is to take x = 0, in which case the power series has a value of 0. The
interval of convergence of the power series consists of the single point x = 0, and the radius
of convergence is R = 0.
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