MATH 2205 - Calculus II Lecture Notes 20

Last update: June 27, 2019

1 Sequences and Series

Review of p-Series, Ratio, and Root Tests

Theorem 1.1 (Convergence of the *p*-Series). The *p*-series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges for p > 1 and diverges for $p \leq 1$.

Theorem 1.2 (Ratio Test). Let $\sum a_k$ be an infinite series with positive terms and let r= $\lim_{k \to \infty} \frac{a_{k+1}}{a_k}.$

- (a) If $0 \le r < 1$, the series converges.
- (b) If r > 1 (including $r = \infty$), the series diverges.
- (c) If r=1, the test is inconclusive.

Theorem 1.3 (Root Test). Let $\sum a_k$ be an infinite series with nonnegative terms and let $\rho =$ $\lim_{k\to\infty} \sqrt[k]{a_k}.$

- (a) If $0 \le \rho < 1$, the series converges.
- (b) If $\rho > 1$ (including $\rho = \infty$), the series diverges.
- (c) If $\rho = 1$, the test is inconclusive.

Comparison, Limit Comparison, Alternating Series Tests

Theorem 1.4 (Comparison Test). Let $\sum a_k$ and $\sum b_k$ be series with positive terms.

- (a) If $0 < a_k \le b_k$ and $\sum b_k$ converges, then $\sum a_k$ converges. (b) If $0 < b_k \le a_k$ and $\sum b_k$ diverges, then $\sum a_k$ diverges.

Example 1.1 (Using the Comparison Test). Determine whether the following series converge.

(a)
$$\sum_{k=1}^{\infty} \frac{k^3}{2k^4 - 1}$$
.

(b)
$$\sum_{k=2}^{\infty} \frac{\ln k}{k^3}$$
.

SOLUTION.

(a) Observe that $\frac{k^3}{2k^4-1} > \frac{k^3}{2k^4} = \frac{1}{2k}$. Because

$$\sum_{k=1}^{\infty} \frac{1}{2k} = \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k}$$

is half of the Harmonic series which diverges. Then by Comparison Test, the given series also diverges.

(b) Note that $\ln k < k$, for $k \ge 2$, and then divide by k^3 , we have

$$\frac{\ln k}{k^3} < \frac{k}{k^3} = \frac{1}{k^2}.$$

Therefore, an appropriate comparison series is the convergent p-series $\sum_{k=2}^{\infty} \frac{1}{k^2}$. Because $\sum_{k=2}^{\infty} \frac{1}{k^2}$ converges, the given series converges.

Theorem 1.5 (Limit Comparison Test). Let $\sum a_k$ and $\sum b_k$ be series with positive terms and let

$$\lim_{k \to \infty} \frac{a_k}{b_k} = L.$$

- (a) If $0 < L < \infty$ (that is, L is a finite positive number), then $\sum a_k$ and $\sum b_k$ either both converge
- (b) If L = 0 and $\sum b_k$ converges, then $\sum a_k$ converges. (c) If $L = \infty$ and $\sum b_k$ diverges, then $\sum a_k$ diverges.

Example 1.2 (Using the Limit Comparison Test). Determine whether the following series converge.

(a)
$$\sum_{k=1}^{\infty} \frac{5k^4 - 2k^2 + 3}{2k^6 - k + 5}.$$

(b)
$$\sum_{k=1}^{\infty} \frac{\ln k}{k^2}.$$

SOLUTION.

(a) As $k \to \infty$, the rational function behaves like the ratio of the leading (highest-power) terms. In this case, as $k \to \infty$,

$$\frac{5k^4 - 2k^2 + 3}{2k^6 - k + 5} \approx \frac{5k^4}{2k^6} = \frac{5}{2k^2}.$$

Therefore, a reasonable comparison series is the convergenct p-series $\sum_{k=1}^{\infty} \frac{1}{k^2}$. Having chosen a comparison series, we compute the limit L:

$$L = \lim_{k \to \infty} \frac{a_k}{b_k}$$

$$= \lim_{k \to \infty} \frac{(5k^4 - 2k^2 + 3)/(2k^6 - k + 5)}{1/k^2}$$

$$= \lim_{k \to \infty} \frac{k^2(5k^4 - 2k^2 + 3)}{2k^6 - k + 5}$$

$$= \lim_{k \to \infty} \frac{5k^6 - 2k^4 + 3k^2}{2k^6 - k + 5}$$

$$= \lim_{k \to \infty} \frac{5 - 2k^{-2} + 3k^{-4}}{2 - k^{-5} + 5k^{-6}}$$

$$= \frac{5}{2}.$$

We see that $0 < L = \frac{5}{2} < \infty$, therefore, the given series converges.

(b) Note that $1 < \ln k < k$ as $k \to \infty$, that implies

$$\frac{1}{k^2} < \frac{\ln k}{k^2} < \frac{k}{k^2}.$$

Let $a_k = \frac{\ln k}{k^2}$ and $b_k = \frac{1}{k^2}$, then

$$L = \lim_{k \to \infty} \frac{a_k}{b_k} = \lim_{k \to \infty} \frac{\frac{\ln k}{k^2}}{\frac{1}{k^2}} = \lim_{k \to \infty} \ln k = \infty.$$

The Limit Comparison Test does not apply because the comparison series $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges, we can reach the conclusion only when the comparison series diverges. If, instead, we use the comparison series $\sum_{k=1}^{\infty} b_k = \sum_{k=1}^{\infty} \frac{1}{k}$, then

$$L = \lim_{k \to \infty} \frac{a_k}{b_k} = \lim_{k \to \infty} \frac{\frac{\ln k}{k^2}}{\frac{1}{k}} = \lim_{k \to \infty} \frac{\ln k}{k} = \lim_{k \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0.$$

Again, the Limit Comparison Test does not apply because the comparison series $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges, we can reach the conclusion only when the comparison series converges. Hence we need a series that lies "between" $\sum_{k=1}^{\infty} \frac{1}{k^2}$ and $\sum_{k=1}^{\infty} \frac{1}{k}$ is the convergent p-series $\sum_{k=1}^{\infty} \frac{1}{k^{3/2}}$, we try it as a comparison series. Let $a_k = \frac{\ln k}{k^2}$ and $b_k = \frac{1}{k^{3/2}}$, we find that

$$L = \lim_{k \to \infty} \frac{a_k}{b_k} = \lim_{k \to \infty} \frac{\frac{\ln k}{k^2}}{\frac{1}{k^{3/2}}} = \lim_{k \to \infty} \frac{\ln k}{k^{1/2}} = \lim_{x \to \infty} \frac{\ln x}{x^{1/2}} = \lim_{x \to \infty} \frac{1/x}{1/2x^{-1/2}} = \lim_{x \to \infty} \frac{2}{x^{1/2}} = 0.$$

The Limit Comparison Test applies, the comparison series $\sum_{k=1}^{\infty} \frac{1}{x^{3/2}}$ converges, so the given series converges.

Theorem 1.6 (Alternating Series Test). The alternating series $\sum (-1)^{k+1}a_k$ converges provided

- (a) the terms of the series are nonincreasing in magnitude $(0 < a_{k+1} \le a_k)$, for k greater than some index N) and
- (b) $\lim_{k \to \infty} a_k = 0$.

Theorem 1.7 (Alternating Harmonic Series). The alternating harmonic series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

converges (even though the harmonic series $\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots$ diverges).

Example 1.3 (Alternating Series Test). Determine whether the following series converge or diverge.

(a)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2}$$
.

(b)
$$2 - \frac{3}{2} + \frac{4}{3} - \frac{5}{4} + \cdots$$

(c)
$$\sum_{k=2}^{\infty} \frac{(-1)^k \ln k}{k}.$$

SOLUTION.

(a) We can identify that $a_k = \frac{1}{k^2}$, which is nonincreasing and $\lim_{k \to \infty} a_k = \lim_{k \to \infty} \frac{1}{k^2} = 0$. Therefore, by Alternating Series Test, the given series converges.

(b)

$$\frac{2}{1} - \frac{3}{2} + \frac{4}{3} - \frac{5}{4} + \dots = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{k+1}{k}.$$

Therefore, $a_k = \frac{k+1}{k} = 1 + \frac{1}{k}$. And

$$\lim_{k \to \infty} a_k = \lim_{k \to \infty} 1 + \frac{1}{k} = 1.$$

Hence the Alternating Series Test is inconfusive. However, by Divergence Test, $\lim_{k\to\infty} (-1)^{k+1} a_k \neq 0$, then the series diverges.

(c) In this series, $a_k = \frac{\ln k}{k}$, whose magnitude is decreasing, and

$$\lim_{k \to \infty} a_k = \lim_{k \to \infty} \frac{\ln k}{k} = \lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1}{x} = 0.$$

Therefore, by Alternating Series Test, the series converges.

Theorem 1.8 (Growth Rates of Sequences). The following sequences are ordered according to increasing growth rates as $n \to \infty$; that is, if $\{a_n\}$ appears before $\{b_n\}$ in the list, then $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$

and
$$\lim_{n\to\infty} \frac{b_n}{a_n} = \infty$$
:

$$\{\ln^q n\} \ll \{n^p\} \ll \{n^p \ln^r n\} \ll \{n^{p+s}\} \ll \{b^n\} \ll \{n!\} \ll \{n^n\}.$$

The ordering applies for positive real numbers p, q, r, s and b > 1.

Procedure 1.1 (Guidelines for Choosing a Test).

- (a) Begin with Divergence Test. If you show that $\lim_{k\to\infty} a_k \neq 0$, then the series diverges and your work is finished. The order of growth rates of sequences is useful for evaluating $\lim_{k\to\infty} a_k$.
- (b) Geometric series: $\sum ar^k$ converges for |r| < 1 and diverges for $|r| \ge 1 (a \ne 0)$.
 - p-series: $\sum \frac{1}{k^p}$ converges for p > 1 and diverges for $p \le 1$.
 - Check also for a telescoping series.
- (c) If the genearl kth term of the series looks like a function you can integrate, then try the Integral Test.
- (d) If the general kth term of the series involves k!, k^k , a^k , where a is a constant, the Ratio Test is advisable. Series with k in an exponent may yield to the Root Test.
- (e) If the general kth term of the series is a rational function of k (or a root of a rational function), use the Comparison or the Limit Comparison Test.
- (f) If the sign of the terms is alternating, use the Alternating Series Test.