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1 Integration Techniques

1.1 Basic Approaches
Proposition 1.1 (Basic Integration Formulas).

(a)
∫

k dx = kx+ C, k ∈ R (k is real).

(b)
∫

xp dx =
xp+1

p+ 1
+ C, p ̸= −1 ∈ R.

(c)
∫

cos ax dx =
1

a
sin ax+ C.

(d)
∫

sin ax dx = −1

a
cos ax+ C.

(e)
∫

sec2 ax dx =
1

a
tan ax+ C.

(f)
∫

csc2 ax dx = −1

a
cot ax+ C.

(g)
∫

sec ax tan ax dx =
1

a
sec ax+ C.

(h)
∫

csc ax cot ax dx = −1

a
csc ax+ C.

(i)
∫

eax dx =
1

a
eax + C.

(j)
∫

1

x
dx = ln |x|+ C.

(k)
∫

1√
a2 − x2

dx = sin−1 x

a
+ C.

(l)
∫

1

a2 + x2
dx =

1

a
tan−1 x

a
+ C.

(m)
∫

1

x
√
x2 − a2

dx =
1

a
sec−1

∣∣∣x
a

∣∣∣+ C, a > 0.

1.2 Integration by Parts
Theorem 1.1 (Integration by Parts). Suppose that u and v are differentiable functions. Then∫

u dv = uv −
∫

vdu.

Theorem 1.2 (Integration by Parts for Definite Integrals). Let u and v be differentiable. Then

∫ b

a
u(x)v′(x) dx = u(x)v(x)

∣∣∣∣∣
b

a

−
∫ b

a
v(x)u′(x) dx.

1
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1.3 Trigonometric Integrals

1.3.1 Integrating Powers of sinx or cosx

Procedure 1.1. Strategies for evaluating integrals of the form
∫

sinm x dx or
∫

cosn x dx, where
m and n are positive integers, using trigonometric identities.

(a) Integrals involving odd powers of cosx (or sinx) are most easily evaluated by splitting off a
single factor of cosx (or sinx). For example, rewrite cos5 x as cos4 x · cosx.

(b) With even positive powers of sinx or cosx, we use the half-angle formulas

sin2 θ =
1− cos 2θ

2
and cos2 θ =

1 + cos 2θ

2
,

to reduce the powers in the integrand.

1.3.2 Integrating Products of Powers of sinx and cosx

Procedure 1.2. Strategies for evaluating integrals of the form
∫

sinm x cosn x dx.

(a) When m is odd and positive, n real. Split off sinx, rewrite the resulting even power of sinx
in terms of cosx, and then use u = cosx.

(b) When n is odd and positive, m real. Split off cosx, rewrite the resulting even power of cosx
in terms of sinx, and then use u = sinx.

(c) When m, n are both even and nonnegative. Use half-angle formulas to transform the integrand
into polynomial in cos 2x and apply the preceding strategies once again to powers of cos 2x
greater than 1.

Proposition 1.2 (Reduction Formulas). Assume n is a positive integer.

(a)
∫

sinn x dx = −sinn−1 x cosx

n
+

n− 1

n

∫
sinn−2 x dx.

(b)
∫

cosn x dx =
cosn−1 x sinx

n
+

n− 1

n

∫
cosn−2 x dx.

(c)
∫

tann x dx =
tann−1 x

n− 1
−
∫

tann−2 x dx, n ̸= 1.

(d)
∫

secn x dx =
secn−2 x tanx

n− 1
+

n− 2

n− 1

∫
secn−2 x dx, n ̸= 1.

1.4 Trigonometric Substitutions
Proposition 1.3. The integral contains a2−x2. Let x = a sin θ, −π/2 ≤ θ ≤ π/2 for |x|≤ a. Then
a2 − x2 = a2 − a2 sin2 θ = a2(1− cos2 θ) = a2 cos2 θ.

1.5 Partial Fractions
Procedure 1.3 (Partial Fractions with Simple Linear Factors). Suppose f(x) = p(x)/q(x), where
p and q are polynomials with no common factors and with the degree of p less than the degree
of q. Assume that q is the product of simple linear factors. The partial fraction decomposition is
obtained as follows.
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(a) Factor the denominator q in the form (x − r1)(x − r2) · · · (x − rn), where r1, . . . , rn are real
numbers.

(b) Partial fraction decomposition. Form the partial fraction decomposition by writing

p(x)

q(x)
=

A1

(x− r1)
+

A2

(x− r2)
+ · · ·+ An

(x− rn)
.

(c) Clear denominators. Multiply both sides of the equation in Step (b) by q(x) = (x− r1)(x−
r2) · · · (x− rn), which produces conditions for A1, . . . , An.

(d) Solve for coefficients. Equate like powers of x in Step (c) to solve for the undetermined
coefficients A1, . . . , An.

Procedure 1.4 (Partial Fractions for Repeated Linear Factors). Suppose the repeated linear factor
(x − r)m appears in the denominator of a proper rational function in reduced form. The partial
fraction decomposition has a partial fraction for each power of (x− r) up to and including the mth
power; that is, the partial fraction decomposition contains the sum

A1

(x− r)
+

A2

(x− r)2
+ · · ·+ Am

(x− r)m
,

where A1, . . . , Am are constants to be determined.

Procedure 1.5 (Partial Fractions with Simple Irreducible Quadratic Factors). Suppose a simple
irreducible factor ax2 + bx+ c appears in the denominator of a proper rational function in reduced
form. The partial fraction decomposition contains a term of the form

Ax+B

ax2 + bx+ c
,

where A and B are unknown coefficients to be determined.

Proposition 1.4. The quadratic polynomial ax2+bx+c is irreducible if and only if its discriminant
is negative, i.e.,

∆ = b2 − 4ac < 0.

Proposition 1.5 (Partial Fraction Decomposition). Let f(x) = p(x)/q(x) be a proper rational
function in reduced form. Assume the denominator q has been factored completely over the real
numbers and m is a positive integer.

(a) Simple linear factor. A factor x− r in the denominator requires the partial fraction A

x− r
.

(b) Repeated linear factor. A factor (x− r)m with m > 1 in the denominator requires the partial
fractions

A1

(x− r)
+

A2

(x− r)2
+

A3

(x− r)3
+ · · ·+ Am

(x− r)m
.

(c) Simple irreducible quadratic factor. An irreducible factor ax2 + bx + c in the denominator
requires the partial fraction

Ax+B

ax2 + bx+ c
.

(d) Repeated irreducible quadratic factor. An irreducible factor (ax2 + bx + c)m with m > 1 in
the denominator requires the partial fractions

A1x+B1

ax2 + bx+ c
+

A2x+B2

(ax2 + bx+ c)2
+ · · ·+ Amx+Bm

(ax2 + bx+ c)m
.
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1.6 Numerical Integration
Definition 1.1 (Absolute and Relative Error). Suppose c is a computed numerical solution to a
problem having an exact solution x. There are two common meaasures of the error in c as an
approximation to x:

absolute error = |c− x|

and
relative error =

c− x

x
, (if x ≠ 0).

Definition 1.2. Suppose f is defined an integrable on [a, b]. The Midpoint Rule approximation to∫ b

a
f(x) dx using n equally spaced subintervals on [a, b] is

M(n) = f(m1)∆x+ f(m2)∆x+ · · ·+ f(mn)∆x =
n∑

k=1

f

(
xk−1 + xk

2

)
∆x,

where ∆x = (b− a)/n, x0 = a, xk = a+ k∆x, and mk = (xk−1 + xk)/2 = a+ (k − 1/2)∆x is the
midpoint of [xk−1, xk], for k = 1, . . . , n.

Definition 1.3 (Trapezoid Rule). Suppose f is defined and integrable on [a, b]. The Trapezoid

Rule approximation to
∫ b

a
f(x) dx using n equally spaced subintervals on [a, b] is

T (n) =

[
1

2
f(x0) +

n−1∑
k=1

f(xk) +
1

2
f(xn)

]
∆x.

where ∆x = (b− a)/n and xk = a+ k∆x, for k = 0, 1, 2, . . . , n.

Definition 1.4 (Simpson’s Rule). Suppose f is defined and integrable on [a, b] and n ≥ 2 is an

even integer. The Simpson’s Rule approximation to
∫ b

a
f(x) dx using n equally spaced subintervals

on [a, b] is

S(n) = [f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 4f(xn−1) + f(xn)]
∆x

3

=

n/2−1∑
k=0

[f(x2k) + 4f(x2k+1) + f(x2k+2)]
∆x

3
.

where n is an even integer, ∆x = (b− a)/n, and xk = a+ k∆x, for k = 0, 1, . . . , n.

1.7 Improper Integrals
Definition 1.5 (Improper Integrals over Infinite Intervals).

(a) If f is continuous on [a,∞), then∫ ∞

a
f(x) dx = lim

b→∞

∫ b

a
f(x) dx.
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(b) If f is continuous on (−∞, b], then∫ b

−∞
f(x) dx = lim

a→−∞

∫ b

a
f(x) dx.

(c) If f is continuous on (−∞,∞), then∫ ∞

−∞
f(x) dx = lim

a→−∞

∫ c

a
f(x) dx+ lim

b→∞

∫ b

c
f(x) dx,

where c is any real number.

If the limits in the above cases exist, then the improper integrals converge; otherwise, they diverge.

Definition 1.6 (Improper Integrals with an Unbounded Integrand).

(a) Suppose f is continous on (a, b] with lim
x→a+

f(x) = ±∞. Then

∫ b

a
f(x) dx = lim

c→a+

∫ b

c
f(x) dx.

(b) Suppose f is continuous on [a, b) with lim
x→b−

f(x) = ±∞. Then

∫ b

a
f(x) dx = lim

c→b−
f(x) dx.

(c) Suppose f is continuous on [a, b] except at the interior point p where f is unbounded. Then∫ b

a
f(x) dx = lim

c→p−

∫ c

a
f(x) dx+ lim

d→p+

∫ b

d
f(x) dx.

If the limits in above cases exist, then the improper integrals converge; otherwise, they diverge.

1.8 Introduction to Differential Equations
Definition 1.7.

(a) The order of a differential equation is the highest order appearing on a derivative in the
equation. For example, the equations y′ + 4y = cosx and y′ = 0.1y(100 − y) are first order,
and y′′ + 16y = 0 is second order.

(b) Linear differential equations (first- and second-order) have the form

y′(x) + p(x)y(x) = f(x) and y′′(x) + p(x)y′(x) + q(x)y(x) = f(x),

where p, q, and f are given functions that depend only on the independent variable x.
(c) A differential equation is often accompanied by initial conditions that specify the values of y,

and possibly its derivatives, at a particular point. In general, an nth-order equation reqruires
n initial conditions.

(d) A differntial equation, together with the appropriate number of initial conditions, is called
an initial value problem. A typical first-order initial value problem has the form

y′(t) = F (t, y) Differential equation
y(0) = A Initial condition

where A is given and F is a given expression that involves t and/or y,
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Proposition 1.6 (Solution of a First-Order Linear Differential Equation). The general solution of
the first-order equation y′(t) = ky+ b, where k and b are specified real numbers, is y = Cekt − b/k,
where C is an arbitrary constant. Given an initial condition, the value of C may be determined.

Definition 1.8 (Separable First-Order Differential Equations). If the first-order differential equa-
tion can be written in the form g(y)y′(t) = h(t), in which the terms that involve y appear on one
side of the equation separated from the terms that involve t, is said to be separable. We can solve
the equaiton by integrating both sides of the equation with respect to t:∫

g(y)y′(t) dt =

∫
h(t) dt =⇒

∫
g(y) dy =

∫
h(t) dt.

2 Sequences and Infinite Series

2.1 Sequences
Definition 2.1 (Sequence). A sequence {an} is an ordered list of numbers of the form

{a1, a2, a3, . . . , an, . . .}.

A sequence may be generated by a recurrence relation of the form an+1 = f(an), for n = 1, 2, 3, . . .,
where a1 is given. A sequence may also be defined with an explicit formula of the form an = f(n),
for n = 1, 2, 3, . . ..

Definition 2.2 (Limit of a Sequence). If the terms of a sequence {an} approach a unique number
L as n increases – that is, if an can be made arbitrarily close to L by taking n sufficiently large –
then we say lim

n→∞
an = L exists, and the sequence converges to L. If the terms of the sequence do

not approach a single number as n increases, the sequence has no limit, and the sequence diverges.

Theorem 2.1 (Limits of Sequences from Limits of Functions). Suppose f is a function such that
f(n) = an for all positive integers n. If lim

x→∞
f(x) = L, then the limit of the sequence {an} is also

L.

Theorem 2.2 (Limit Laws for Sequences). Assume that the sequences {an} and {bn} have limits
A and B, respectively. Then

(a) lim
n→∞

(an ± bn) = A±B.
(b) lim

n→∞
can = cA, where c is a real number.

(c) lim
n→∞

anbn = AB.

(d) lim
n→∞

an
bn

=
A

B
provided B ̸= 0.

Definition 2.3 (Terminology for Sequences).

(a) {an} is increasing if an+1 > an; for example, {0, 1, 2, 3, . . .}.
(b) {an} is nondecreasing if an+1 ≥ an; for example, {0, 1, 1, 1, 2, 2, 3, . . .}.
(c) {an} is decreasing if an+1 < an; for example, {2, 1, 0,−2, . . .}.
(d) {an} is nonincreasing if an+1 ≤ an; for example, {2, 1, 1, 0,−2,−2,−3, . . .}.
(e) {an} is monotonic if it is either nonincreasing or nondecreasing (it moves in one direction).
(f) {an} is bounded if there is number M such that |an|≤ M , for all relevant values of n.
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Theorem 2.3 (Squeeze Theorem for Sequences). Let {an}, {bn}, and {cn} be sequences with
an ≤ bn ≤ cn for all integers n greater than some index N . If lim

n→∞
an = lim

n→∞
cn = L, then

lim
n→∞

bn = L.

Theorem 2.4 (Bounded Monotonic Sequences). A bounded monotonic sequence converges.

Theorem 2.5 (Growth Rates of Sequences). The following sequences are ordered according to
increasing growth rates as n → ∞; that is, if {an} appears before {bn} in the list, then lim

n→∞

an
bn

= 0

and lim
n→∞

bn
an

= ∞:

{lnq n} ≪ {np} ≪ {np lnr n} ≪ {np+s} ≪ {bn} ≪ {n! } ≪ {nn}.

The ordering applies for positive real numbers p, q, r, s and b > 1.

2.2 Limits of Functions
Theorem 2.6 (Limits of Linear Functions). Let a, b, and m be real numbers. For linear functions
f(x) = mx+ b,

lim
x→a

f(x) = f(a) = ma+ b.

Theorem 2.7 (Limit Laws). Assume lim
x→a

f(x) and lim
x→a

g(x) exist. The following properties hold,
where c is a real number, and m > 0 and n > 0 are integers.

(a) Sum: lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x).
(b) Difference: lim

x→a
[f(x)− g(x)] = lim

x→a
f(x)− lim

x→a
g(x).

(c) Constant multiple: lim
x→a

cf(x) = c lim
x→a

f(x).

(d) Product: lim
x→a

[f(x)g(x)] =
[
lim
x→a

f(x)
] [

lim
x→a

g(x)
]
.

(e) Quotient: lim
x→a

[
f(x)

g(x)

]
=

lim
x→a

f(x)

lim
x→a

g(x)
, provided lim

x→a
g(x) ̸= 0.

(f) Power: lim
x→a

[f(x)]n =
[
lim
x→a

f(x)
]n

.

Theorem 2.8 (Limits of Polynomial and Rational Functions). Assume p and q are polynomials
and a is a constant.

(a) Polynomial functions: lim
x→a

p(x) = p(a).

(b) Rational functions: lim
x→a

p(x)

q(x)
=

p(a)

q(a)
, provided q(a) ̸= 0.

Theorem 2.9 (The Squeeze Theorem). Assume the function f , g, and h satisfy f(x) ≤ g(x) ≤ h(x)
for all values of x near a, except possibly at a. If lim

x→a
f(x) = lim

x→a
h(x) = L, then lim

x→a
g(x) = L.

Theorem 2.10 (Limits at Infinity of Powers and Polynomials). Let n be a positive integer and let
p be the polynomial p(x) = anx

n + an−1x
n−1 + · · ·+ a2x

2 + a1x+ a0, where an ̸= 0.

(a) lim
x→±∞

xn = ∞ when n is even.
(b) lim

x→∞
xn = ∞ and lim

x→−∞
xn = −∞ when n is odd.
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(c) lim
x→±∞

1
xn = lim

x→±∞
x−n = 0.

(d) lim
x→±∞

p(x) = lim
x→±∞

anx
n = ±∞, depending on the degree of the polynomial and the sign of

the leading coefficient an.

Theorem 2.11 (End Behavior of ex, e−x, and lnx). The end behavior for ex and e−x on (−∞,∞)
and lnx on (0,∞) is given by the following limits (see Figure 1):

lim
x→∞

ex = ∞ lim
x→−∞

ex = 0

lim
x→∞

e−x = 0 lim
x→−∞

e−x = ∞

lim
x→0+

lnx = −∞ lim
x→∞

lnx = ∞.

O
x

−4 −3 −2 −1 1 2 3 4

y

−4

−3

−2

−1

1

2

3

4

y = exy = e−x

y = lnxy = x

Figure 1: Graphs of ex, e−x, lnx: y = e−x and y = ex are symmetric about y-axis,
and y = ex and y = lnx are symmetric about y = x.

Theorem 2.12 (L’Hôpital’s Rule). Suppose f and g are differentiable on an open interval I
containing a with g′(x) ̸= 0 on I when x ̸= a.

(a) If lim
x→a

f(x) = lim
x→a

g(x) = 0, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

provided the limit on the right exists (or is ±∞). The rule also applies if x → a is repaced
with x → ±∞, x → a+, x → a−.
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(b) If lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

provided the limit on the right exists (or is ±∞). The rule also applies if x → a is repaced
with x → ±∞, x → a+, x → a−.

2.3 Infinite Series
Definition 2.4 (Infinite series). Given a sequence {a1, a2, a3, . . . , }, the sum of its terms

a1 + a2 + a3 + · · · =
∞∑
k=1

ak

is called an infinite series. The sequence of partial sums {Sn} associated with this series has the
terms

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3
...

Sn = a1 + a2 + a3 + · · ·+ an =
n∑

k=1

ak, for n = 1, 2, 3, . . .

If the sequence of partial sums {Sn} has a limit L, the infinite series converges to that limit, and
we write

∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak = lim
n→∞

Sn = L.

If the sequence of partial sums diverges, the infinite series also diverges.

2.4 Geometric Sequences and Geometric Series
Definition 2.5 (Geometric Sequences). A sequence has the form {rn} or {arn}, where the ratio
r, a are real numbers, is called a geometric sequence.
Theorem 2.13 (Geometric Sequences). Let r be a real number. Then

lim
n→∞

rn =


0 if |r|< 1,

1 if r = 1,

does not exist if r ≤ −1 or r > 1.

If r > 0, then {rn} is a monotonic sequence. If r < 0, then {rn} oscillates.

Theorem 2.14 (Geometric Series). Let a ̸= 0 and r be real numbers. If |r|< 1, then
∞∑
k=0

ark =

a

1− r
. If |r|≥ 1, then the series diverges. More generally,

∞∑
k=m

ark =
arm

1− r
.
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3 Algebra

3.1 Exponents and Radicals

(a) 1

xa
= x−a.

(b) n
√
x = x1/n.

(c) xa+b = xaxb.
(d) xa−b =

xa

xb
.

(e) xab = (xa)b.
(f) xm/n = n

√
xm = ( n

√
x)m.

(g) (xy)a = xaya.

(h)
(
x

y

)a

=
xa

ya
.

3.2 Logarithm
(a) y = ax =⇒ x = loga y.
(b) loge x = lnx.
(c) logb(xy) = logb x+ logb y.
(d) logb

x

y
= logb x− logb y.

(e) logb(x
p) = p logb x.

(f) logb(x
1/p) =

1

p
logb x.

(g) logb x =
logk x

logk b
.

3.3 Factoring Formulas
(a) a2 − b2 = (a− b)(a+ b).
(b) a3 − b3 = (a− b)(a2 + ab+ b2).
(c) an − bn = (a− b)(an−1 + an−2b+ an−3b2 + · · ·+ abn−2 + bn−1).

3.4 Binomials
(a) (a± b)2 = a2 ± 2ab+ b2.
(b) (a± b)3 = a3 ± 3a2b+ 3ab2 ± b3.

3.5 Completing the Square
(a) (x± p)2 = x2 ± 2px+ p2.
(b)

x2 ± bx+ c = x2 ± 2
b

2
x+ c

= x2 ± 2
b

2
x+

(
b

2

)2

+ c−
(
b

2

)2

=

(
x± b

2

)2

+ c− b2

4
.
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(c)

ax2 ± bx+ c = a

(
x2 ± b

a
x

)
+ c

= a

(
x2 ± 2

b

2a
x

)
+ c

= a

[
x2 ± 2

b

2a
x+

(
b

2a

)2
]
+ c− a

(
b

2a

)2

= a

(
x± b

2a

)2

+ c− b2

4a

= (
√
a)2

(
x± b

2a

)2

+ c− b2

4a

=

(√
ax±

√
ab

2a

)2

+ c− b2

4a

=

(√
ax± b

2
√
a

)2

+ c− b2

4a
.

3.6 Quadratic Formula
The solutions of ax2 + bx+ c = 0 are

x =
−b±

√
b2 − 4ac

2a
.
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