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1 Integration Techniques

1.1 Basic Approaches

Proposition 1.1 (Basic Integration Formulas).

(a) /kdw: kx + C, k € R (k is real).

$p+1

2P dr = +C,p#—-1€R.

S p+1

=

1 .
cosardr = —sinazxz + C.
a

()
(d)

. 1
sinardr = ——cosazx + C.
a

1
sec?ardr = ~tanaz + C.

—
D
~

/

/

/

/ ;
(f) /csc2amdx:—61zcotal‘—|—0.
(g) /seca:ctanaacd:c: 2secaaﬁ+0.
(h) /cscaxcotaxdx = —%cseaw—i—(}’.
(i) /eaxdm—ieam—i-C.
(j)/idx=1n|m|+c.
(k) /\/(ﬂl_iﬁdxzsm_lm-kC
1) /a2ix2dm:tan_1+0.
(m) Nﬁdw isec_1’5‘+0,a>0

1.2 Integration by Parts

Theorem 1.1 (Integration by Parts). Suppose that u and v are differentiable functions. Then

/udv:uv—/vdu.

Theorem 1.2 (Integration by Parts for Definite Integrals). Let w and v be differentiable. Then

b

- / bv(w)u’(w) da.

a

b
/ u(z)v' (x) de = u(x)v(x)
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1.3 Trigonometric Integrals

1.3.1 Integrating Powers of sinx or cosz

Procedure 1.1. Strategies for evaluating integrals of the form / sin™ x dx or / cos" x dz, where

m and n are positive integers, using trigonometric identities.

(a) Integrals involving odd powers of cosz (or sinx) are most easily evaluated by splitting off a
single factor of cosz (or sinz). For example, rewrite cos® x as cos* z - cos z.

(b) With even positive powers of sinz or cosz, we use the half-angle formulas

1 — cos26 1 26
sin2@ = — % and cos?h = ﬂ,
2 2

to reduce the powers in the integrand.

1.3.2 Integrating Products of Powers of sinx and cosx
Procedure 1.2. Strategies for evaluating integrals of the form / sin™ x cos™ x dzx.

(a) When m is odd and positive, n real. Split off sin x, rewrite the resulting even power of sinz
in terms of cosz, and then use u = cos .

(b) When n is odd and positive, m real. Split off cos z, rewrite the resulting even power of cosx
in terms of sinz, and then use v = sin .

(c) When m, n are both even and nonnegative. Use half-angle formulas to transform the integrand
into polynomial in cos2x and apply the preceding strategies once again to powers of cos 2z
greater than 1.

Proposition 1.2 (Reduction Formulas). Assume n is a positive integer.

n—1

. sin""“xcoszx mn-—1 e
(a) /sm”a:dac = — + /sm" 2z d.
n n

n—1

i —1
(b) /cos”a:d:n 8 Teme  n /cos”_Q:de.

n n
tan™ 1z
(c) /tan"a:da: = . —/tann_deaz,n# 1.
n —
sec" 2gztanz n—2

(d) /sec”xd:z: = /sec"_Q:de,n # 1.

n—1 n—1

1.4 Trigonometric Substitutions

Proposition 1.3. The integral contains a? — 2. Let x = asin, —7/2 < § < 7/2 for |2|< a. Then
a? — 22 = a® — a®sin? 0 = a®(1 — cos?0) = a®cos? 6.

1.5 Partial Fractions

Procedure 1.3 (Partial Fractions with Simple Linear Factors). Suppose f(z) = p(x)/q(z), where
p and ¢ are polynomials with no common factors and with the degree of p less than the degree
of q. Assume that ¢ is the product of simple linear factors. The partial fraction decomposition is
obtained as follows.
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(a) Factor the denominator q in the form (z — r1)(z — rg)--- (x — 1), where r1,...,r, are real
numbers.
(b) Partial fraction decomposition. Form the partial fraction decomposition by writing
p(z) _ Ay Az Ay

(@) @orm)  wor) Ty

(c) Clear denominators. Multiply both sides of the equation in Step (b) by ¢(z) = (z — r1)(z —
r9) -+ (x — ry), which produces conditions for Ay, ..., A,.

(d) Solve for coefficients. Equate like powers of x in Step (c) to solve for the undetermined
coefficients Aq,..., A,.

Procedure 1.4 (Partial Fractions for Repeated Linear Factors). Suppose the repeated linear factor
(x — r)™ appears in the denominator of a proper rational function in reduced form. The partial
fraction decomposition has a partial fraction for each power of (x —r) up to and including the mth
power; that is, the partial fraction decomposition contains the sum

Ay n Ao n . A,
(x—r) (z—r)? (x —r)m’

where Aq,..., A,, are constants to be determined.

Procedure 1.5 (Partial Fractions with Simple Irreducible Quadratic Factors). Suppose a simple
irreducible factor az? + bz + ¢ appears in the denominator of a proper rational function in reduced
form. The partial fraction decomposition contains a term of the form

Ax + B
ax? +bxr+c’

where A and B are unknown coefficients to be determined.

Proposition 1.4. The quadratic polynomial az®+bz+c is irreducible if and only if its discriminant
is negative, i.e.,

A =% —4dac < 0.

Proposition 1.5 (Partial Fraction Decomposition). Let f(x) = p(x)/q(x) be a proper rational
function in reduced form. Assume the denominator g has been factored completely over the real
numbers and m is a positive integer.

(a) Simple linear factor. A factor x — r in the denominator requires the partial fraction
x—r
(b) Repeated linear factor. A factor (x —r)™ with m > 1 in the denominator requires the partial

fractions

A A A A
1 + 2 5+ 3 g+ _-m
(x—=r) (z—71) (x —1) (x —r)m
(c) Simple irreducible quadratic factor. An irreducible factor az? + bz + ¢ in the denominator
requires the partial fraction

Ax + B
ar? +br+c
(d) Repeated irreducible quadratic factor. An irreducible factor (az? + bx + ¢)™ with m > 1 in
the denominator requires the partial fractions
Aix + By Asx + Bo Anx + By,
ar? +br+c  (azx? 4 bx + ¢)? L (ax? + bz + )™’
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1.6 Numerical Integration

Definition 1.1 (Absolute and Relative Error). Suppose ¢ is a computed numerical solution to a
problem having an exact solution z. There are two common meaasures of the error in ¢ as an
approximation to x:

absolute error = |c — z|

and
relative error = Q, (if x # 0).
x
Definition 1.2. Suppose f is defined an integrable on [a, b]. The Midpoint Rule approximation to

b
/ f(z) dz using n equally spaced subintervals on [a, b] is

M(n) = f(m1)Ax + f(m2)Azx + -+ f(m,)Ax = Zf (m;c_l;ka) Az,
k=1

where Az = (b—a)/n, x0 = a, xp = a + kAz, and my = (z—1 + 2)/2 = a + (k — 1/2)Ax is the
midpoint of [zx_1, k], for k=1,... n.

Definition 1.3 (Trapezoid Rule). Suppose f is defined and integrable on [a,b]. The Trapezoid

b
Rule approzimation to / f(z) dx using n equally spaced subintervals on [a, b] is
a

1 n—1

S o) + 3 Flaw) + 3 f(wn)

5 Ax.

T(n) =

where Az = (b—a)/n and zp = a + kAz, for k=0,1,2,...,n.
Definition 1.4 (Simpson’s Rule). Suppose f is defined and integrable on [a,b] and n > 2 is an

b
even integer. The Simpson’s Rule approximation to / f(x) dx using n equally spaced subintervals
a

on [a,b] is
S(n) = [f(xo) +4f(x1) + 2 (w2) + 4f (w3) + -+ + 4f (wn-1) + f(xn)]A;
n/2—1
= > [f(war) + 4f (w2011) + f(@mz)]g.
k=0 3
where n is an even integer, Ax = (b — a)/n, and z = a + kAz, for k=0,1,...,n.

1.7 Improper Integrals

Definition 1.5 (Improper Integrals over Infinite Intervals).

(a) If f is continuous on [a,c0), then

00 b
/ flx)dx = bli)m f(x)dx.

a
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(b) If f is continuous on (—oo, b], then

b b
/_ f(z)dz = lim f(x)dx.

a——00 a

(c) If f is continuous on (—oo, 00), then

b

/ f(x x:agmoo f( )dm—kbli)rgo i f(z)dx
where c is any real number.

If the limits in the above cases exist, then the improper integrals converge; otherwise, they diverge.

Definition 1.6 (Improper Integrals with an Unbounded Integrand).

(a) Suppose f is continous on (a, b] with lim+ f(z) = £oo. Then
r—a

b b
| f@)do= tm, @

c—at

(b) Suppose f is continuous on [a,b) with lilil f(xz) = +o00. Then
—

/ f(z)dxr = lim f(z)dzx.

c—b~
(¢) Suppose f is continuous on [a, b] except at the interior point p where f is unbounded. Then
b c b
/ f(x)dx = lim f(z)dx + lim f(x)dx
a c—=p~ Jg d—pt Jgq

If the limits in above cases exist, then the improper integrals converge; otherwise, they diverge.

1.8 Introduction to Differential Equations
Definition 1.7.

(a) The order of a differential equation is the highest order appearing on a derivative in the
equation. For example, the equations 3’ + 4y = cosz and 3’ = 0.1y(100 — y) are first order,
and y” + 16y = 0 is second order.

(b) Linear differential equations (first- and second-order) have the form

y'() + p(@)y(x) = f(z) and y"(2) + p(2)y/ (x) + q(z)y(z) = f(2),

where p, ¢, and f are given functions that depend only on the independent variable .

(c) A differential equation is often accompanied by initial conditions that specify the values of v,
and possibly its derivatives, at a particular point. In general, an nth-order equation reqruires
n initial conditions.

(d) A differntial equation, together with the appropriate number of initial conditions, is called
an initial value problem. A typical first-order initial value problem has the form

y'(t) = F(t,y) Differential equation
y(0)=A Initial condition

where A is given and F is a given expression that involves ¢ and/or v,
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Proposition 1.6 (Solution of a First-Order Linear Differential Equation). The general solution of
the first-order equation y/(t) = ky + b, where k and b are specified real numbers, is y = Ce — b/k,
where C' is an arbitrary constant. Given an initial condition, the value of C' may be determined.

Definition 1.8 (Separable First-Order Differential Equations). If the first-order differential equa-
tion can be written in the form g(y)y'(t) = h(t), in which the terms that involve y appear on one
side of the equation separated from the terms that involve ¢, is said to be separable. We can solve
the equaiton by integrating both sides of the equation with respect to t:

/g(y)y’(t) dt:/ t)dt — / dy—/h(t) dt.

2 Sequences and Infinite Series

2.1 Sequences

Definition 2.1 (Sequence). A sequence {a,} is an ordered list of numbers of the form

{al,ag,ag, ey Qpy .. }

A sequence may be generated by a recurrence relation of the form a,+1 = f(ay), forn=1,2,3,.. .,
where a; is given. A sequence may also be defined with an explicit formula of the form a, = f(n),
forn=1,2,3,....

Definition 2.2 (Limit of a Sequence). If the terms of a sequence {a, } approach a unique number

L as n increases — that is, if a,, can be made arbitrarily close to L by taking n sufficiently large —

then we say li_>m an, = L exists, and the sequence converges to L. If the terms of the sequence do
n oo

not approach a single number as n increases, the sequence has no limit, and the sequence diverges.

Theorem 2.1 (Limits of Sequences from Limits of Functions). Suppose f is a function such that

f(n) = a, for all positive integers n. If li_>m f(z) = L, then the limit of the sequence {a,} is also
Tr—00

L.

Theorem 2.2 (Limit Laws for Sequences). Assume that the sequences {a,} and {b,} have limits
A and B, respectively. Then

(a hm (an:I:b )=A+B.
(

)
b) h_)m can, = cA, where c is a real number.
(¢) lim a,b, = AB.
n—o0 A
(d) nh_)ngo il provided B # 0.

Definition 2.3 (Terminology for Sequences).

(a) {an} is increasing if a,41 > an; for example, {0,1,2,3,...}.

(b) {an} is nondecreasing if an4+1 > an; for example, {0,1,1,1,2,2,3,...}.

(¢) {an} is decreasing if a, 1 < ay; for example, {2,1,0,—-2,...}.

(d) {an} is nonincreasing if an4+1 < ay; for example, {2,1,1,0,—2,—2,-3,...}.

(e) {an} is monotonic if it is either nonincreasing or nondecreasing (it moves in one direction).
(f) {an} is bounded if there is number M such that |a,|< M, for all relevant values of n.
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Theorem 2.3 (Squeeze Theorem for Sequences). Let {a,}, {bn}, and {cn} be sequences with

an < b, < ¢, for all integers n greater than some index N. If lim a, = lim ¢, = L, then
n—oo n—oo

lim b, = L.

n—oo

Theorem 2.4 (Bounded Monotonic Sequences). A bounded monotonic sequence converges.

Theorem 2.5 (Growth Rates of Sequences). The following sequences are ordered according to

an
increasing growth rates as n — oo; that is, if {a,} appears before {b,} in the list, then lim — =0
n—oo n
and lim — = co:
Nn—00 Up,

{In?n} < {n?} < {nPIn"n} < {(n?*} < {b"} < {n!} < {n"}.

The ordering applies for positive real numbers p,q,r,s and b > 1.

2.2 Limits of Functions

Theorem 2.6 (Limits of Linear Functions). Let a, b, and m be real numbers. For linear functions
f(@) = ma +b,
lim f(z) = f(a) = ma+b.

r—a
Theorem 2.7 (Limit Laws). Assume liin f(z) and ligl g(x) exist. The following properties hold,
where ¢ is a real number, and m > 0 and n > 0 are integers.
() Sum: lim [f(2) + g(a)] = lim £(x) + lim g(a).
(b) Difference: h_r)n [f(z) —g(x)] = lim f(z) — lim g(z).
) Constant multiple: lim cf( )=c hgl f(z).
) Product: lim[f(x)g @) a[;gg f@)] [1im g(z)].
f(x)] _ i@

(e) Quotient: hm [ , provided h_r)n g(z) #0.

I Y
(f) Power: lim[f(x)]" = [tim f(z)]".

Theorem 2.8 (Limits of Polynomial and Rational Functions). Assume p and g are polynomials
and a is a constant.

(a) Polynomial functions: ;13% p(x) = p(a).
(b) Rational functions: ;%](;Eg = qga;’ provided ¢(a) # 0.

Theorem 2.9 (The Squeeze Theorem). Assume the function f, g, and h satisfy f(x) < g(x) < h(ZL‘)
for all values of = near a, except possibly at a. If lign f(z) = ligl h(z) = L, then h ( ) =

Theorem 2.10 (Limits at Infinity of Powers and Polynomials). Let n be a positive integer and let
p be the polynomial p(z) = a,z" + ap_12" 1 + - - + a22? + a12 + ag, where a,, # 0.

(a) lim 2" = oo when n is even.
r—F00

(b) lim 2™ = o0 and lim 2" = —oo when n is odd.
T—r00 T——00
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(¢) lim L = lim 27" =0.
z—Foo ¥ T—Fo00

(d) lir:il p(x) = lirin anz™ = to00, depending on the degree of the polynomial and the sign of
T—rT00 T—r 00

the leading coefficient a,.

Theorem 2.11 (End Behavior of e*, e™*, and Inx). The end behavior for e* and e~ on (—o00, 00)
and Inz on (0,00) is given by the following limits (see Figure 1):

lim e* = 0o lim e =0
Tr—r0o0 r——00
lim e * =0 lim e =00
T—00 Tr—r—00
lim Inz = —o0 lim Inz = oo.
z—0t T—00

T

Figure 1: Graphs of €%, e™®, Inz: y = e~ * and y = e* are symmetric about y-axis,
and y = e® and y = Inx are symmetric about y = .

Theorem 2.12 (L’Hopital’s Rule). Suppose f and g are differentiable on an open interval I
containing a with ¢’(z) # 0 on I when x # a.

(a) If lim f(z) = lim g(z) = 0, then

lim m = lim f(z)
z—a g(x)  2—a g'(2)

9

provided the limit on the right exists (or is £00). The rule also applies if z — a is repaced
with z — +oo, z = at, 2 — a~.
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(b) If lim f(x) = oo and lim g(x) = +oo, then

i L)y 7@

i g(z)  w—a g(2)

9

provided the limit on the right exists (or is £00). The rule also applies if z — a is repaced
with £ — +o00, 2z - a™, z = a™.

2.3 Infinite Series

Definition 2.4 (Infinite series). Given a sequence {aj,as,as,..., }, the sum of its terms
o.@)
a1+a2+a3+--~:2ak
k=1

is called an infinite series. The sequence of partial sums {S,} associated with this series has the
terms

S1=m

So =a1 +as

S3 = a1+ az + a3

n
Sn:a1+a2+a3—|—~~—i—an:Zak,forn:1,2,3,...
k=1

If the sequence of partial sums {S,} has a limit L, the infinite series converges to that limit, and
we write

oo n
2 o= lim > o= lim Sn=L.
k=1 k=1
If the sequence of partial sums diverges, the infinite series also diverges.

2.4 Geometric Sequences and Geometric Series

Definition 2.5 (Geometric Sequences). A sequence has the form {r"} or {ar"}, where the ratio
r, a are real numbers, is called a geometric sequence.

Theorem 2.13 (Geometric Sequences). Let r be a real number. Then
0 if |r|< 1,
lim 7" =<1 if r=1,

n—oo
does not exist ifr < —1orr > 1.

If » > 0, then {r"} is a monotonic sequence. If r < 0, then {r"} oscillates.
o0
Theorem 2.14 (Geometric Series). Let a # 0 and r be real numbers. If |r|< 1, then Zark =

k=0
a
——. If |r|> 1, then the series diverges. More generally,

1—7r
o0 m
ar
g ark = .
1—r
k=m
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3 Algebra

3.1 Exponents and Radicals

3.3 Factoring Formulas

(a) a®> —b? = (a —b)(a+b).

(b) a® — b3 = (a — b)(a® + ab + b?).

(c) a® —b" = (a—0b)(a" ' +a"2b+a"3b% + - +ab" 2 4 b7,
3.4 Binomials

(a) (a+0b)? = a? =+ 2ab+ >

(b) (a+b)® = a® + 3a%b + 3ab® £+ V2.
3.5 Completing the Square

(a) (z £p)? = 2%+ 2px + p°.

(b)

azzj:bx—i-c:xQ:l:an:—Fc
b b\ 2 b\ 2
2
=g +2- — — | =
T 2x+<2) +c <2>

b\ 2 b2
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()

aaz2j:b1:+c:a(x2:|:b:z>+c
a
2 b

=alxz*x2—2zxz | +c
2a

b b\?
2

= +2—

“r an+<2a)

) b\? b2
= + - _2
(Va) (x 2a> +c ”
b\> b

= ﬁxi\/a +c— —
2a 4a

3.6 Quadratic Formula

The solutions of ax? + bz + ¢ = 0 are

—b+Vb? — 4dac
2a '

xTr =
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