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1 Differential Equations and Sequences

1.1 Review of Separable First-Order Differential Equations, Sequences
Definition 1.1 (Separable First-Order Differential Equations). If the first-order differential equa-
tion can be written in the form g(y)y′(t) = h(t), in which the terms that involve y appear on one
side of the equation separated from the terms that involve t, is said to be separable. We can solve
the equaiton by integrating both sides of the equation with respect to t:∫

g(y)y′(t) dt =

∫
h(t) dt =⇒

∫
g(y) dy =

∫
h(t) dt.

Definition 1.2 (Sequence). A sequence {an} is an ordered list of numbers of the form

{a1, a2, a3, . . . , an, . . .}.

A sequence may be generated by a recurrence relation of the form an+1 = f(an), for n = 1, 2, 3, . . .,
where a1 is given. A sequence may also be defined with an explicit formula of the form an = f(n),
for n = 1, 2, 3, . . ..

Definition 1.3 (Limit of a Sequence). If the terms of a sequence {an} approach a unique number
L as n increases – that is, if an can be made arbitrarily close to L by taking n sufficiently large –
then we say lim

n→∞
an = L exists, and the sequence converges to L. If the terms of the sequence do

not approach a single number as n increases, the sequence has no limit, and the sequence diverges.

Example 1.1 (Limits of Sequences). Write the first four terms of each sequence. If you believe the
sequence converges, make a conjecture about its limit. If the sequence appears to diverge, explain
why.

(a)
{
(−1)n

n2 + 1

}∞

n=1

.

(b) {cosnπ}∞n=1.
(c) {an}∞n=1, where an+1 = −2an, a1 = 1.

Solution.

(a) The first four terms of the sequence are{
(−1)1

12 + 1
,
(−1)2

22 + 1
,
(−1)3

32 + 1
,
(−1)4

42 + 1
, . . .

}
=

{
−1

2
,
1

5
,− 1

10
,
1

17
, . . .

}

Observe that − 1

n2
<

(−1)n

n2 + 1
<

1

n2
, and

lim
n→∞

− 1

n2
= 0 and lim

n→∞

1

n2
= 0 =⇒ lim

n→∞
an = lim

n→∞

(−1)n

n2 + 1
= 0.

We can also graph the sequence (see Figure 1).
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Figure 1:
{
(−1)n

n2 + 1

}8

n=1

(b) The first four terms of the sequence are

{cos 1π, cos 2π, cos 3π, cos 4π, . . .} = {−1, 1,−1, 1, . . .}.

In this case, the terms of the sequence alternate between −1 and +1, and never approach a
single value. Therefore, the sequence diverges. We can also graph the sequence (see Figure
2).
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Figure 2: {cosnπ}8n=1

(c) First let us derive the explicit formula for the sequence using the recurrence relation an+1 =
−2an, a1 = 1, apply the relation to an (n− 1) times we have

an = −2an−1 = −2(−2an−2) = (−2)2an−2 = (−2)3an−3 = · · · = (−2)n−1a1 = (−2)n−1.

Then the first four terms of the sequence are

{a1, a2, a3, a4, . . .} = {(−2)1−1, (−2)2−1, (−2)3−1, (−2)4−1, . . .}
= {(−2)0, (−2)1, (−2)2, (−2)3, . . .}
= {1,−2, 4,−8, . . .}.

The magnitude of the terms increase without bound, the sequence thus diverges.

1.2 Sequences
Theorem 1.1 (Limits of Sequences from Limits of Functions). Suppose f is a function such that
f(n) = an for all positive integers n. If lim

x→∞
f(x) = L, then the limit of the sequence {an} is also

L.
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Theorem 1.2 (Limit Laws for Sequences). Assume that the sequences {an} and {bn} have limits
A and B, respectively. Then

(a) lim
n→∞

(an ± bn) = A±B.
(b) lim

n→∞
can = cA, where c is a real number.

(c) lim
n→∞

anbn = AB.

(d) lim
n→∞

an
bn

=
A

B
provided B ̸= 0.

Example 1.2 (Limits of sequences). Determine the limits of the following sequences.

(a) an =
3n3

n3 + 1
.

(b) bn =

(
n+ 5

n

)n

.

(c) cn = n1/n.
Solution.

(a)

lim
n→∞

an = lim
n→∞

3n3

n3 + 1

= lim
n→∞

3

1 + 1/n3
[divide both top and bottom by n3]

=
lim
n→∞

3

lim
n→∞

(1 + 1/n3)

=
3

1
= 3.

(b)

lim
n→∞

bn = lim
n→∞

(
n+ 5

n

)n

= lim
n→∞

eln (
n+5
n )

n

[a = eln a]

= e
lim

n→∞
n ln (1+5/n)

[ln ab = b ln a]

Next, let’s calculate lim
n→∞

n ln (1 + 5/n),

lim
n→∞

n ln (1 + 5/n) = lim
n→∞

ln (1 + 5/n)

1/n

= lim
x→∞

ln (1 + 5/x)

1/x
[By Theorem 1.1, Indeterminate form 0/0]

= lim
x→∞

1
1+5/x

(
− 5

x2

)
− 1

x2

[L’Hôpital’s Rule]

= 5 lim
x→∞

1

1 + 5/x

= 5.
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Therefore, lim
n→∞

bn = e5.
(c)

lim
n→∞

cn = lim
n→∞

n1/n

= lim
n→∞

elnn1/n
[a = eln a]

= lim
n→∞

e
1
n
lnn [ln ab = b ln a]

= e
lim

n→∞
1
n
lnn

.

Then let us compute lim
n→∞

1
n lnn as follows

lim
n→∞

1

n
lnn = lim

n→∞

1

x
lnx [By Theorem 1.1]

= lim
n→∞

lnx

x
[Indeterminate form ∞/∞]

= lim
n→∞

1
x

1
[L’Hôpital’s Rule]

= lim
n→∞

1

x
= 0.

Therefore, lim
n→∞

cn = e0 = 1.

Definition 1.4 (Terminology for Sequences).

(a) {an} is increasing if an+1 > an; for example, {0, 1, 2, 3, . . .}.
(b) {an} is nondecreasing if an+1 ≥ an; for example, {0, 1, 1, 1, 2, 2, 3, . . .}.
(c) {an} is decreasing if an+1 < an; for example, {2, 1, 0,−2, . . .}.
(d) {an} is nonincreasing if an+1 ≤ an; for example, {2, 1, 1, 0,−2,−2,−3, . . .}.
(e) {an} is monotonic if it is either nonincreasing or nondecreasing (it moves in one direction).
(f) {an} is bounded if there is number M such that |an|≤ M , for all relevant values of n.

Theorem 1.3 (Squeeze Theorem for Sequences). Let {an}, {bn}, and {cn} be sequences with
an ≤ bn ≤ cn for all integers n greater than some index N . If lim

n→∞
an = lim

n→∞
cn = L, then

lim
n→∞

bn = L.

Example 1.3 (Squeeze Theorem). Find the limit of the sequence bn =
cosn

n2 + 1
.

Solution. Note that −1 ≤ cosn ≤ 1 for all n. It follows that

− 1

n2 + 1
≤ cosn

n2 + 1
≤ 1

n2 + 1
.

Let an = − 1

n2 + 1
and cn =

1

n2 + 1
, we have an ≤ bn ≤ cn for n ≥ 1. Furthermore, lim

n→∞
an =

lim
n→∞

cn = 0. By Theorem 1.3, we have lim
n→∞

bn = 0.

Theorem 1.4 (Bounded Monotonic Sequences). A bounded monotonic sequence converges.
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Theorem 1.5 (Growth Rates of Sequences). The following sequences are ordered according to
increasing growth rates as n → ∞; that is, if {an} appears before {bn} in the list, then lim

n→∞

an
bn

= 0

and lim
n→∞

bn
an

= ∞:

{lnq n} ≪ {np} ≪ {np lnr n} ≪ {np+s} ≪ {bn} ≪ {n! } ≪ {nn}.

The ordering applies for positive real numbers p, q, r, s and b > 1.

1.3 Infinite Series
Definition 1.5 (Infinite series). Given a sequence {a1, a2, a3, . . . , }, the sum of its terms

a1 + a2 + a3 + · · · =
∞∑
k=1

ak

is called an infinite series. The sequence of partial sums {Sn} associated with this series has the
terms

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3
...

Sn = a1 + a2 + a3 + · · ·+ an =
n∑

k=1

ak, for n = 1, 2, 3, . . .

If the sequence of partial sums {Sn} has a limit L, the infinite series converges to that limit, and
we write

∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak = lim
n→∞

Sn = L.

If the sequence of partial sums diverges, the infinite series also diverges.

Definition 1.6 (Geometric Sequences). A sequence has the form {rn} or {arn}, where the ratio
r, a are real numbers, is called a geometric sequence.

Theorem 1.6 (Geometric Sequences). Let r be a real number. Then

lim
n→∞

rn =


0 if |r|< 1,

1 if r = 1,

does not exist if r ≤ −1 or r > 1.

If r > 0, then {rn} is a monotonic sequence. If r < 0, then {rn} oscillates.

Theorem 1.7 (Geometric Series). Let a ̸= 0 and r be real numbers. If |r|< 1, then
∞∑
k=0

ark =
a

1− r
.

If |r|≥ 1, then the series diverges.
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Proof. Assume that |r|< 1, then consider the partial sum Sn =
∑n

k=m ark, where m ≤ n then

Sn − rSn = (1− r)Sn

=

n∑
k=m

ark − r

n∑
k=m

ark

=

n∑
k=m

ark −
n∑

k=m

arrk

=
n∑

k=m

ark −
n∑

k=m

ark+1

=
n∑

k=m

ark −
n+1∑

k=m+1

ark

=

(
arm +

n∑
k=m+1

ark

)
−

(
n∑

k=m+1

ark + arn+1

)

= arm +

n∑
k=m+1

ark −
n∑

k=m+1

ark − arn+1

= arm − arn+1.

Then solve for Sn, we have

Sn =
arm − arn+1

1− r
.

Then the geometric series becomes
∞∑

k=m

ark = lim
n→∞

Sn

= lim
n→∞

arm − arn+1

1− r

=
arm

1− r
.

Let m = 0, then we have
∞∑
k=0

ark =
arm

1− r

∣∣∣∣∣
m=0

=
a

1− r
.

Example 1.4. Evaluate the following geometric series or state that the series diverges.

(a)
∞∑
k=0

1.1k.

(b)
∞∑
k=0

e−k.

(c)
∞∑
k=2

3(−0.75)k.
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Solution.

(a) The ratio of this geometric series is r = 1.1. Because |r|≥ 1, the series diverges.
(b) Note that e−k = (e−1)k =

(
1
e

)k. The ratio of this geometric series is r = 1
e < 1, and its first

term a = 1. Because |r|< 1, the series converges and its value is
∞∑
k=0

e−k =
a

1− r
=

1

1− 1/e
=

e

e− 1
.

(c) Note that a = 3, r = −0.75 and |r|= 0.75 < 1, then the geometric series converges. Therefore,
∞∑
k=2

3(−0.75)k =
ar2

1− r
[

∞∑
k=m

ark =
arm

1− r
]

=
3(−0.75)2

1− (−0.75)

=
27/16

7/4

=
27

28
.

Example 1.5 (Decimal expansion as geometric series). Write 1.035 = 1.035353535 . . . as a geo-
metric series and express its value as a fraction.

Solution.

1.035 = 1.035353535 . . .

= 1 + 0.035 + 0.00035 + 0.0000035 + 0.000000035 + · · ·

= 1 +

∞∑
k=0

0.035 · 0.01k [a = 0.035, r = 0.01, |r|< 1]

= 1 +
0.035

1− 0.01
[

∞∑
k=m

ark =
arm

1− r
]

= 1 +
35

1000− 10

= 1 +
35

990

=
990 + 35

990

=
1025

990

=
205

198
.
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