MATH 2205 - Calculus II Lecture Notes 13

Last update: June 20, 2019

1 Integration Techniques

1.1 Review of Numerical Integration

Definition 1.1 (Absolute and Relative Error). Suppose c is a computed numerical solution to a problem having an exact solution x. There are two common measures of the error in c as an approximation to x:

absolute error =
$$|c - x|$$

and

relative error =
$$\frac{c-x}{x}$$
, (if $x \neq 0$).

Definition 1.2. Suppose f is defined an integrable on [a,b]. The *Midpoint Rule approximation* to $\int_a^b f(x) dx$ using n equally spaced subintervals on [a,b] is

$$M(n) = f(m_1)\Delta x + f(m_2)\Delta x + \dots + f(m_n)\Delta x = \sum_{k=1}^n f\left(\frac{x_{n-1} + x_n}{2}\right)\Delta x,$$

where $\Delta x = (b-a)/n$, $x_0 = a$, $x_k = a + k\Delta x$, and $m_k = (x_{k-1} + x_k)/2 = a + (k-1/2)\Delta x$ is the midpoint of $[x_k, x_k]$, for $k = 1, \ldots, n$.

Definition 1.3 (Trapezoid Rule). Suppose f is defined and integrable on [a, b]. The *Trapezoid Rule approximation* to $\int_a^b f(x) dx$ using n equally spaced subintervals on [a, b] is

$$T(n) = \left[\frac{1}{2} f(x_0) + \sum_{k=1}^{n-1} f(x_k) + \frac{1}{2} f(x_n) \right] \Delta x.$$

where $\Delta x = (b-a)/n$ and $x_k = a + k\Delta x$, for $k = 0, 1, 2, \dots, n$.

Definition 1.4 (Simpson's Rule). Suppose f is defined and integrable on [a,b] and $n \geq 2$ is an even integer. The Simpson's Rule approximation to $\int_a^b f(x) dx$ using n equally spaced subintervals on [a,b] is

$$S(n) = [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 4f(x_{n-1}) + f(x_n)] \frac{\Delta x}{3}$$
$$= \sum_{k=0}^{n/2-1} [f(x_{2k}) + 4f(x_{2k+1}) + f(x_{2k+2})] \frac{\Delta x}{3}.$$

where n is an even integer, $\Delta x = (b-a)/n$, and $x_k = a + k\Delta x$, for $k = 0, 1, \dots, n$.

1.2 Improper Integrals

Definition 1.5 (Improper Integrals over Infinite Intervals).

(a) If f is continuous on $[a, \infty)$, then

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx.$$

(b) If f is continuous on $(-\infty, b]$, then

$$\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx.$$

(c) If f is continuous on $(-\infty, \infty)$, then

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{a \to -\infty} \int_{a}^{c} f(x) dx + \lim_{b \to \infty} \int_{c}^{b} f(x) dx,$$

where c is any real number.

If the limits in the above cases exist, then the improper integrals *converge*; otherwise, they *diverge*.

Example 1.1 (Infinite intervals). Evaluate each integral.

(a)
$$\int_0^\infty e^{-3x} dx.$$
(b)
$$\int_0^\infty \frac{dx}{1+x^2}.$$

SOLUTION.

(a)

$$\int_{0}^{\infty} e^{-3x} dx = \lim_{b \to \infty} \int_{0}^{b} e^{-3x} dx$$

$$= \lim_{b \to \infty} -\frac{1}{3} \int_{0}^{b} e^{-3x} \cdot \underbrace{(-3) dx}_{du}$$

$$= \lim_{b \to \infty} -\frac{1}{3} \int_{u(0)}^{u(b)} e^{u} du$$

$$= \lim_{b \to \infty} -\frac{1}{3} e^{u} \Big|_{u(0)=0}^{u(b)=-3b}$$

$$= \lim_{b \to \infty} -\frac{1}{3} (e^{-3b} - e^{0})$$

$$= -\frac{1}{3} (\lim_{b \to \infty} e^{-3b} - 1)$$

$$= -\frac{1}{3} (0 - 1)$$

$$= \frac{1}{3}.$$

(b)

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2} = \lim_{a \to -\infty} \int_a^0 \frac{dx}{1+x^2} dx + \lim_{b \to \infty} \int_0^b \frac{dx}{1+x^2}$$

$$= \lim_{a \to -\infty} \arctan x \Big|_a^0 + \lim_{b \to \infty} \arctan x \Big|_0^b$$

$$= \lim_{a \to -\infty} (\arctan 0 - \arctan a) + \lim_{b \to \infty} (\arctan b - \arctan 0)$$

$$= (0 - \lim_{a \to -\infty} \arctan a) + (\lim_{b \to \infty} \arctan b - 0)$$

$$= -\lim_{a \to -\infty} \arctan a + \lim_{b \to \infty} \arctan b$$

$$= -\left(-\frac{\pi}{2}\right) + \frac{\pi}{2}$$

$$= \pi.$$

Example 1.2 (The family $f(x) = 1/x^p$). Consider the family of functions $f(x) = 1/x^p$, where p is a real number. For what values of p does $\int_1^\infty f(x) dx$ converge?

SOLUTION. Note that

$$\int f(x) \, dx = \int \frac{1}{x^p} \, dx = \int x^{-p} \, dx = \begin{cases} \frac{x^{-p+1}}{-p+1} + C & \text{if } p \neq 1, \\ \ln|x| + C & \text{if } p = 1. \end{cases}$$

Therefore, when p = 1,

$$\int_{1}^{\infty} f(x) \, dx = \int_{1}^{\infty} x^{-p} \, dx = \lim_{b \to \infty} \int_{1}^{b} x^{-1} \, dx = \lim_{b \to \infty} \ln|x| \bigg|_{1}^{b} = \lim_{b \to \infty} (\ln|b| - \ln 1) = \lim_{b \to \infty} \ln b = \infty.$$

So the integral diverges when p=1. Next, let us consider the case $p\neq 1$.

$$\int_{1}^{\infty} f(x) dx = \int_{1}^{\infty} x^{-p} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-p} dx = \lim_{b \to \infty} \frac{x^{-p+1}}{-p+1} \bigg|_{1}^{b} = \lim_{b \to \infty} \frac{1}{-p+1} \left(b^{-p+1} - 1 \right).$$

Hence we need to consider the cases when p > 1 and p < 1.

• If p > 1, then -p + 1 = 1 - p < 0, then $b^{-p+1} = b^{1-p} = \frac{1}{b^{p-1}}$. Therefore,

$$\int_{1}^{\infty} f(x) \, dx = \lim_{b \to \infty} \frac{1}{-p+1} \left(b^{-p+1} - 1 \right) = \frac{1}{-p+1} \left(\lim_{b \to \infty} \frac{1}{b^{p-1}} - 1 \right) = \frac{1}{-p+1} \left(0 - 1 \right) = \frac{1}{p-1}.$$

That is, when p > 1, the integral converges to $\frac{1}{p-1}$.

• If p < 1, then -p + 1 = 1 - p > 0. So we can obtain

$$\int_{1}^{\infty} f(x) dx = \lim_{b \to \infty} \frac{1}{-p+1} \left(b^{-p+1} - 1 \right) = \frac{1}{-p+1} \left(\lim_{b \to \infty} b^{1-p} - 1 \right) = \infty.$$

In other words, when p < 1, the integral diverges.

In a nutshell, $\int_{1}^{\infty} \frac{1}{x^{p}} dx = \frac{1}{p-1}$, if p > 1, it diverges otherwise.

Definition 1.6 (Improper Integrals with an Unbounded Integrand).

(a) Suppose f is continuous on (a, b] with $\lim_{x\to a^+} f(x) = \pm \infty$. Then

$$\int_{a}^{b} f(x) dx = \lim_{c \to a^{+}} \int_{c}^{b} f(x) dx.$$

(b) Suppose f is continuous on [a,b) with $\lim_{x\to b^-} f(x) = \pm \infty$. Then

$$\int_{a}^{b} f(x) dx = \lim_{c \to b^{-}} f(x) dx.$$

(c) Suppose f is continuous on [a, b] except at the interior point p where f is unbounded. Then

$$\int_{a}^{b} f(x) \, dx = \lim_{c \to p^{-}} \int_{a}^{c} f(x) \, dx + \lim_{d \to p^{+}} \int_{d}^{b} f(x) \, dx.$$

If the limits in above cases exist, then the improper integrals converge; otherwise, they diverge.

Example 1.3 (Infinite integrand). Find the area of the region R between the graph of $f(x) = \frac{1}{\sqrt{9-x^2}}$ and the x-axis on the interval (-3,3) (if it exists).

SOLUTION.

$$A = \int_{-3}^{3} f(x) dx = \int_{-3}^{3} \frac{1}{\sqrt{9 - x^{2}}} dx$$

$$= 2 \int_{0}^{3} \frac{1}{\sqrt{9 - x^{2}}} dx \qquad \left[\frac{1}{\sqrt{9 - x^{2}}} \text{ is even} \right]$$

$$= 2 \lim_{b \to 3^{-}} \int_{0}^{b} \frac{1}{\sqrt{9 - x^{2}}} dx \qquad \left[f(x) \text{ is unbounded at } x = 3 \right]$$

$$= 2 \lim_{b \to 3^{-}} \int_{0}^{b} \frac{1}{\sqrt{1 - (x/3)^{2}}} \frac{1}{3} dx$$

$$= 2 \lim_{b \to 3^{-}} \int_{u(0)}^{u(b)} \frac{1}{\sqrt{1 - u^{2}}} du \qquad \left[u = \frac{3}{x}, du = \frac{1}{3} dx \right]$$

$$= 2 \lim_{b \to 3^{-}} \arcsin u \Big|_{u(0) = 0}^{u(b) = \frac{b}{3}}$$

$$= 2 \left(\lim_{b \to 3^{-}} \arcsin \frac{b}{3} - \arcsin 0 \right) \qquad \left[\lim_{b \to 3^{-}} \arcsin \frac{b}{3} = \arcsin 1 = \frac{\pi}{2} \right]$$

$$= 2 \left(\frac{\pi}{2} - 0 \right)$$

$$= \pi.$$

Example 1.4 (Infinite integrand at an interior point). Evaluate $\int_1^{10} \frac{dx}{(x-2)^{1/3}}$

SOLUTION. Note that the integrand is unbounded at x = 2 which is an interior point of the interval of integration. We split the interval into two subintervals and evaluate an improper integral on each subinterval:

$$\int_{1}^{10} \frac{dx}{(x-2)^{1/3}} = \lim_{c \to 2^{-}} \int_{1}^{c} (x-2)^{-1/3} dx + \lim_{d \to 2^{+}} \int_{d}^{10} (x-2)^{-1/3} dx$$

$$= \lim_{c \to 2^{-}} \frac{3}{2} (x-2)^{2/3} \Big|_{1}^{c} + \lim_{d \to 2^{+}} (x-2)^{2/3} \Big|_{d}^{10}$$

$$= \lim_{c \to 2^{-}} \frac{3}{2} [(c-2)^{2/3} - (-1)^{2/3}] + \lim_{d \to 2^{+}} \frac{3}{2} [8^{2/3} - (d-2)^{2/3}]$$

$$= \frac{3}{2} [\lim_{c \to 2^{-}} (c-2)^{2/3} - 1] + \frac{3}{2} [4 - \lim_{d \to 2^{+}} (d-2)^{2/3}]$$

$$= \frac{3}{2} [(0-1) + (4-0)]$$

$$= \frac{9}{2}.$$