Last update: June 20, 2019

1 Integration

1.1 Sigma (Summation) Notation

Sigma (or summation) notation is used to express sums in compact way.

Definition 1.1 (Sigma Notation). The symbol Σ (sigma, the Greek capital S) stands for sum. Then index k takes on all integer values from the lower limit k = 1 to the upper limit k = 10. The expression that immediately follows Σ (the summand) is evaluated for each value of k, and the resulting values are summed.

Example 1.1.

(a)
$$\sum_{k=1}^{5} k = 1 + 2 + 3 + 4 + 5 = 15.$$

(b) $\sum_{i=-2}^{2} i = (-2) + (-1) + 0 + 1 + 2 = 0.$
(c) $\sum_{j=1}^{3} (j^2 + 1) = (1^2 + 1) + (2^2 + 1) + (3^2 + 1) = 2 + 5 + 10 = 17.$

Proposition 1.1. Suppose that $\{a_1, a_2, \ldots, a_n\}$ and $\{b_1, b_2, \ldots, b_n\}$ are two sets of real numbers, and suppose that $c \in \mathbb{R}$ is a real number.

• Constant Multiple Rule. We can factor multiplicative constants out of sum:

$$\sum_{k=1}^{n} ca_k = c \sum_{k=1}^{n} a_k.$$

• Addition Rule. We can also split a sum into two sums:

$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k.$$

Theorem 1.1 (Sums of Powers of Integers). Let n be a positive integer and c a real number.

$$\sum_{k=1}^{n} c = cn, \quad \sum_{k=1}^{n} k = \frac{n(n+1)}{2}, \quad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}, \quad \sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}.$$

1.2 Approximating Areas under Curves

Definition 1.2 (Regular Partition). Suppose [a, b] is a closed interval containing n subintervals

$$[x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n],$$

of equal length $\Delta x = (b-a)/n$ with $x_0 = a$ and $x_n = b$. The endpoints $x_0, x_1, x_2, \ldots, x_{n-1}, x_n$ of the subintervals are called *grid points*, and they create a *regular partition* of the interval [a, b]. In general, the *k*th point is

$$x_k = a + k\Delta x$$
, for $k = 0, 1, 2, \dots, n$.

Definition 1.3 (Riemann Sum). Suppose f is a function defined on a closed interval [a, b], which is divided into n subintervals of equal length Δx . If x_k^* is any point in the kth subinterval $[x_{k-1}, x_k]$, for $k = 1, 2, \ldots, n$, then

$$f(x_1^*)\Delta x + f(x_2^*)\Delta x + \dots + f(x_n^*)\Delta x = \sum_{k=1}^n f(x_k^*)\Delta x$$

is called a *Riemann sum* for f on [a, b]. This sum is called

- a left Riemann sum if x_k^* is the left endpoint of $[x_{k-1}, x_k]$, i.e., $x_k^* = x_{k-1} = a + (k-1)\Delta x$;
- a right Riemann sum if x_k^* is the right endpoint of $[x_{k-1}, x_k]$, i.e., $x_k^* = x_k = a + k\Delta x$; and
- a midpoint Riemann sum if x_k^* is the midpoint of $[x_{k-1}, x_k]$, i.e., $x_k^* = (x_{k-1} + x_k)/2 = a + (k 1/2)\Delta x$, for k = 1, 2, ..., n.

Example 1.2. Let R be the region bounded by the graph of $f(x) = x^2$ and the x-axis between x = 0 and x = 8.

- (a) Approximate the area of R using a left Riemann sum with n = 8 subintervals.
- (b) Approximate the area of R using a right Riemann sum with n = 8 subintervals.
- (c) Approximate the area of R using a midpoint Riemann sum with n = 8 subintervals.

SOLUTION. By the definition, the Riemann sum for the approximation of the area of R is

$$\sum_{k=1}^{8} f(x_k^*) \Delta x, \qquad (1.1)$$

where $\Delta x = \frac{x_8 - x_0}{8} = \frac{8 - 0}{8} = 1.$

(a) For a left Riemann sum, we pick $x_k^* = x_{k-1} = x_0 + (k-1)\Delta x = 0 + (k-1) \times 1 = k-1$. Then plug it into (1.1), we have

$$\sum_{k=1}^{8} f(x_k^*) \Delta x = \sum_{k=1}^{8} (k-1)^2 \times 1$$

= $\sum_{k=1}^{8} (k^2 - 2k + 1)$ [by $(a-b)^2 = a^2 - 2ab + b^2$]
= $\sum_{k=1}^{8} k^2 + \sum_{k=1}^{8} (-2k) + \sum_{k=1}^{8} 1$ [by Proposition 1.1 Addition Rule]
= $\sum_{k=1}^{8} k^2 + (-2) \sum_{k=1}^{8} k + \sum_{k=1}^{8} 1$ [by Proposition 1.1 Constant Multiple Rule]
= $\frac{8(8+1)(2\times8+1)}{6} + (-2)\frac{8(8+1)}{2} + 8\times1$ [by Theorem 1.1]
= $204 - 72 + 8$
= 140.

(b) For a right Riemann sum, we pick $x_k^* = x_k = x_0 + k\Delta x = 0 + k \times 1 = k$. Then we have

$$\sum_{k=1}^{8} f(x_k^*) \Delta x = \sum_{k=1}^{8} k^2 \times 1$$

= $\sum_{k=1}^{8} k^2$
= $\frac{8(8+1)(2 \times 8 + 1)}{6}$ [by Theorem 1.1]
= 204.

(c) For a mid Riemann sum, we pick $x_k^* = (x_{k-1} + x_k)/2 = x_0 + (k - 1/2)\Delta x = 0 + (k - 1/2) = k - 1/2$. Then we have

$$\sum_{k=1}^{8} f(x_k^*) \Delta x = \sum_{k=1}^{8} \left(k - \frac{1}{2}\right)^2 \times 1$$

= $\sum_{k=1}^{8} \left(k^2 - k + \frac{1}{4}\right)$ [by $(a - b)^2 = a^2 - 2ab + b^2$]
= $\sum_{k=1}^{8} k^2 - \sum_{k=1}^{8} k + \sum_{k=1}^{8} \frac{1}{4}$ [by Proposition 1.1]
= $\frac{8(8+1)(2 \times 8+1)}{6} - \frac{8(8+1)}{2} + 8 \times \frac{1}{4}$
= 204 - 36 + 2
= 170.

- E	_	_	_	٦.
1				L
				L
. L	_	_	-	з.

1.3 Definite Integrals

Definition 1.4 (Net Area). Consider the region R bounded by the graph of a continuous function f and the x-axis between x = a and x = b. The *net area* of R is the sum of the areas of the parts of R that lie above the x-axis *minus* the sum of the areas of the parts of R that lie below the x-axis on [a, b].

Definition 1.5 (General Riemann Sum). Suppose $[x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n]$ are subintervals of [a, b] with

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b.$$

Let Δx_k be the length of the subinterval $[x_{k-1}, x_k]$ and let x_k^* be any point in $[x_{k-1}, x_k]$, for k = 1, 2, ..., n. If f is defined on [a, b], the sum

$$\sum_{k=1}^{n} f(x_k^*) \Delta x_k = f(x_1^*) \Delta x_1 + f(x_2^*) \Delta x_2 + \dots + f(x_n^*) \Delta x_n$$

is called a general Riemann sum for f on [a, b].

Definition 1.6 (Definite Integral). A function f defined on [a, b] is *integrable* on [a, b] if

$$\lim_{\Delta \to 0} \sum_{k=1}^n f(x_k^*) \Delta x_k$$

exists and is unique over all partitions of [a, b] and all choices of x_k^* on a partition. This limit is the *definite integral* of f from a to b, which we write

$$\int_{a}^{b} f(x) \, dx = \lim_{\Delta \to 0} \sum_{k=1}^{n} f(x_{k}^{*}) \Delta x_{k}.$$

To simplify the calculation, we use equally spaced grid points and right Riemann sums. That is, for each value of n, we let $\Delta x_k = \Delta x = (b-a)/n$ and $x_k^* = a + k\Delta x$, for k = 1, 2, ..., n. Then $n \to \infty$ and $\Delta \to 0$,

$$\int_{a}^{b} f(x) \, dx = \lim_{\Delta \to 0} \sum_{k=1}^{n} f(x_{k}^{*}) \Delta x_{k} = \lim_{n \to \infty} \sum_{k=1}^{n} f(a + k\Delta x) \Delta x.$$

Definition 1.7 (Integrable Functions). If f is continuous on [a, b] or bounded on [a, b] with a finite number of discontinuities, then f is integrable on [a, b].

Definition 1.8 (Reversing Limits and Identical Limits of Integration). Suppose f is integrable on [a, b].

(a)
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

(b) $\int_{a}^{a} f(x) dx = 0.$

Proposition 1.2 (Properties of Definite Integrals).

(a) Integral of a Sum. Assume f and g are integrable on [a, b], then their sum f + g is integrable on [a, b] and the integral of their sum is the sum of their integrals:

$$\int_{a}^{b} [f(x) + g(x)] \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx.$$

(b) Constants in Integrals. If f is integrable on [a, b] and c is a constant, then cf is integrable on [a, b] and

$$\int_{a}^{b} cf(x) \, dx = c \int_{a}^{b} f(x) \, dx.$$

(c) Integrals over Subintervals. If the point p is distinct from a and b, then the integral on [a, b] may be split into two integrals,

$$\int_a^b f(x) \, dx = \int_a^p f(x) \, dx + \int_p^b f(x) \, dx.$$

Example 1.3. Find the value of $\int_0^2 (x^3 + 1) dx$ by evaluating a right Riemann sum and letting $n \to \infty$.

SOLUTION. The interval [a, b] = [0, 2] is divided into n subintervals of length $\Delta x = (b - a)/n = (2 - 0)/n = 2/n$. For the right Riemann sum, we pick $x_k^* = x_k = x_0 + k\Delta x = 2k/n$. Let f(x) be the integrand, i.e., $f(x) = x^3 + 1$. Then

$$\begin{split} \int_{0}^{2} f(x) \, dx &= \int_{0}^{2} (x^{3} + 1) \, dx \\ &= \lim_{n \to \infty} \sum_{k=1}^{n} f(x_{k}^{*}) \Delta x \\ &= \lim_{n \to \infty} \sum_{k=1}^{n} \left[\left(\frac{2k}{n} \right)^{3} + 1 \right] \frac{2}{n} \\ &= \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{2^{3}}{n^{3}} k^{3} + 1 \right) \frac{2}{n} \quad [by \left(\frac{ab}{c} \right)^{d} = \frac{a^{d}b^{d}}{c^{d}}] \\ &= \lim_{n \to \infty} \frac{2}{n} \sum_{k=1}^{n} \left(\frac{2^{3}}{n^{3}} k^{3} + 1 \right) \quad [by \text{ Proposition 1.1 Constant Multiple Rule]} \\ &= \lim_{n \to \infty} \frac{2}{n} \left(\sum_{k=1}^{n} \frac{2^{3}}{n^{3}} k^{3} + \sum_{k=1}^{n} 1 \right) \quad [by \text{ Proposition 1.1 Addition Rule]} \\ &= \lim_{n \to \infty} \frac{2^{4}}{n^{4}} \sum_{k=1}^{n} k^{3} + \frac{2}{n} \sum_{k=1}^{n} 1 \\ &= \lim_{n \to \infty} \frac{16}{n^{4}} \frac{n^{2}(n+1)^{2}}{4} + \frac{2}{n} n \quad [by \text{ Theorem 1.1}] \\ &= \lim_{n \to \infty} \frac{4(n+1)^{2}}{n^{2}} + 2 \\ &= \lim_{n \to \infty} 4 \left(\frac{n+1}{n} \right)^{2} + 2 \\ &= \lim_{n \to \infty} 4 \left(1 + \frac{1}{n} \right)^{2} + 2 \\ &= 4 + 2 \\ &= 6. \end{split}$$

Example 1.4. Assume that $\int_0^5 f(x) dx = 3$ and $\int_0^7 f(x) dx = -10$. Evaluate the following integrals.

(a)
$$\int_{0}^{7} 2f(x) dx = 2 \int_{0}^{7} f(x) dx = 2 \times (-10) = -20.$$

(b) $\int_{5}^{7} f(x) dx = \int_{5}^{0} f(x) dx + \int_{0}^{7} f(x) dx = -\int_{0}^{5} f(x) dx + (-10) = -3 + (-10) = -13.$
(c) $\int_{5}^{0} f(x) dx = \int_{5}^{0} f(x) dx = -\int_{0}^{5} f(x) dx = -3.$
(d) $\int_{7}^{0} 6f(x) dx = 6 \int_{7}^{0} f(x) dx = -6 \int_{0}^{7} f(x) dx = (-6) \times (-10) = 60.$