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1 Overall Plan

(a) (1D) Analysis of static situation: given data points and find the probability density function.
(b) (1D) Discrete evolution in time (Ch 4, 6, 8, 10): Monte Carlo numerics/Brownian motion.
(c) (1D) Continuous motion in time: in theory (Ito Calculus, Wiener Process).
(d) (Multi-dimensional) Derivation of Navier-Stokes.

Advantages:

• Math
– Theory of PDF structures.
– Theory of PDF equation structures (= general diffusion-type PDE).
– Relationship between stochastic and PDE’s.

• Applications (general modeling concept).
– Molecular flow (Navier Stokes).
– Turbulent flow.
– Population dynamics.
– General diffusion problems.

2 Stochastic States

2.1 Probability Density Functions (PDF’s)

2.1.1 Probability Density Functions (PDF’s)

(a) Mean Value. Consider a random variable X, there are N measurement values Xi, i = 1, . . . , N .
A basic characterization of the random variable X is given by the mean ⟨X⟩, which tells us
which value we may expect for X. Therefore, the mean is often called an expectation value,
where ⟨X⟩ is given by

⟨X⟩ = 1

N

N∑
i=1

Xi.

Here, we assume that N is sufficiently large.
(b) Moments. In general, we define a moment of nth order (n = 1, 2, . . .) by

⟨Xn⟩ = 1

N

N∑
i=1

Xn
i .

(c) Fluctuation. We define the fluctuation X̃i = Xi−⟨X⟩ which is the deviations from the mean.
(d) Central Moments. Fluctuation can be characterized by the central moment (or the moment

about the mean) of nth order,

⟨X̃n⟩ = 1

N

N∑
i=1

X̃n
i =

1

N

N∑
i=1

(Xi − ⟨X⟩)n.

(e) Distribution Function. Probabilities can be defined by means of theta functions, which are
also called step functions or Heaviside functions. The theta function θ(z) of any variable z
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can be defined by

θ(z) =

{
0 if z < 0,

1 if z ≥ 0.

We may replace z with z = x−X. Here, x represent any parameter, and Xi is one measured
value of a random variable. Then we obtain

θ(x−Xi) =

{
0 if x−Xi < 0, i.e., if x < Xi,

1 if x−Xi ≥ 0, i.e., if x ≥ Xi.

The probability for finding a value Xi ≤ x is one if Xi ≤ x, and zero otherwise. Then the
probability to find X ≤ x is

P (X ≤ x) =
1

N

N∑
i=1

θ(x−Xi) = ⟨θ(x−X)⟩.

Then we define the distribution function (cumulative distribution function)

F (x) = P (X ≤ x) = ⟨θ(x−X)⟩.

Then the probability P (x ≤ X ≤ x+∆x) to find an X value between x and x+∆x is given
by

P (x ≤ X ≤ x+∆x) = ⟨θ(x+∆−X)− θ(x−X)⟩
= P (X ≤ x+∆x)− P (X ≤ x)

= F (x+∆x)− F (x).

(f) Distribution Function Properties.
• P (x ≤ X ≤ x+∆x) ≥ 0 =⇒ F (x+∆x) ≥ F (x).
• F (−∞) = 0.
• F (∞) = 1.
• 0 ≤ F (x) ≤ 1.

(g) Probability Density Function. A probability density function (PDF) is defined as a derivative
of the distribution function F (x),

f(x) =
dF (x)

dx
=

d⟨θ(x−X)⟩
dx

=

〈
dθ(x−X)

dx

〉
.

The meaning of the PDF is that f(x) dx determines the probability for finding X in an
infinitesimal interval between x and x+ dx,

P (x ≤ X ≤ x+ dx) = F (x+ dx)− F (x) = f(x) dx.

Then
P (a ≤ X ≤ b) =

∫ b

a
f(x) dx =

∫ b

a

dF (x)

dx
dx = F (b)− F (a).

(h) PDF Properties. The PDF f(x) has the following relevant properties,
• f(x) ≥ 0.
• f(−∞) = f(∞) = 0.
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•
∫
f(x) dx = 1.

•
∫
g(x)f(x) dx = ⟨g(X)⟩.

Proof. ∫ ∞

−∞
g(x)f(x) dx =

∫ ∞

−∞
g(x)

dF (x)

dx
dx

=

∫ ∞

−∞
g(x)

d⟨θ(x−X)

dx
dx

=

∫ ∞

−∞
g(x)

d

dx

1

N

N∑
i=1

θ(x−Xi) dx

=
1

N

N∑
i=1

∫ ∞

−∞
g(x)

dθ(x−Xi)

dx
dx

=
1

N

N∑
i=1

∫ ∞

−∞
g(x)

dθ(x−Xi)

d(x−Xi)

d(x−Xi)

dx
dx

= − 1

N

N∑
i=1

∫ ∞

−∞
g(x)

dθ(x−Xi)

dXi
dx

= − 1

N

N∑
i=1

d

dXi

∫ ∞

−∞
g(x)θ(x−Xi) dx

= − 1

N

N∑
i=1

d

dXi
lim
L→∞

∫ L

Xi

g(x) · 1 dx

= − 1

N

N∑
i=1

lim
L→∞

d

dXi

∫ L

Xi

g(x) dx

=
1

N

N∑
i=1

g(Xi)

= ⟨g(X)⟩.

2.1.2 Delta Functions

The theta function was used for the representation of the distribution function F (x). The PDF
f(x) = ⟨dθ(x−X)/dx⟩ was introduced as mean of the derivative of a theta function.

(a) Theta and Delta Functions as Limits. Consider the function θN (x) defined as follows,

θN (x) =
1 + tanh(Nx)

2
,

where tanh(x) = sinh(x)/cosh(x) = (ex − e−x)/(ex + e−x). Then taking the limit gives the
theta function

θ(x) = lim
N→∞

θN (x) = lim
N→∞

1

2
+

1

2

eNx − e−Nx

eNx + e−Nx
=


0 if x < 0,
1
2 if x = 0,

1 if x > 0.



6 of 37 MATH 5490 - Principles of Stochastic Modeling Notes Libao Jin

To obtain dθ(x−X)/dx, we consider the derivative of θN (x) with respect to x, and note that

d tanh(Nx)

dx
=

d

dx

eNx − eNx

eNx + eNx

=
d

dx

e2Nx − 1

e2Nx + 1

=
2Ne2Nx[(e2Nx + 1)− (e2Nx − 1)]

(e2Nx + 1)2

=
4Ne2Nx

(e2Nx + 1)2

= N

(
2eNx

e2Nx + 1

)2

= N

(
2

eNx + e−Nx

)2

=
N

cosh2 (Nx)
.

Then
δN (x) =

dθN (x)

dx
=

d

dx

1 + tanh(Nx)

2
=

1

2

d tanh(Nx)

dx
=

N

2 cosh2 (Nx)
.

Then we obtain the delta function (or Dirac delta function or Dirac function)

δ(x) = lim
N→∞

δN (x) = lim
N→∞

dθN (x)

dx
=

d

dx
lim

N→∞
θN (x) =

dθ(x)

dx
.

To be more exact,

δ(x) = lim
N→∞

δN (x) = lim
N→∞

N

2 cosh2 (Nx)
= lim

N→∞

2N

(eNx + e−Nx)2
=

{
∞ x = 0,

0 x ̸= 0.

(b) Properties.
•
∫∞
−∞ δ(x) dx =

∫∞
−∞

dθ(x)
dx dx = θ(∞)− θ(−∞) = 1.

• Sifting property.
∫∞
−∞ g(x)δ(x− a) dx = g(a)

∫∞
−∞ δ(x− a) dx = g(a).

Proof. ∫ ∞

−∞
g(x)δ(x− a) dx =

∫ ∞

−∞
g(x)

dθ(x− a)

dx
dx

=

∫ ∞

−∞
g(x) ·

[
−dθ(x− a)

da

]
dx

= − d

da

∫ ∞

−∞
g(x)θ(x− a) dx

= − d

da

∫ ∞

a−
g(x) dx

= − d

da

∫ ∞

a
g(x) dx

= g(a).
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• Symmetry.
∫∞
−∞ g(x)δ(−x) dx =

∫∞
−∞ g(x)δ(x) dx.

(c) PDF Definition. By the PDF definition f(x) = ⟨dθ(x−X)/dx⟩, then f(x) = ⟨δ(x−X)⟩.
• f(±∞) = ⟨δ(±∞−X)⟩ = 0.
•
∫∞
−∞ f(x) dx =

∫∞
−∞⟨δ(x−X)⟩ dx = ⟨

∫∞
−∞ δ(x−X) dx⟩ = ⟨1⟩ = 1.

•
∫∞
−∞ g(x)f(x) dx =

∫∞
−∞ g(x)⟨δ(x−X)⟩ dx = ⟨

∫∞
−∞ g(x)δ(x−X) dx⟩ = ⟨g(X)⟩.

2.1.3 An Example: The Uniform Probability Density Function

(a) Uniform PDF. A uniform PDF is given as follows,

f(x) =

{
1/(b− a) if a ≤ x ≤ b,

0 otherwise.

This PDF satisfies the normalization condition to integrate to unity,∫ ∞

−∞
f(x) dx =

∫ b

a

1

b− a
dx =

1

b− a

∫ b

a
dx = 1.

(b) Probability. The distribution function F (x) is

F (x) =

∫ x

−∞
f(y) dy =

∫ x

−∞

θ(b− y)− θ(a− y)

b− a
dy =

min(x, b)−min(x, a)

b− a
.

Then

P (c ≤ X ≤ d) = F (d)− F (c) =
min(d, b)−min(d, a)−min(c, b) + min(c, a)

b− a
.

(c) Moments. The mean value of a uniform PDF f(x) is given by

⟨X⟩ =
∫

xf(x) dx =
1

b− a

∫ b

a
x dx =

1

2

b2 − a2

b− a
=

a+ b

2
,

which implies ⟨X⟩ is the mean position between a and b. The central moments is

⟨X̃k⟩ =
∫ ∞

−∞
(x− ⟨X⟩)kf(x) dx

=
1

b− a

∫ b

a

(
x− a+ b

2

)k

dx

=
1

b− a

1

k + 1

[(
b− a+ b

2

)k+1

−
(
a− a+ b

2

)k+1
]

=
1

b− a

1

k + 1

[(
b− a

2

)k+1

−
(
a− b

2

)k+1
]

=
1

b− a

1

k + 1

[(
b− a

2

)k+1

− (−1)k+1

(
b− a

2

)k+1
]

=

{
1

(k+1)

(
b−a
2

)k if k is even,
0 if k is odd.
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In other words,

⟨X̃2k⟩ = 1

2k + 1

(
b− a

2

)2k

, ⟨X̃2k+1⟩ = 0,∀k ∈ N.

Specifically, the variance (the second order central moment) and the standard deviation is as
follows, respectively,

⟨X̃2⟩ = 1

3

(
b− a

2

)2

, ⟨X̃2⟩1/2 = b− a

2
√
3
.

(d) Parameters. For given values of the man and standard deviation we can calculate the model
parameters a and b as follows,

⟨X⟩ = a+ b

2
=⇒ a+ b = 2⟨X⟩,

⟨X̃2⟩1/2 = b− a

2
√
3

=⇒ b− a = 2
√
3⟨X̃2⟩1/2.

Then we can determine a and b,

b = ⟨X⟩+
√
3⟨X̃2⟩1/2, a = ⟨X⟩ −

√
3⟨X̃2⟩1/2.

(e) Random Number Generation. To generate random numbers that have a specified distribution
function G(y). Then, it turns out that the random variable Y = G−1(X), which can be
determined by solving the relation G(Y ) = X for Y , has the given distribution function G(y)
as follows,

F (y) = P (Y ≤ y) = P (G−1(X) ≤ y) = P (X ≤ G(y)) =


0 if G(y) < 0,

G(y) if 0 ≤ G(y) ≤ 1,

1 if G(y) > 1.

This method is called the inverse transformation method.

2.2 Models for Probability Density Function
How it is possible to find specific PDF shapes for certain observations?

(a) Design PDFs on the basis of any principle (e.g., the constraint considered below that the PDF
has to maximize the uncertainty).

(b) Apply empirical PDF shapes that have desired properties.

2.2.1 Statistically Most-Likely Probability Density Functions

(a) Predictability. For the development of PDF models it is helpful to relate the shape of a PDF
to a measure that characterizes the predictability of the state of a random variable. The
consideration of the predictability of states of random variables can be used in the following
way for the construction of PDFs. Apply information about the known moments combined
with the constraint that the predictability (uncertainty) related to the PDF has to be minimal
(maximal). First, we reduce our uncertainty by the given information (the known moments).
Second, we are maximally uncommitted with respect to the missing information (the PDF
shape).



Libao Jin MATH 5490 - Principles of Stochastic Modeling Notes 9 of 37

(b) Measure of Uncertainty. The measure of uncertainty S, which is called entropy, is defined by

S = −
∫ ∞

−∞
f(x) ln(f(x)) dx.

The combination of the definition of S with the uniform PDF shape shows that

S = − 1

b− a

∫ b

a
ln

(
1

b− a

)
dx =

ln(b− a)

b− a
(b− a) = ln(b− a) = lnL,

where L = b − a. This expression illustrates the suitability of using S as a measure of
uncertainty: the certainty S is minimal for L → 0, and the uncertainty is maximal for
L → ∞.

(c) Statistically Most-Likely PDF. Assume that moments of nth-order, n = 1, 2, . . . , s is given,

⟨Xn⟩ =
∫ ∞

−∞
xnf(x) dx. (2.1)

The goal is to construct a PDF that has s moments that agree with the given ones but
maximizes the entropy S (i.e., the uncertainty). According to the calculus of variations, we
extend the entropy S to a functional S∗ by involving (2.1):

S∗ = −
∫ ∞

−∞

[
f(x) ln(f(x)) +

s∑
k=0

µkx
kf(x)− f(x)

]
dx,

where µk are Lagrange multipliers which have to be chosen such that ⟨Xn⟩ is satisfied for all
n. Note that the last term f(x) modifies the multiplier µ0. To find maximum of S∗, we can
calculate the functional variation of S∗ with regard to f ,

∂S∗

∂f
= −

∫ ∞

−∞

[
ln(f(x)) +

s∑
k=0

µkx
k

]
dx.

The functional variation is zero if the PDF f(x) is given by

f(x) = exp

(
−

s∑
k=0

µkx
k

)
,

which is called a statistically most-likely (SML) PDF. By introducing non-dimensional La-
grange multipliers λk we can also write the latter relation as

f(x) = exp

[
λ0 −

s∑
k=1

λk(x− ⟨X⟩)k

⟨X̃2⟩k/2

]
.

The s+ 1 factors λk are uniquely determined by the normalization of f(x) and s conditions
(2.1). These conditions for the PDF can be written

⟨X̃n⟩ =
∫ ∞

−∞
(x− ⟨X⟩)nf(x) dx,

where n = 0, 1, . . . , s.
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2.2.2 The Normal Probability Density Function

(a) Second-Order SML PDF. The normal PDF f(x) of one random variable X is a second-order
SML PDF. This PDF is given by

f(x) = exp

{
λ0 − λ1

x− ⟨X⟩
⟨X̃2⟩1/2

− λ2

2

(x− ⟨X⟩)2

⟨X̃2⟩

}
.

The parameters λ0, λ1, and λ2 have to be chosen such that the PDF satisfies for n = 0, 1, 2,

1 =

∫ ∞

−∞
f(x) dx,

0 =

∫
(x− ⟨x⟩)f(x) dx,

⟨X̃2⟩ =
∫ ∞

−∞
(x− ⟨X⟩)2f(x) dx.

for any given mean ⟨X⟩ and variance ⟨X̃2⟩.
(b) Parameter calculation. A simple way to calculate the model parameters is to differentiate

f(x),
df

dx
=

f

⟨X̃2⟩1/2

(
−λ1 − λ2

x− ⟨X⟩
⟨X̃2⟩1/2

)
.

The integration of this relation leads to∫ ∞

−∞

df

dx
dx = − 1

⟨X̃2⟩1/2

∫ ∞

−∞

(
λ1 + λ2

x− ⟨X⟩
⟨X̃2⟩1/2

)
f dx = − λ1

⟨X̃2⟩1/2
=⇒ λ1 = 0.

Integrate (x− ⟨X⟩)f , we find∫ ∞

−∞
(x− ⟨X⟩) df

dx
dx = − λ2

⟨X̃2⟩

∫ ∞

−∞
(x− ⟨X⟩)2f dx = −λ2.

Using integration by parts to the left-hand side, we have∫ ∞

−∞
(x−⟨X⟩) df

dx
dx =

∫ [
d(x− ⟨X⟩)f

dx
− d(x− ⟨X⟩)

dx
f

]
dx = (x−⟨X⟩)f

∣∣∣∣∣
∞

−∞

−
∫ ∞

−∞
f dx = −1.

Then we can conclude that λ2 = 1. The parameter λ0 can be calculated by means of the
condition,

1 = eλ0

∫ ∞

−∞
exp

[
−1

2

(x− ⟨X⟩)2

⟨X̂2⟩

]
dx.

Let us introduce the variable y = (x− ⟨X⟩)/(2⟨X̂2⟩)1/2 to simplify the latter relation,

e−λ0 =

√
2⟨X̃2⟩

∫ ∞

−∞
e−y2 dy =

√
2π⟨X̃2⟩.

Then the second-order SML PDF can be written as

f(x) =
1√
2πσ

exp

[
−(x− µ)2

2σ2

]
.
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Here, the model parameters µ and σ are given by
µ = ⟨X⟩, σ = ⟨X̃2⟩1/2.

The PDF is a symmetric function about the mean. Thus, all the odd central moments
disappear (k = 1, 2, . . .), ⟨X̃2k−1⟩ = 0. The even central moments are determined by the
formula (k = 1, 2, . . .), ⟨X̃2k⟩ = (2k)!

2kk!
σ2k.

(c) Skewness and Flatness. To see whether a random data set can be described by a normal
PDF, it is helpful to use normalized moments of third-order (the skewness) and fourth-order
(the flatness or kurtosis) as a reference.

m3 =
⟨X̃3⟩

⟨X̃2⟩3/2
,m4 =

⟨X̃4⟩
⟨X̃2⟩2

.

The skewness m3 indicates deviations from the symmetry of fluctuations about the mean
value.The flatness m4 indicates the peak of a PDF. For the normal PDF, m3 = 0 and m4 = 3.
A PDF with m4 ≥ 3 (m4 ≤ 3) has a higher (lower) peak value than the normal PDF. Also,
m3 and m4 have to satisfy

m2
3 + 1 ≤ m4.

(d) Probability. The probability P (a ≤ X ≤ b) for finding the random variable X between a and
b is defined by

P (a ≤ X ≤ b) =

∫ b

a
f(x) dx =

1√
2πσ

∫ b

a
exp

[
−(x− µ)2

2σ2

]
dx.

Let A = (a − µ)/(
√
2σ), B = (b − µ)/(

√
2σ), and y = (x − µ)

√
2σ. We can simplify the

probability as follows,

P (a ≤ X ≤ b) =
1√
π

∫ B

A
e−y2 dy

=
1√
π

[∫ 0

A
e−y2 dy +

∫ B

0
e−y2 dy

]
=

1√
π

[∫ B

0
e−y2 dy −

∫ A

0
e−y2 dy

]
=

1

2
[erf(B)− erf(A)] ,

where the error function erf(x) is defined as follows,

erf(x) =
2√
π

∫ x

0
e−s2 ds.

(e) Error Function Approximation. The errof function erf(x) can be approximated below,

E(x) = ±
√

1− e−Hx2a,H =
4/π + px2

1 + px2
, p = − 8

3π

π − 3

π − 4
= 0.1400.

(f) Example Probabilities.

P (µ− σ ≤ X ≤ µ+ σ) =
erf(1/21/2)− erf(−1/21/2)

2
= erf(2−1/2) = 0.683,

P (µ− σ ≤ X ≤ µ+ σ) =
erf(2/21/2)− erf(−2/21/2)

2
= erf(2/21/2) = 0.955,

P (µ− σ ≤ X ≤ µ+ σ) =
erf(3/21/2)− erf(−3/21/2)

2
= erf(3/21/2) = 0.995.
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(g) Application of the Normal PDF. The normal distribution is used for a variety of applications,
for example the distribution of

• intelligence quotients, where µ = 100, σ = 15.
• heights of adult males in the U.S., where µ = 1.75m, σ = 0.07m.
• test scores, where, e.g., µ = 80%, σ = 10%.

2.2.3 The Gamma Probability Density Function

(a) Gamma PDF. The PDF of non-negative random variables is often modeled by the gamma
PDF. This PDF is defined by

f(x) =


b

Γ(a)⟨X⟩

(
bx

⟨X⟩

)a−1

exp

(
− bx

⟨X⟩

)
if 0 ≤ x,

0 otherwise,

where Γ(a) is the gamma function that is defined by the integral

Γ(a) =

∫ ∞

0
ya−1e−y dy,

which cannot be solved analytically, but it can be approximated by

Γ(a) =

√
2π

a

(
a sinh

(
1

a

)
+

1

810a6

)a

.

The gamma function has the following property,

Γ(a+ 1) = aΓ(a),

which can be used to calculate the gamma function at higher a — the accuracy of Γ(a)
increases with a. The above property can be proven by integration by parts,∫ ∞

0

dyae−y

dy
dy = 0 = a

∫ ∞

0
ya−1e−y dy −

∫ ∞

0
yae−y dy.

The appearance of the gamma function can be seen by proving that the gamma PDF satisfies
the normalization condition,∫ ∞

0
f(x) dx =

b

Γ(a)⟨X⟩

∫ ∞

0

(
bx

⟨X⟩

)a−1

exp

(
− bx

⟨X⟩

)
dx =

1

Γ(a)

∫ ∞

0
ya−1e−y dy = 1,

where the substitution y = bx/⟨X⟩ was applied.
(b) Moments. The moments of f(x) can be calculated in this way (k = 1, 2, . . .),

⟨Xk⟩ =
∫ ∞

0
xkf(x) dx =

b

Γ(a)⟨X⟩
⟨X⟩k

bk

∫ ∞

0

(
bx

⟨X⟩

)k ( bx

⟨X⟩

)a−1

exp

(
− bx

⟨X⟩

)
dx

=
1

Γ(a)

⟨X⟩k

bk

∫ ∞

0
ya+k−1e−y dy =

⟨X⟩k

bk
Γ(a+ k)

Γ(a)
,

where y = bx/⟨X⟩. The ratio of gamma functions, which is often denoted by Pochmammer’s
symbol (a)k = Γ(a+ k)/Γ(a), can be rewritten by making use of Γ(a+ 1) = aΓ(a),

Γ(a+ k)

Γ(a)
=

(a+ k − 1)Γ(a+ k − 1)

Γ(a)
=

(a+ k − 1)(a+ k − 2)Γ(a+ k − 2)

Γ(a)
= (a+k−1)(a+k−2) · · · a.
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Hence, the moments of f(x) are given by

⟨Xk⟩ = (a+ k − 1)(a+ k − 2) · · · a
bk

⟨X⟩k.

(c) Parameters. The mean is given by
⟨X⟩ = a

b
⟨X⟩,

and the second-order moment is

⟨X2⟩ = (a+ 1)a

b2
⟨X⟩2.

Then the variance is
⟨X̃2⟩ = ⟨X2⟩ − ⟨X⟩2 = a

b2
⟨X⟩2.

Then we can find a, b by the above relations,

a = b =
⟨X⟩2

⟨X̃2⟩
.

Therefore, we can write the gamma PDF for x ≥ 0 as

f(x) =
a

Γ(a)⟨X⟩

(
ax

⟨X⟩

)a−1

exp

(
− ax

⟨X⟩

)
.

(d) Non-Normality. The skewness m3 and flatness m4 implied by the gamma PDF are given by
the expression

m3 = − 2√
a
,m4 = 3

(
1 +

2

a

)
.

For the finite values of the parameter a we find that both m3 and m4 are unequal and bigger
than the corresponding values of a normal PDF. The values m3 = 0 and m4 = 3 for a normal
PDF are recovered in the limit that a → ∞.

(e) Probability Calculation. The probability cannot be performed analytically, so handle this by
following the approach used for the calculation of the integral over the normal PDF. Then
we have

P (c ≤ X ≤ d) =
a

Γ(a)⟨X⟩

∫ d

c

(
ax

⟨X⟩

)a−1

exp

(
− ax

⟨X⟩

)
dx

=
1

Γ(a)

∫ D

C
ya−1e−y dy

=
1

Γ(a)

[∫ D

0
ya−1e−y dy −

∫ C

0
ya−1e−y dy

]
=

ΓI(a,D)− ΓI(a,C)

Γ(a)
,

where y = ax/⟨X⟩ and the bounds C = ac/⟨X⟩ and D = ad/⟨X⟩, and the incomplete gamma
function

ΓI(a, x) =

∫ x

0
ya−1e−y dy,

which recovers the gamma function when x → ∞. Note that the incomplete gamma can be
approximated using the series expansion as follows:

ΓI(a, x) ≈ xa
∞∑
n=0

(−x)n

(a+ n)n!
.
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2.2.4 The Beta Probability Density Function

(a) Beta PDF. A beta PDF can apply to cases where the random variable is non-negative and
has a finite range of variations, it is defined as follows,

f(x) =

{
1

B(a,b)x
a−1(1− x)b−1 if 0 ≤ x ≤ 1,

0 otherwise.

where the beta function B(a, b) is

B(a, b) =

∫ 1

0
ya−1(1− y)b−1 dy =

Γ(a)Γ(b)

Γ(a+ b)
.

Note that ∫ 1

0
f(x) dx =

1

B(a, b)

∫ 1

0
xa−1(1− x)b−1 dx = 1.

(b) Probability Calculation. To calculate probabilities P (c ≤ X ≤ d) we apply beta PDF in the
probability definition,

P (c ≤ X ≤ d) =
1

B(a, b)

∫ d

c
xa−1(1− x)b−1 dx

=
1

B(a, b)

[∫ d

0
xa−1(1− x)b−1 −

∫ 1

0
xa−1(1− x)b−1 dx

]
=

BI(a, b, d)−BI(a, b, c)

B(a, b)
,

where 0 ≤ c, d ≤ 1, and the incomplete beta function is

BI(a, b, x) =

∫ x

0
ya−1(1− y)b−1 dy,

which recovers the beta function B(a, b) for x = 1. Similar to the incomplete gamma function,
incomplete beta function can also be approximated using series expansion as below,

BI(a, b, x) ≈ xa
∞∑
n=0

Γ(1− b+ n)

Γ(1− b)

xn

(a+ n)n!
= xa

∞∑
n=0

pnx
n

a+ n
,

where pn = Γ(1− b+ n)/[Γ(1− b)n! ].

2.2.5 SML-PDF: Beta and Gamma function

(a) Beta PDF.

⟨lnx⟩ =
∫ n

0
lnxf(x) dx,

⟨ln(1− x)⟩ =
∫ n

0
ln(1− x)f(x) dx.

Then,
S∗ = −

∫
{f ln f − f − µ0f + µ1 lnxf + µ2 ln(1− x)f} dx.
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then
∂S∗

∂f
= −

∫
{ln f + 1− 1 + µ0 + µ1 lnx+ µ2 ln(1− x)} dx

= 0 =⇒
ln f = −µ0 − µ1 lnx− µ2 ln(1− x),

f = e−µ0−µ1 lnx−µ2 ln(1−x) = e−µ0x−µ1(1− x)µ2 =
1

B(a, b)
xa−1(1− x)b−1.

(b) Gamma PDF.

⟨x⟩ =
∫ ∞

0
xf(x) dx,

⟨ln(x)⟩ =
∫ ∞

0
ln(x)f(x) dx.

Then,
S∗ = −

∫
{f ln f − f + µ0f + µ1 lnxf + µ2 ln(x)f} dx.

then
∂S∗

∂f
= −

∫
{ln f + 1− 1 + µ0 + µ1x+ µ2 ln(x)} dx

= 0

=⇒ ln f = −µ0 − µ1x− µ2 ln(x),

f = e−µ0−µ1x−µ2 ln(x) = e−µ0e−µ1xx−µ2 ⇐⇒ a

Γ(a)⟨X⟩

(
ax

⟨X⟩

)a−1

e−ax/⟨X⟩.

2.3 Data Analysis

2.3.1 Calculation of Statistics

(a) Filtered PDFs. The definition f(x) = ⟨dθ(x − X)/dx⟩ of a PDF involves a derivative. In
order to calculate a PDF from measurements or simulation results, we have to represent the
derivative in a discrete way. This can be done by using for the PDF the expression

f∆(x) =
1

∆x

〈
θ

(
x+

∆x

2
−X

)
− θ

(
x− ∆x

2
−X

)〉
=

1

∆x

∫ x+∆x/2

x−∆x/2

〈
dθ(y −X)

dy

〉
dy

=
1

∆x

∫ x+∆x/2

x−∆x/2
f(y) dy

=
1

∆x

∆N

N
,

where ∆N is defined by

∆N =
N∑
i=1

[
θ

(
x+

∆x

2
−Xi

)
− θ

(
x− ∆x

2
−Xi

)]
=

N∑
i=1


1− 1 = 0 if Xi < x−∆x/2,

1− 0 = 1 if x−∆x/2 ≤ Xi ≤ x+∆x/2,

0− 0 = 0 if x+∆x/2 < Xi.
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Consequently, ∆N measures the number of samples that are found in the interval x−∆x/2 ≤
Xi ≤ x+∆x/2. The PDF f∆(x) = ∆N/(N∆x) represents, therefore, the relative number of
samples around x normalized by the filter interval ∆x.

(b) Properties of Filtered PDFs. For any functions g(x), the filtered PDF f∆(x) has the property∫ ∞

−∞
g(x)f∆ dx =

1

∆x

〈∫ ∞

−∞
g(x)

[
θ

(
x−

[
X − ∆x

2

])
− θ

(
x−

[
X +

∆x

2

])]
dx

〉
=

1

∆x

〈∫ ∞

X−∆x/2
g(x) dx−

∫ ∞

X+∆x/2
g(x) dx

〉

=
1

∆x

〈∫ ∞

X−∆x/2
g(x) dx+

∫ X+∆x/2

∞
g(x) dx

〉

=
1

∆x

〈∫ X+∆x/2

X−∆x/2
g(x) dx

〉
= ⟨g∆(X)⟩.

• By setting g = 1, we find that f∆(x) represents indeed a PDF because it integrates to
one, ∫ ∞

−∞
f∆(x) dx =

1

∆x

〈
X +

∆x

2
−
(
X − ∆x

2

)〉
= 1.

• By setting g = x we find∫ ∞

−∞
xf∆(x) dx =

1

∆x

〈
1

2

(
X +

∆x

2

)2

− 1

2

(
X − ∆x

2

)2
〉

=
1

2∆x
⟨2X∆x⟩ = ⟨X⟩.

• By setting g = (x− ⟨X⟩)2, we obtain∫ ∞

−∞
(x− ⟨X⟩)2f∆(x) dx =

1

3∆x

〈(
X − ⟨X⟩+ ∆x

2

)3

−
(
X − ⟨X⟩ − ∆x

2

)3
〉

=
⟨6X̃2∆x/2 + 2(∆x/2)3⟩

3∆x

= ⟨X̃2⟩+ (∆x)2

12
.

(c) Sample Number Effect. An increasing number of samples results in a much smoother PDF.
(d) Filter Interval Effect. For a relatively low number N of samples, the need to work with

relatively smooth PDFs requires the use of a relatively large filter width ∆x to have a sufficient
number of samples in the intervals.

2.3.2 The First Fundamental Theorem of Probability

(a) The Problem with Randomness. The calculation of a mean value based on a finite number of
samples will provide different results depending on the number N of sample values applied. We
would like to known under which conditions we will have exact results that can be reproduced.

µN =
1

N

N∑
i=1

Xi.
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(b) The Law of Large Numbers. Bernoulli’s theorem states that an infinite sequence of inde-
pendent and identically distributed random numbers X1, X2, . . . (the random numbers are
independent and each variable has the same PDF) with finite mean converges to a mean ⟨X⟩,

lim
N→∞

µN = lim
N→∞

1

N

N∑
i=1

Xi = ⟨X⟩.

(c) Illustration. Consider the mean and standard deviation of normally distributed random
numbers with ⟨X⟩ = 1 and standard deviation ⟨X̃2⟩1/2 = 1 for a varying number N of
samples. The deviations from the exact values ⟨X⟩ = 1 and ⟨X̂2⟩1/2 = 1 will be assessed in
terms of the relative errors.

∆m =
µN − ⟨X⟩

⟨X⟩
,∆sd =

σN − ⟨X̃2⟩1/2

⟨X̃2⟩1/2
.

Here σN = ⟨X̃2⟩1/2N , where the fluctuation X̃ = X − µN refers to deviations from the mean
µN obtained for a finite number of samples. The relative error multiplied with N1/2 is
independent of N . Then

∆m = ∆sd =
ε

N1/2
,

where ε is a bounded random variable suggests that |ε|< 2. Hence, µN and σN converge to
their exact values ⟨X⟩ and ⟨X̃2⟩1/2 proportional to N−1/2.

(d) Unbiased Estimates. The unbiased estimate of mean is

⟨µN ⟩ = 1

N

N∑
i=1

⟨Xi⟩ =
N⟨X⟩
N

= ⟨X⟩.

And the unbiased estimate for the variance is

σ2
N =

1

N − 1

N∑
i=1

(Xi − µN )2.

2.3.3 The Second Fundamental Theorem of Probability

(a) The Generalized Problem with Randomness. What is the limiting behavior of the PDF of a
sum of N independent and identically distributed random numbers

NµN = X1 + · · ·+XN

as N approaches infinity
(b) The Central Limit Theorem. Let X1, X2, . . . , XN be a sequence of independent and identically

distributed random numbers each having a finite mean µ and a finite variance σ2 > 0. Further,
let DN be the PDF of the sum of N values Xi. Then, the Central Limit Theorem says that
DN converges independent of the original PDF to a normal distribution with mean Nµ and
variance Nσ2,

N∑
i=1

Xi ∼ DN =⇒ lim
N→∞

DN = N (Nµ,Nσ2).

The Central Limit Theorem states that

1

N

N∑
i=1

Xi ∼ dN =⇒ lim
N→∞

dN = N (µ, σ2/N).
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2.4 Real Distributions

2.4.1 Statistically Most-Likely Probability Density Functions

(a) Four-Order SML PDF. This PDF has a maximal entropy S (uncertainty) among all PDFs for
which the first four moments agree with the first four moments of any data set. This PDF is
given by

f(x) = exp

{
λ0 − λ1

x− ⟨X⟩
⟨X̃2⟩1/2

− λ2

2

(x− ⟨X⟩)2

⟨X̃2⟩
− λ3

3

(x− ⟨X⟩)3

⟨X̃2⟩3/2
− λ4

4

(x− ⟨X⟩)4

⟨X̃2⟩2

}
.

This PDF must satisfy the constraint that f(x) integrates to one, and the first four moments
of f(x) agree with the first four moments of any data set.

(b) Model Parameter Calculation. Differentiating f(x) gives

df(x)

dx
=

f(x)

⟨X̃2⟩1/2

{
−λ1 − λ2

x− ⟨X⟩
⟨X̃2⟩1/2

− λ3
(x− ⟨X⟩)2

⟨X̃2⟩
− λ4

(x− ⟨X⟩)3

⟨X̃2⟩3/2

}
.

Rearranging the above equation gives

⟨X̃2⟩1/2df(x)
λ2dx

= −f(x)

λ2

{
λ1 + λ2

x− ⟨X⟩
⟨X̃2⟩1/2

+ λ3
(x− ⟨X⟩)2

⟨X̃2⟩
+ λ4

(x− ⟨X⟩)3

⟨X̃2⟩3/2

}

=⇒ (x− ⟨X⟩)f(x)
⟨X̃2⟩1/2

= −f(x)

λ2

{
λ1 + λ3

(x− ⟨X⟩)2

⟨X̃2⟩
+ λ4

(x− ⟨X⟩)3

⟨X̃2⟩3/2

}
− ⟨X̃2⟩1/2df(x)

λ2dx
.

The multiplication of this relation with appropriate powers of (x − ⟨X⟩)/⟨X̃2⟩1/2 and inte-
gration then provides the conditions,

0 =
1

⟨X̃2⟩1/2

∫ ∞

−∞
(x− ⟨X⟩)f(x) dx = −λ1 + λ3 + λ4m3

λ2
,

1 =
1

⟨X̃2⟩

∫ ∞

−∞
(x− ⟨X⟩)2f(x) dx = −λ3m3 + λ4m4 − 1

λ2
,

m3 =
1

⟨X̃2⟩3/2

∫ ∞

−∞
(x− ⟨X⟩)3f(x) dx = −λ1 + λ3m4 + λ4m5

λ2
,

m4 =
1

⟨X̃2⟩2

∫ ∞

−∞
(x− ⟨X⟩)4f(x) dx = −λ1m3 + λ3m5 + λ4m6 − 3

λ2
,

Simplifying the above conditions gives

λ1 + λ3 + λ4m3 = 0,

λ2 + λ3m3 + λ4m4 = 1,

λ1 + λ2m3 + λ3m4 + λ4m5 = 0,

λ1m3 + λ2m4 + λ3m5 + λ4m6 = 3.
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3 Stochastic Changes

3.1 Motivation

(a) Diffusion. Diffusion processes are the processes of which the quantity is distributed until an
equilibrium state is established (i.e., until the differences that drive the process are mini-
mized). Examples of diffusion processes:

• Diffusion is responsible for the distribution of sugar throughout a cup of coffee.
• Diffusion is the mechanism by which oxygen moves into our cells.
• Sintering process (powder metallurgy, production of ceramics), the chemical reactor de-

sign, catalyst design in the chemical industry, doping during the production of semicon-
ductors, and the transport of necessary materials such as amino acids within biological
cells.

(b) Diffusion Model. Consider the model

yn = yn−1 + rεn−1, n = 1, 2, . . . ,

where yn refers to the position of any particle (for example, the height of any tracer above
ground). The initial position y0 is assumed to be given. Assume that

• y0 is a deterministic parameter such that all the particles start at the same position;
• εk accounts for the effect of randomness and it is assumed to be normally distributed with

mean ⟨εk⟩ = 0 and variance ⟨ε̂2k⟩ = 1, and at each step, the noise process is considered
independent, i.e., εk and εm are independent random variables, ⟨εkεm⟩ = 0 for k ̸= m,
in other words, ⟨εkεm⟩ = δkm, where δkm refers to the Kronecker delta that is defined
by

δkm =

{
1 if k = m,

0 if k ̸= m.

• r is a deterministic parameter that modifies the intensity of randomness.

We can conclude that the solution yn is given by (n = 0, 1, . . .)

yn = yn−1 + rεn−1 = yn−2 + rεn−2 + rεn−1 = · · · = y0 + r(ε0 + · · ·+ εn−1).

3.2 Linear Stochastic Changes

Consider the first-order linear difference equation (n = 1, 2, . . .)

yn = ayn−1 + b+ rεn−1,

where a, b, and r are any deterministic model parameters. Assume that yn has a normally dis-
tributed initial value y0 at n = 0. The noise εk is assumed to be normally distributed with mean
µ = 0 and standard deviation σ = 1. Also, we have ⟨εk⟩ = 0, ⟨εkεm⟩ = δkm.
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3.2.1 One-Point Statistics

(a) Solution.

y1 = ay0 + b+ rε0,

y2 = ay1 + b+ rε1 = a2y0 + a(b+ rε0) + b+ rε1,

...

yn = any0 +
n−1∑
i=0

ai(b+ rεn−i−1),

(b) Moments.

⟨yn⟩ =

〈
any0 +

n−1∑
i=0

ai(b+ rεn−i−1)

〉

= an⟨y0⟩+
n−1∑
i=0

⟨ai(b+ rεn−i−1)⟩

= an⟨y0⟩+ b

n−1∑
i=0

ai

=

an⟨y0⟩+ b
1− an

1− a
if a ̸= 1,

an⟨y0⟩+ nb otherwise.

Note that

ỹn = yn − ⟨yn⟩ = anỹ0 +
n−1∑
i=0

airεn−i−1.

Then

⟨ỹ2n⟩ =

〈(
anỹ0 +

n−1∑
i=0

airεn−i−1⟩

)2〉

= a2n⟨ỹ20⟩+ r2
n−1∑
i=0

a2i

=

a2n⟨ỹ20⟩+ r2
1− a2n

1− a2
if a ̸= 1,

a2n⟨ỹ20⟩+ nr2 otherwise.

(c) PDF. Consider the random numbers Xi, i = 1, 2, . . . , N that are normally distributed with
mean µi and variance σ2

i . Then the sum of Xi is also normally distributed, whose mean is
the sum of all µi, and the variance is the sum of all variances σ2

i . Therefore, the PDF of yn
is all normally distributed,

fn(y) =
1√
2πσn

exp

(
−y − µn

2σ2
n

)
=

1√
2π⟨ỹ2n⟩

exp

(
−y − ⟨yn⟩

2⟨ỹ2n⟩

)
.
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3.2.2 Correlations

(a) Correlation Relevance. The consideration of the evolution of a stochastic process leads to
the additional question about the typical lifetime of fluctuations. Consider the normalized
correlation function

Cn(m) =
⟨ỹn, ỹn+m⟩
⟨ỹnỹn⟩

,

which is equal to the correlation coefficient between yn and ym if the variance is stationary
(if ⟨ỹnỹn⟩ = ⟨ỹn+mỹn+m⟩).

(b) Correlation Calculation.

ỹn = yn − ⟨yn⟩ = ayn−1 + b+ rεn−1 − (a⟨yn−1 + b) = aỹn−1 + rεn−1.

Then
⟨ỹnỹn+1⟩ = ⟨ỹn(aỹn + rεn)⟩ = a⟨ỹnỹn⟩+ r⟨ỹnεn⟩ = a⟨ỹnỹn⟩.

That implies
⟨ỹnỹn+m⟩ = am⟨ỹnỹn⟩ =⇒ Cn(m) = am.

3.2.3 Solution Features

(a) Means and Variances.
(b) Correlations.

3.2.4 Monte Carlo Simulation

(a) Example. Consider the equation

yn = ayn−1 + b+ rε,

where a = 0.5, b = 1, r = 0.8, and y0 = 0.
(b) One-Point Statistics.

3.3 Diffusion
Consider the random walk models (drunkard’s walk models) to illustrate the application of the
linear stochastic first-order difference equation. We will focus on the Wiener process,

yn = yn−1 + rεn−1,

where εn−1 is normally distribution and characterized by ⟨εk⟩ = 0 and ⟨εkεm⟩ = δkm. We will also
assume that εk is independent of the random initial position y0.

3.3.1 Random Walk Model

(a) One-Point Statistics. Let a = 1 and b = 0. The mean of yn equals the mean initial value for
the case a = 1 and b = 0 considered,

⟨⟨yn⟩ = ⟨y0⟩,

and the variance of yn is given by

⟨ỹ2n⟩ = ⟨ỹ20⟩+ nr2. (3.1)
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Hence, yn is normally distributed according to

yn ∼ N (⟨y0⟩, ⟨ỹ20 + nr2).

(b) Correlations. The correlations of yn are determined by

⟨ỹn, ỹn+m⟩ = ⟨ỹn, ỹn⟩, (3.2)

where m = 0, 1, 2, . . .. The meaning of this result can be rewritten as

⟨ỹn(ỹn+m − ỹn)⟩ = 0.

(c) Time Dependence. We may use yn = yn−1 + rε as a model for a continuous diffusion in time
n∆t. For this case, the variance (3.1) should be a function of n∆t. The latter is the case if
we parameterize the noise coefficient r by

r =
√
D∆t,

where D is the diffusion coefficient. We can write the variance

⟨ỹ2n⟩ = ⟨ỹ20⟩+Dn∆t.

Therefore, D is the derivative of the variance by time n∆t. D determines the increase of the
position variance (which describes the spreading of a plume). By using r = (D∆t)1/2, we can
write the diffusion model as

yn = yn−1 +
√
D∆tεn−1 ∼ N (⟨y0⟩, ⟨ỹ20 +Dn∆t).

Equation (3.2) implies for the normalized correlation function Cn(m) that

Cn(m) = 1.

3.3.2 The Wiener Process

(a) Model Reformulation.

Wn = Wn−1 +
√
∆tεn−1 =⇒ ∆Wn−1 =

√
∆tεn−1 =⇒ yn = yn−1 +

√
D∆Wn−1.

(b) Wiener Process. The Wiener process Wn−1 is normally distributed according to

Wn ∼ N (⟨W0, ⟨W̃ 2
0 + n∆t).

And the correlations of Wn are determined by

⟨W̃n, W̃n+m⟩ = ⟨W̃n, W̃n⟩.

(c) Wiener Process Change. The change ∆Wn =
√
∆tεn of a Wiener process is normally dis-

tributed,
∆Wn ∼ N (0,∆t).

The correlation properties of ∆Wn also follow from ∆Wn =
√
∆tεn,

⟨∆Wn∆Wn⟩ =

{
∆t if n = m,

0 if n ̸= m,
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where we made use of ⟨εkεm⟩ = δkm. We applied ∆W̃n = ∆Wn, which is the same because
⟨∆Wn⟩ = 0. By dividing both sides by (∆t)2 we can write〈

∆Wn

∆t

∆Wm

∆t

〉
=

{
1
∆t if n = m,

0 if n ̸= m.

That implies that the variance of the derivative ∆Wn/∆t of Wn does not exist for ∆t → 0.
Consequently, Wn is not differentiable.

3.3.3 Diffusion Model

(a) Definition of Concentration. Consider an instantaneous emission from a point source, i.e., the
emission of a mass M at time zero at a fixed position y0. For this case, the mean concentration
C is given by M times the PDF fn(y) for finding a parcel at a step n at a position y,

Cn = Mfn(y) =
M√
2πσn

exp{−(y − y0)
2

2σ2
n

,

where µ = y0, σ2
n = Dn∆t. The above equation describes the temporal evolution of the mean

concentration in one dimension: the y-axis. Note that

M =

∫ ∞

−∞
Cn dy =

∫ ∞

−∞

M√
2πσn

exp{−(y − y0)
2

2σ2
n

dy.

(b) Initial Condition. The best way to calculate the initial concentration is to consider the limit
σ2
n → 0. Then

C0 = Mδ(y − y0) = lim
σn→0

1√
2πσn

exp

{
−(y − y0)

2

2σ2
n

}
.

(c) Boundary Effects. Assume that there is a total reflection of material at y = 0, the presence
of such a totally reflecting boundary can be taken into account by assuming that there is a
hypothetical source at y = −y0. The contributions of the sources at y = y0 and y = −y0,
then result in the concentration

Cn =
M√
2πσn

[
exp

{
−(y − y0)

2

2σ2
n

}
+ exp

{
−(y + y0)

2

2σ2
n

}]
.

Integrate Cn over the range 0 ≤ y < ∞,∫ ∞

0
Cn dy =

M√
2πσn

[∫ ∞

0
exp

{
−(y − y0)

2

2σ2
n

}
dy +

∫ ∞

0
exp

{
−(y + y0)

2

2σ2
n

}
dy

]
= M.

Next, consider the case of a totally absorbing boundary at y = 0. The presence of such a
boundary can be accounted for by assuming that there is a hypothetical source at y = y0. We
have to consider the difference of both distributions to ensure that Cn = 0 at the boundary
y = 0,

Cn =
M√
2πσn

[
exp

{
−(y − y0)

2

2σ2
n

}
− exp

{
−(y + y0)

2

2σ2
n

}]
.

(d) Ground Concentrations. The mean concentration development in time t = n∆t can be used
to find a corresponding two-dimensional concentration in a x-y plane, where x and y refer
to the horizontal and vertical coordinates. Assume that the substance is transported along
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the x-direction with a constant velocity U = xn/(n∆t). By using the relation n∆t = xn/U ,
the variance σ2

n = Dn∆t = Dxn/U becomes a function of xn. Let us calculate the ground
concentration at y = 0 for the case without boundary to illustrate the use of this approach.
The ground concentration for the case without boundary is given by

Cn = M

√
U

2πDxn
exp

{
−1

2

y20
Dxn

}
.

It is convenient to introduce the non-dimensional positions x∗n = Dxn/(Uy20) and concentra-
tion C∗n = Cny0/M . Then, the equation becomes

C∗n =
1√

2πx∗n
exp

{
− 1

2x∗n

}
.

We can find the maximum position of the ground concentration C∗n by calculating the first
and second derivatives of C∗n with respect to x∗n,

dC∗n
dx∗n

=
1√
2π

exp

{
− 1

2x∗n

}(
1

2x
1/2
∗n x2∗n

− 1

2x
3/2
∗n

)
=

1− x∗n
2x2∗n

C∗n.

d2C∗n
dx2∗n

=
(1− x∗n)

2

4x2∗n
C∗n + C∗n

(
− 1

x3∗n
+

1

2x2∗n

)
= C∗n

3x2∗n − 6x∗n + 1

4x4∗n
.

Therefore, the maximal ground concentration can be obtained at x∗n = 1,

C∗n =
e−1/2

√
2π

≈ 0.242.

3.4 Brownian Motion

3.4.1 Brownian Motion Model

(a) Brownian Motion Model. Follow Lagnevin’s approach by considering the following stochastic
difference equation system,

xn − xn−1

∆t
= vn−1, (3.3)

vn − vn−1

∆t
= −1

τ

(
vn−1 −

√
D
∆Wn−1

∆t

)
, (3.4)

where xn and vn refer to the position and velocity of a Brownian particle, respectively, D
is the diffusion coefficient, τ represents a characteristic time scale, and the change of the
Wiener process is defined by ∆Wn−1 = (∆t)1/2εn−1. Note that

√
D
τ

∆Wn−1

∆t provides a random
input (as a model for the random impacts of water molecules on a pollen grain), and −vn−1

τ
models the relaxation of the pollen velocity due to the damping influence of surrounding
water molecules.

(b) Linear Second-Order Difference Equation. Consider

vn =

(
1− ∆t

τ

)
vn−1 +

1

τ

√
D∆Wn−1

=

(
1− ∆t

τ

)
xn − xn−1

∆t
+

1

τ

√
D∆Wn−1

=

(
1− ∆t

τ

)[(
1− ∆t

τ

)
xn−1 − xn−2

∆t
+

1

τ

√
D∆Wn−2

]
+

1

τ

√
D∆Wn−1,
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where
xn − xn−1

∆t
=

(
1− ∆t

τ

)
xn−1 − xn−2

∆t
+

1

τ

√
D∆Wn−2.

Then

xn = xn−1 +

(
1− ∆t

τ

)
(xn−1 − xn−2) +

1

τ

√
D∆t∆Wn−2.

= xn−1 +

(
1− ∆t

τ

)
(xn−1 − xn−2) +

1

τ

√
D∆tεn−2.

(c) Comparison with Diffusion Model. The Diffusion Model is given by

xn = xn−1 +
√
D∆tε,

where r =
√
D∆t. It is worth noting that ∆t = τ , the Brownian motion model reduces to

the diffusion model.

3.4.2 Discrete Brownian Motion Statistics

(a) Joint PDF. The joint process (xn, vn) is normally distributed.
(b) Solution. To find the means and variances of the joint normal PDF of xn and vn, we need to

compute the solution of (3.3) and (3.4). Let a = 1−∆t/τ and rB = (D∆t/τ2)1/2, where rB
is the noise intensity in the Brownian motion velocity equation. Then (3.3) and (3.4) become

xn = xn−1 +∆tvn−1 = · · · = x0 +∆t(v0 + v1 + · · ·+ vn−1),

vn = avn−1 + rBεn−1 = anv0 + rB(a
n−1ε0 + · · ·+ a1εn−2 + a0εn−1).

Then we can plug vn into xn, then

xn = x0 +∆t{v0
1− an

1− a
+ rB∆t

[
ε0

1− an−1

1− a
+ ε1

1− an−2

1− a
+ · · ·+ εn−3

1− a2

1− a
+ εn−2

1− a

1− a

]
=

(c) Model 1:

yn = ayn−1 + b+ rεn−1

(d) Model 2:

yn = ayn−1 + b+ rε2n−1

3.5 Population Dynamics

3.5.1 A Stochastic Logitic Model

(a) Logistic Model.

Pn = Pn−1 + aPn−1

(
1− Pn−1

K

)
,

where K is the carrying capacity, and the model parameter a = ∆t/T determines the transi-
tion rate to the equilibrium state. Here ∆t denotes a time interval, and T is a characteristic
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time scale. There are two equilibrium states Pn = 0 and Pn = K that can be realized depend-
ing on the initial population P0: these equilibrium states imply Pn − Pn−1 = 0. Rewriting
the equation gives

Pn − Pn−1

∆t
=

Pn−1

T

(
1− Pn−1

K

)
.

(b) Stochastic Logistic Model. Randomization of K is questionable because the poppulation is
negative. The consideratoin of negative and positive values of the growth time T represents
an appropriate mean to reflect varying conditionos for a population development. We assume
that T−1 is normally distributed,

T−1 = µ+ σ
∆Wn−1

∆t
.

We apply ∆Wn−1 = (∆t)1/2εn−1 as before, then we have the model

Pn − Pn−1

∆t
= Pn−1(1− Pn−1)

(
µ+ σ

∆Wn−1

∆t

)
.

3.5.2 One-Point Statistics and Correlations

4 Stochastic Evolution

4.1 PDF Evolution Equations

4.1.1 The Kramers-Moyal Equation

(a) PDF Definition. The PDF of a random variable X is defined by the expression f(x) =
⟨δ(x−X)⟩ refers to a delta function. The expression f(x) = ⟨δ(x−X)⟩ also can be used for
a stochastic process that changes in time. The PDF f(x, t) at the time t is then defined by

f(x, t) = ⟨δ(x−X(t))⟩.

At the later time t+∆t, the PDF is given by

f(x, t+∆t) = ⟨δ(x−X(t+∆t))⟩. (4.1)

(b) Kramers-Moyal Equation. Consider the instantaneous PDF involved in (4.1),

δ(x−X(t+∆t)) = δ(z), z = x−X(t+∆t).

Consider the Taylor expansion

f(x, t+∆t) = δ(z)

=

∞∑
n=0

δ(n)(z0)

n!
(z − z0)

n

= δ(z0) +
∞∑
n=1

(
d

dx

)n [(−1)n

n!
(z0 − z)nδ(z0)

]

= f(x, t) +

∞∑
n=1

(
− d

dx

)n (z0 − z)nδ(z0)

n!
,
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where δ(n) refers the nth-order derivative of δ(z0), z0 = x−X(t). Then reorder terms we have

lim
∆t→0

f(x, t+∆t)− f(x, t)

∆t
=

∞∑
n=1

(
− d

dx

)n

lim
∆t→0

(z0 − z)nδ(z0)

n!∆t
.

Then, we have
∂f(x, t)

∂t
=

∞∑
n=1

(
− ∂

∂x

)n

D(n)(x, t)f(x, t),

where
D(n)(x, t) = lim

∆t→0

⟨(z0 − z)nδ(z0)⟩
n!∆tf(x, t)

.

(c) Kramers-Moyal Coefficients. The Kramers-Moyal coefficients D(n)(x, t) can be rewritten by
using the definitions z0 − z = X(t+∆t)−X(t) and z0 = x−X(t),

D(n)(x, t) = lim
∆t→0

⟨[X(t+∆t)−X(t)]nδ(x−X(t))⟩
n!∆tf(x, t)

.

The conditional mean is defined for any function g(X(t)) by

1

f(x, t)
⟨g(X(t))δ(x−X(t))⟩ = ⟨g(X(t))|X(t) = x⟩ = ⟨g(X(t))|x, t⟩.

Then the Kramers-Moyal coefficients can be written

D(n)(x, t) = lim
∆t→∞

⟨(X(t+∆t)−X(t))n|x, t⟩
n!∆t

.

(d) Markov Process. Stochastic processes for which ∆X does only depend on the previous state
X(t) are referred to as Markov processes.

4.1.2 The Pawula Theorem

(a) Pawula’s Theorem. Consider a negative function H(p) ≥ 0 as

H(p) = ⟨(∆Xk + p∆Xk+m)2|x, t⟩ = ⟨∆X2k|x, t⟩+ 2p⟨∆X2k+m|x, t⟩+ p2⟨∆X2k+2m|x, t⟩,

where ∆X = X(t+∆)−X(t), and we assume that k ≥ 1 and m ≥ 0. The first two derivatives
of H(p) by p are given by

dH

dp
= 2⟨∆X2k+m|x, t⟩+ 2p⟨∆X2k+2m|x, t⟩, d

2H

dp2
= 2⟨∆X2k+2m|x, t⟩.

These two derivatives show that H(p) has a minimum at

pc = − ⟨∆X2k+m|x, t⟩
⟨∆X2k+2m|x, t⟩

.

Then the minimum Hmin of H(p) is given by

Hmin = ⟨∆X2k|x, t⟩ − ⟨∆X2k+m|x, t⟩2

⟨∆X2k+2m|x, t⟩
.
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The function H(p) ≥ 0 for all p, then we have Hmin ≥ 0, which implies

⟨∆X2k|x, t⟩⟨∆X2k+2m|x, t⟩ ≥ ⟨∆X2k+m|x, t⟩2,

which is trivial for m = 0. Consider m ≥ 1, we find that

(2k)!D(2k)(2k + 2m)!D(2k+2m) ≥ [(2k +m)!D(2k+m)]2.

(b) Consequences of Pawula’s Theorem. The consequences of Pawula’s theorem can be seen by
considering the cases that D(2k) = 0 and D(2k+2m) = 0, respectively.

4.1.3 The Fokker-Planck Equation

(a) Fokker-Planck Equation. Neglecting coefficients D(n) with n ≥ 3. Hence we consider the
following Fokker-Planck Equation:

∂f(x, t)

∂t
= −−∂D(1)(x, t)f(x, t)

∂x
+

∂2D(2)(x, t)f(x, t)

∂x2
,

where

D(1)(x, t) = lim
∆t→0

⟨∆X|x, t⟩
∆t

,

D(2)(x, t) = lim
∆t→0

⟨∆X2|x, t⟩
2∆t

.

(b) Mean Equation.∫ ∞

−∞
x
∂f(x, t)

∂t
dx = −

∫ ∞

−∞
x
−∂D(1)(x, t)f(x, t)

∂x
dx+

∫ ∞

−∞
x
∂2D(2)(x, t)f(x, t)

∂x2
dx,

∂

∂t

∫ ∞

−∞
xf(x, t) dx =

∫ ∞

−∞
D(1)(x, t)f(x, t) dx,

d⟨X⟩
dt

= ⟨D(1)⟩.

(c) Variance Equation.∫ ∞

−∞
x2

∂f(x, t)

∂t
dx = −

∫ ∞

−∞
x2

−∂D(1)(x, t)f(x, t)

∂x
dx+

∫ ∞

−∞
x2

∂2D(2)(x, t)f(x, t)

∂x2
dx,

∂

∂t

∫ ∞

−∞
x2f(x, t) dx = 2

∫ ∞

−∞
xD(1)(x, t)f(x, t) dx− 2

∫ ∞

−∞
x
∂D(2)(x, t)f(x, t)

∂x
dx,

d⟨X2⟩
dt

= 2⟨XD(1)⟩+ 2⟨D(2)⟩.

Then, we have

d⟨X̃2⟩
dt

= 2⟨XD(1)⟩+ 2⟨D(2)⟩ − 2⟨X⟩⟨D(1)⟩ = 2⟨X̃D̃(1)⟩+ 2⟨D(2)⟩.

4.2 Solution to the Fokker-Planck Equation
The equation considered is given by

∂f(x, t)

∂t
= − ∂

∂x
[F (t) +G(t)(x− ⟨X⟩)]f(x, t) + ∂2D(t)f(x, t)

∂x2
.
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4.2.1 The Solution Approach

(a) The Solution Approach. The solutoins f(x, t) to the Fokker-Planck equation involve

• information about the intial PDF f(x0, t0), and
• information about the trainsition from the intial PDF to any asymptotic PDF, which is

determined by the PDF evolution equation.

First, we represet the PDF f(x) as

f(x, t) =

∫ ∞

−∞
f(x, t;x0, t0) dx0,

where f(x, t;x0, t0) = ⟨δ(x−X(t))δ(x0 −X(t0))⟩ represents the two-point PDF.

4.3 Stochastic Differential Equations

4.3.1 Nonlinear Markovian Stochastic Equations

(a) Approach.

• Determine the general structure of stochastic difference equations.
• Represent the obtained stochastic difference equation as a stochastic differential equa-

tion.
• Define stochastic intergration for the calculation of solutions of stochastic differential

equations.

(b) Stochastic Difference Equation.

Xn −Xn−1

∆t
= a(Xn−1, tn−1) + b(Xn−1, tn−1)

∆Wn−1

∆t
,

where Xn represents the variable considered (the particle position, particle velocity or popu-
lation density), and we have ∆Wn−1 = (∆t)1/2εn−1.

(c) Stochastic Differential Equation. By considering an infinitesimal time interval ∆ → 0 and
defining time t by t = n∆t, the stochastic model can be written as

dX

dt
(t) = a(X, t) + b(X, t)

dW

dt
(t). (4.2)

(d) Stochastic Integration. Integrate equation (4.2) from t to t+ dt,

X(t+ dt)−X(t) =

∫ t+dt

t
a(X(s), s) ds+

∫ t+dt

t
b(X(s), s)

dW

ds
(s) ds,

where dt → 0 is an infinitesimal time interval. The Itô definition is to take the function values
of a(X(s), s) and b(X(s), s) at X(t) and t, such that

X(t+ dt)−X(t) = a(X(t), t)dt+ b(X(t), t)dW (t),

where dW (t) = W (t + dt) − W (t).The Stratonovich definition is to take a(X(s), s) and
b(X(s), s) at the mean value [X(t+ dt) +X(t)]/2 and t.
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4.3.2 Relationship to the Fokker-Planck Equation

(a) PDF Equation. To find the PDF equation that is implied by the stochastic model (4.2) we
consider thee Kramers-Moyal equation,

∂f(x, t)

∂t
=

∞∑
n=1

(
− ∂

∂x

)n

D(n)(x, t)f(x, t),

where
D(n)(x, t) = lim

∆t→0

⟨(X(t+∆t)−X(t))n|X(t) = x⟩
n!∆t

.

Then we can derive the following by the continuous case of X(t+ dt)−X(t) as follows,
X(t+∆t)−X(t) = a(X(t), t)∆t+ b(X(t), t)∆W (t).

Then the Kramers-Moyal coefficients is

D(n)(x, t) = lim
∆t→0

⟨[a(X(t), t)∆t+ b(X(t), t)∆W (t)]n|X(t) = x⟩
n!∆t

,

= lim
∆t→0

(∆t)n/2

n!∆t

〈[
a(x, t)

√
∆t+ b(x, t)

∆W (t)√
∆t

]n〉
,

Then we can calculate Kramers-Moyal coefficients as follows

D(1)(x, t) = lim
∆t→0

(∆t)1/2

1!∆t

〈[
a(x, t)

√
∆t+ b(x, t)

∆W (t)√
∆t

]1〉
= a(x, t),

D(2)(x, t) = lim
∆t→0

(∆t)

2!∆t

〈[
a(x, t)

√
∆t+ b(x, t)

∆W (t)√
∆t

]2〉

= lim
∆t→0

(∆t)

2!∆t

〈
a2(x, t)∆t+ 2a(x, t)b(x, t)∆W (t) + b2(x, t)

∆W 2(t)

∆t

〉
=

1

2
b2(x, t),

D(3)(x, t) = · · · = D(n)(x, t) = · · · = D(∞) = 0.

(b) Correlations. Assume that t ≤ t′ = t + r, where r is any non-negative time. Consider (4.2)
at t+ r instead of t,

dX(t+ r)

d(t+ r)
= a(X(t+ r), t+ r) + b(X(t+ r), t+ r)

dW

d(t+ r)
(t+ r).

The differentiation of X by t + r can be replaced by a derivative by r. We multiply this
equation with X̃(t) and average,〈

X̃(t)
dX(t+ r)

dr

〉
= ⟨X̃(t)a(X(t+ r), t+ r)⟩+

〈
X̃(t)b(X(t+ r), t+ r)

dW

dt
(t+ r)

〉
.

Note that dW/dt at t + r is independent of X(t) and X(t + r), and dW/dt vanishes in the
mean,〈

X̃(t)b(X(t+ r), t+ r)
dW

dt
(t+ r)

〉
= ⟨X̃(t)b(X(t+ r), t+ r)⟩

〈
dW

dt
(t+ r)

〉
= 0.

Then we have
d⟨X̃(t)X(t+ r)

dr
= ⟨X̃(t)a(X(t+ r), t+ r)⟩.

We may replace X and a with X̃ and ã and obtain
d⟨X̃(t)X̃(t+ r)

dr
= ⟨X̃(t)ã(X(t+ r), t+ r)⟩.
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4.3.3 Linear Markovian Stochastic Equations

Consider the linear stochastic Markovian differential equation,

dX

dt
(t) = −X − ⟨X⟩

τ
+

√
D

τ

dW

dt
(t),

where D is a diffusion coefficient, and τ is the cahracteristic relaxation time scale of fluctuations.
Averaging the above equation gives

d⟨X⟩
dt

= 0.

Hence, the mean ⟨X⟩ is a constant, i.e., ⟨X⟩ = ⟨X0⟩.

(a) PDF. The evolution of X(t) can be described by the Fokker-Planck equation

∂f(x, t)

∂t
=

1

τ

∂(x− ⟨X⟩)f(x, t)
∂x

+
D

2τ2
∂2f(x, t)

∂x2
.

In particular, when F = 0, G = −1/τ , the solution of the above equation is given by

f(x, t) =

∫
1√
2πβ

exp

{
−(x− α)2

2β

}
f(x0, t0) dx0,

where f(x0, t0) refers to any intial PDF.

4.3.4 Summary

(a) PDF Evolution Equation. Given the Kramers-Moyal equation

∂f(x, t)

∂t
=

∞∑
n=1

(
− ∂

∂x

)n

D(n)(x, t)f(x, t).

The Kramers-Moyal equation implies Pawula’s theorem that shows that there are two possibil-
ities: we can either work with an equation that involves an infinite number of Kramers-Moyal
coefficients D(n)(x, t), or we can work with Fokker-Planck equation,

∂f(x, t)

∂t
= −∂D(1)(x, t)f(x, t)

∂x
+

∂2D(2)(x, t)f(x, t)

∂x2
,

which does only involve the first two Kramers-Moyal coefficients. The neglect of D(n) with
n ≥ 3 is justified if the stochastic process considered has a continuous sample path, this
means if jump processes (i.e., processes involving instantaneous unbounded changes) are not
considered.

(b) Solutions of the Fokker-Planck Equation. It was shown that this equation can be solved
analytically if we consider the specific Fokker-Planck equation,

∂f(x, t)

∂t
= − ∂

∂x
[F (t) +G(t)(x− ⟨X⟩)]f(x, t) + ∂2D(t)f(x, t)

∂x2
.

It turns out the sotlution to the above equation is given by a normal PDF integrated over
the initial conditions,

f(x, t) =

∫ ∞

−∞

1√
2πβ

exp

{
−(x− α)2

2β

}
f(x0, t0) dx0,
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where α and β are functions of t, and α does not depend on x0. Asymptotically (i.e., for
t → ∞), α and β relax to the mean ⟨X⟩ and variance ⟨X̃2⟩ of the process considered. Then,
the PDF f(x, t) becomes independent of the initial PDF f(x0, t0): f(x, t) is then given by a
normal PDF with mean ⟨X⟩ and variance ⟨X̃2⟩.

(c) Stochastic Process Equations. Instead of asking how the PDF of a stochastic process evolves,
we may ask how the underlying stochastic process evovles in time. In generalization of the
stochastic difference equation, we considered the model for the evolution of the stochastic
process X(t),

dX

dt
(t) = a(X, t) + b(X, t)

dW

dt
(t). (4.3)

We caclucate the Kramers-Moyal coefficients that are implied by the above equation as follows,

D(1)(x, t) = a(x, t),

D(2)(x, t) =
1

2
b2(x, t),

D(3)(x, t) = D(4)(x, t) = · · · = D(∞)(x, t) = 0.

By using the coefficient relations we see that the Fokkeer-Planck equation corresponds to the
stochastic model

dX

dt
(t) = F (t) +G(t)[X(t)− ⟨X⟩] +

√
2D(t)

dW

dt
.

(d) Applications to Modeling. The stochastic differntial equation (4.3) can be used for the mod-
eling of any nonlinear processes. On the other hand, (4.3) describes a Markovian stochastic
process, and this assumption is often not rigorously satisfied. It was shown that the Marko-
vian velocity model is not incorrect but only less complete than the non-Markovian model,
which describes proceses that take place over the time scale τf (over which accelerations
change) and over the time scale τ (over which velocities change).

dX

dt
(t) = b

dW

dt
(t),

dv

dt
(t) = −v(t)− ⟨V ⟩

τ
+

√
4e

3τ

dW

dt
.

5 Stochastic Multivariate Evolution

5.1 Motivation
(a) Fluid Dynamics. consider the motion of fluids (e.g., atmospheric motions) in order to illustrate

the need for methods for the calculation of the evolution of several random variables. The
prediction of fluid flow requires the calculation of the mean velocity Ui(x, t) of molecules,
which represents the ith component (i = 1, . . . , 3) of the fluid velocity at the position x =[
x1 x2 x3

]
at time t. The fluid velocity Ui(x, t) and fluid mass density ρ(x, t) have to

satisfy a coupled system of partial differential equations, which represent the conservation of
mass and momentum,

Dρ

Dt
+ ρ

∂Um

∂xm
= 0,

DUi

Dt
+

1

ρ

∂ρσim
∂xm

= 0,
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where σim(x, t) refers to the variance of molecular velocities, this means σim = vivm. We use
the sum convention for repeated subscripts, this means we have for example

∂Um

∂xm
=

∂U1

∂x1
+

∂U2

∂x2
+

∂U3

∂x3
.

The total derivative (or substantial or material derviative) of any property Q(x, t) is defined
by

DQ

Dt
=

∂Q

∂t
+ Um

∂Qm

∂xm
.

The meaning of DQ/Dt can be seen by considering the property Q at x = x(t), where x(t)
is a point that follows the fluid velocity Ui, i.e., x(t) is determined by

dxi(t)

dt
= Ui(x(t), t).

The total derivative DQ/Dt at x = x(t) reads

DQ(x(t), t)

Dt
=

∂Q(x(t), t)

∂t
+ Um(x(t), t)

∂Q(x(t), t)

∂xm

=
∂Q(x(t), t)

∂t
+

∂Q(x(t), t)

∂xm

dxm(t)

dt

=
dQ(x(t), t)

dt
.

(b) Closure Problem. The conservation of mass and momentum are unclosed because the variance
σim of molecular velocities is unknown. The variance σim has to satisfy a convservation
equation,

Dσij
Dt

+
1

ρ

∂ρvivjvm
∂xm

+
∂Ui

∂xm
σmj +

∂Uj

∂xm
σmi = − 2

T

(
σij −

σkk
3

δij

)
,

where vivjvm is the triple correlation of molecular velocities, T is a charactersitic relaxation
time scale, and δij refers to the Kronecker delta.

5.2 Data Analysis Concepts for Joint Random Variables

5.2.1 Joint Probability Density Functions

(a) Joint PDF. Define the joiont PDF of two variables X and Y by

f(x, y) = ⟨δ(x−X)δ(y − Y )⟩.

The joint PDF f(x, y) has the properties∫ ∞

−∞
f(x, y) dy =

∫ ∞

−∞
⟨δ(x−X)δ(y − Y )⟩ dy = ⟨δ(x−X)⟩ = f(x),∫ ∞

−∞
f(x, y) dx =

∫ ∞

−∞
⟨δ(x−X)δ(y − Y )⟩ dx = ⟨δ(y − Y )⟩ = f(y),
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where f(x) and f(y) are called marginal PDFs. Other properties of joint PDF f(x, y) are

f(x, y) ≥ 0,

f(−∞, y) = f(∞, y) = f(x,−∞) = f(x,∞) = 0,∫ ∞

−∞

∫ ∞

−∞
f(x, y) dydx = 1,∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y) dydx = ⟨g(X,Y )⟩.

Then the probability for joint events a ≤ X ≤ b and c ≤ Y ≤ d,

P (a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ d

c

∫ b

a
f(x, y) dx dy.

The validity of this relation can be seen by using the definition of f(x, y),∫ d

c

∫ b

a
f(x, y) dx dy =

〈∫ d

c

∫ b

a

dθ(x−X)

dx

dθ(y − Y )

dy
dx dy

〉
= ⟨[θ(b−X)−θ(a−X)][θ(d−Y )−θ(c−Y )]⟩.

5.2.2 Application to Optimal Modeling

(a) Optimal Model. We consider a set of (Xi, Yi) data, where i = 1, 2, . . . , N . We want to find
a model yM (x) that agrees as good as possible with the given data. The particular problem
was to find a model yM (x) that minimizes the least-square error

E2 =
1

N

N∑
i=1

[Yi − yM (Xi)]
2

= ⟨[Y − yM (X)]2⟩

=

∫ ∞

−∞
⟨[Y − yM (X)]2|x⟩f(x) dx

=

∫ ∞

−∞
⟨[Y − yM (x)]2|x⟩f(x) dx.

5.3 The Fokker-Planck Equation

5.3.1 Definition of Multivariate Probability Density Functions

The generalization of the Fokker-Planck equation to an equation for the joint PDF of a vectorial
stochastic process X(t) = {X1(t), X2(t), . . . , XN (t)} requires a relevant step: the definition of a
multivariate PDF f(x, t) using the theta and delta functions for several variables.

(a) Multivariate THeta and Delta Functions. For a vectorial process X(t) = {X1(t), X2(t), . . . , XN (t)},
the corresponding theta and delta functions are given by

θ[x−X(t)] = θ(x1 −X1(t))θ(x2 −X2(t)) · · · θ(xN −XN (t)),

δ[x−X(t)]

= δ(x1 −X1(t))δ(x2 −X2(t)) · · · δ(xN −XN (t)).

Hence, muultivariate theta and delta functions are products of all the theta and delta functions
of single variables.
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(b) Multivariate PDFs. Averaging the above delta function gives the joint PDF f(x, t)

f(x, t) = ⟨δ[x−X(t)]⟩.

In terms of the normalization property of delta functions we find that this definition staisfies
the normalization condition for the joint PDF f(x, t),∫

f(x, t) dx =

∫
⟨δ[x−X(t)]⟩ dx = ⟨1⟩ = 1,

where dx = dx1dx2 · · · dxN is a multivariate differential given by the product of all differential
involved. Two-point PDFs can be defined correspondingly. For example, the two-point PDF
f(x, t;x′, t′) for having joing events (x, t) and (x′, t′) is defined by

f(x, t;x′, t′) = ⟨δ[x−X(t)]δ[x′ −X(t′)]⟩.

The one-point PDF f(x, t) can be recoveered from this definition,

f(x, t) =

∫ ∞

−∞
f(x, t;x′, t′) dx′ =

∫ ∞

−∞
⟨δ[x−X(t)]δ[x′ −X(t′)]⟩ dx′ = ⟨δ[x−X(t)]⟩.

A PDF f(x, t|x′, t′) conditioned on X(t′) = x′ can be defined in corresponding to the definition
for a single-variable PDF,

f(x, t|x′, t′) =
f(x, t;x′, t′)

f(x′, t′)
=

⟨δ[x−X(t)]δ[x′ −X(t′)]⟩
⟨δ[x′ −X(t′)]⟩

= ⟨δ[x−X(t)|X(t′) = x′] = ⟨δ[x−X(t)|x′, t′].

In terms of this definition the one-point PDF f(x, t) can be written

f(x, t) =

∫ ∞

−∞
f(x, t|x′, t′)f(x′, t′) dx′.

5.3.2 The Fokker-Planck Equation

(a) Fokker-Planck Equation. Let us consider an N -dimensional stochastic vector process X(t) =
{X1(t), X2(t), . . . , XN (t)}.

6 Final Exam Review

6.1 Equivlibrium Models (Analytic Models)
(a) When −∞ < x < ∞, normal PDF.

f(x) =
1√
2πσ

e−(x−µ)2/(2σ2),

where µ = ⟨X⟩, σ2 = ⟨X̃2⟩. Support:
• FPE.
• Central Limit Theorem.
• SML.
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(b) When 0 < x < ∞, gamma PDF.

f(x) =
a

Γ(a)⟨X⟩

(
ax

⟨X⟩

)a−1

e−ax/⟨X⟩,

where ⟨X⟩ is the mean and a = ⟨X⟩2

⟨X̃2⟩
. No support.

(c) When 0 < x < 1. Beta PDF.

f(x) =
1

B(a, b)
xa−1(1− x)b−1.

a = ⟨X⟩

[
⟨X⟩(1− ⟨X⟩)

⟨X̃2⟩
− 1

]
,

b = (1− ⟨X⟩)

[
⟨X⟩(1− ⟨X⟩)

⟨X̃2⟩
− 1

]
.

(d) Limitations.
• One-trend processes.
• Generalization to multi-trend processes.

6.2 General Evolutoin
• Kramers-Moyal Equation.

∂f

∂t
(x, t) =

∞∑
n=1

(
− ∂

∂x

)u

D(u)(x, t)f(x, t).

– No jumps: Fokker-Planck Equation.

∂f

∂t
(x, t) = −∂Di(x, t)f(x, t)

∂xi
+

∂2Dij(x, t)f(x, t)

∂xi∂xj
.

We have the analytical conclusion, PDF, ⟨Xk⟩ and ⟨X̃kX̃n⟩.
– Modeling, numerical solution.

dXi

dt
= ai[X(t), t] + bij [X(t), t]

dWk

dt
(t).

6.3 Linear Evolutoin
• Fokker-Planck Equation.

∂f(x, t)

∂t
= − ∂

∂xm
[Fm(t) +Gmk(t)(xk − ⟨Xk⟩)]f(x, t) +

∂2Dnm(t)f(x, t)

∂xnxm
.

Close to equilibrium.

dXm

dt
= Fm(t) +Gmk(t)(xk − ⟨Xk⟩) + bnk(t)

dWk

dt
(t).
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Solution.
f(x, t) =

∫
f(x, t|x′, t′) dx′,

where
f(x, t|x′, t′) = − 1

(2π)N/2
√
detβ

exp{−1

2
β−1
ij (xi − αi)(xi − αj)}.

And
αk

αn
= Fk +Gkn.

6.4 Model Parameters
What variables are considered?

• Model 1: x.
• Model 2: (x, v).
• Model 3: (x, v, a).

dX

dt
= −X − ⟨X⟩

τ
+

√
D

τ

dW

dt
.

Then we have normal PDF:

⟨X⟩ = constant, ⟨X̃(t)X̃(s)⟩ t→∞−−−→ D

2τ
e−(t−s)/τ .

Final:

• Normal PDF.
• Optimal Model.
• PDF e.g. MC solutiono.
• SDE e.g. Solutoin via PDF eg.
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