
Download PDF

Backtracking

47. Permutations II
52. N-Queens II
90. Subsets II
1101. The Earliest Moment When Everyone Become Friends
1319. Number of Operations to Make Network Connected

Binary Search

69. Sqrt(x)
275. H-Index II
367. Valid Perfect Square
441. Arranging Coins
744. Find Smallest Letter Greater Than Target
892. Surface Area of 3D Shapes
976. Largest Perimeter Triangle
1198. Find Smallest Common Element in All Rows

Array

1. Two Sum
73. Set Matrix Zeroes
167. Two Sum II - Input array is sorted
170. Two Sum III - Data structure design
463. Island Perimeter
509. Fibonacci Number
561. Array Partition I
566. Reshape the Matrix
594. Longest Harmonious Subsequence
624. Maximum Distance in Arrays
653. Two Sum IV - Input is a BST
654. Maximum Binary Tree
623. Add One Row to Tree
695. Max Area of Island
760. Find Anagram Mappings
766. Toeplitz Matrix
811. Subdomain Visit Count
832. Flipping an Image
852. Peak Index in a Mountain Array
867. Transpose Matrix
905. Sort Array By Parity
918. Maximum Sum Circular Subarray
922. Sort Array By Parity II
961. N-Repeated Element in Size 2N Array
977. Squares of a Sorted Array

994. Rotting Oranges
1051. Height Checker
1064. Fixed Point
1085. Sum of Digits in the Minimum Number
1086. High Five
1099. Two Sum Less Than K
1122. Relative Sort Array
1133. Largest Unique Number
1196. How Many Apples Can You Put into the Basket
1200. Minimum Absolute Difference
1207. Unique Number of Occurrences
1213. Intersection of Three Sorted Arrays
1217. Play with Chips
1243. Array Transformation
1252. Cells with Odd Values in a Matrix
1266. Minimum Time Visiting All Points
1299. Replace Elements with Greatest Element on Right Side
1304. Find N Unique Integers Sum up to Zero
1305. All Elements in Two Binary Search Trees
1313. Decompress Run-Length Encoded List
1337. The K Weakest Rows in a Matrix
1338. Reduce Array Size to The Half
1413. Minimum Value to Get Positive Step by Step Sum
1423. Maximum Points You Can Obtain from Cards
1425. Constrained Subset Sum
1428. Leftmost Column with at Least a One
1431. Kids With the Greatest Number of Candies
1437. Check If All 1's Are at Least Length K Places Away
1442. Count Triplets That Can Form Two Arrays of Equal XOR
1450. Number of Students Doing Homework at a Given Time
1460. Make Two Arrays Equal by Reversing Sub-arrays
1464. Maximum Product of Two Elements in an Array
1465. Maximum Area of a Piece of Cake After Horizontal and Vertical Cuts
1470. Shuffle the Array
1475. Final Prices With a Special Discount in a Shop
1481. Least Number of Unique Integers after K Removals
1491. Average Salary Excluding the Minimum and Maximum Salary

Tree

104. Maximum Depth of Binary Tree
111. Minimum Depth of Binary Tree
144. Binary Tree Preorder Traversal
199. Binary Tree Right Side View
513. Find Bottom Left Tree Value
515. Find Largest Value in Each Tree Row
559. Maximum Depth of N-ary Tree
563. Binary Tree Tilt

589. N-ary Tree Preorder Traversal
590. N-ary Tree Postorder Traversal
617. Merge Two Binary Trees
655. Print Binary Tree
700. Search in a Binary Search Tree
872. Leaf-Similar Trees
897. Increasing Order Search Tree
938. Range Sum of BST
965. Univalued Binary Tree
993. Cousins in Binary Tree
1008. Construct Binary Search Tree from Preorder Traversal
1022. Sum of Root To Leaf Binary Numbers
1325. Delete Leaves With a Given Value
1333. Filter Restaurants by Vegan-Friendly, Price and Distance
1443. Minimum Time to Collect All Apples in a Tree
1448. Count Good Nodes in Binary Tree
1457. Pseudo-Palindromic Paths in a Binary Tree
1469. Find All The Lonely Nodes
1490. Clone N-ary Tree

Math

2. Add Two Numbers
7. Reverse Integer
9. Palindrome Number
136. Single Number
172. Factorial Trailing Zeroes
202. Happy Number
217. Contains Duplicate
258. Add Digits
263. Ugly Number
476. Number Complement
645. Set Mismatch
728. Self Dividing Numbers
869. Reordered Power of 2
883. Projection Area of 3D Shapes
908. Smallest Range I
970. Powerful Integers
1103. Distribute Candies to People
1134. Armstrong Number
1185. Day of the Week
1227. Airplane Seat Assignment Probability
1228. Missing Number In Arithmetic Progression
1232. Check If It Is a Straight Line
1237. Find Positive Integer Solution for a Given Equation
1281. Subtract the Product and Sum of Digits of an Integer
1295. Find Numbers with Even Number of Digits
1323. Maximum 69 Number

String

20. Valid Parentheses
58. Length of Last Word
71. Simplify Path
344. Reverse String
383. Ransom Note
500. Keyboard Row
557. Reverse Words in a String III
599. Minimum Index Sum of Two Lists
657. Robot Return to Origin
709. To Lower Case
771. Jewels and Stones
796. Rotate String
804. Unique Morse Code Words
806. Number of Lines To Write String
821. Shortest Distance to a Character
893. Groups of Special-Equivalent Strings
929. Unique Email Addresses
953. Verifying an Alien Dictionary
1002. Find Common Characters
1021. Remove Outermost Parentheses
1044. Longest Duplicate Substring
1047. Remove All Adjacent Duplicates In String
1078. Occurrences After Bigram
1108. Defanging an IP Address
1119. Remove Vowels from a String
1160. Find Words That Can Be Formed by Characters
1165. Single-Row Keyboard
1180. Count Substrings with Only One Distinct Letter
1221. Split a String in Balanced Strings
1236. Web Crawler
1309. Decrypt String from Alphabet to Integer Mapping
1324. Print Words Vertically
1332. Remove Palindromic Subsequences
1427. Perform String Shifts
1432. Max Difference You Can Get From Changing an Integer
1433. Check If a String Can Break Another String
1436. Destination City
1446. Consecutive Characters
1451. Rearrange Words in a Sentence
1455. Check If a Word Occurs As a Prefix of Any Word in a Sentence
1456. Maximum Number of Vowels in a Substring of Given Length
1487. Making File Names Unique

Depth-First Search & Breadth-First Search

200. Number of Islands

695. Max Area of Island
886. Possible Bipartition
1222. Queens That Can Attack the King
1489. Find Critical and Pseudo-Critical Edges in Minimum Spanning Tree

Linked List

21. Merge Two Sorted Lists
61. Rotate List
876. Middle of the Linked List
1290. Convert Binary Number in a Linked List to Integer
1474. Delete N Nodes After M Nodes of a Linked List

Bit Manipulation

338. Counting Bits
342. Power of Four
461. Hamming Distance
476. Number Complement
1486. XOR Operation in an Array

Design Data Structure

359. Logger Rate Limiter
901. Online Stock Span
1429. First Unique Number
1472. Design Browser History
1476. Subrectangle Queries

Backtracking
47. Permutations II

Description

https://leetcode.com/problems/permutations-ii/

Solution

05/05/2020:

Given a collection of numbers that might contain duplicates, return all possible
unique permutations.

Example:

Input: [1,1,2]
Output:
[
 [1,1,2],
 [1,2,1],
 [2,1,1]
]

class Solution {
public:
 vector<vector<int>> permuteUnique(vector<int>& nums) {
 int n = nums.size();
 if (n <= 1) return {nums};
 set<vector<int>> permuted;
 set<vector<int>> sret;
 for (int i = 0; i < n; ++i) {
 int cur = nums[i];
 swap(nums[i], nums[n - 1]);
 nums.pop_back();
 if (permuted.count(nums) > 0) {
 nums.push_back(cur);
 swap(nums[i], nums[n - 1]);
 continue;
 }
 permuted.insert(nums);
 vector<vector<int>> sub = permuteUnique(nums);
 for (auto& s : sub) {
 s.push_back(cur);
 sret.insert(s);
 }
 nums.push_back(cur);
 swap(nums[i], nums[n - 1]);
 }
 vector<vector<int>> ret(sret.begin(), sret.end());
 return ret;
 }
};

52. N-Queens II
Description

Solution

05/27/2020:

The n-queens puzzle is the problem of placing n queens on an n×n chessboard such
that no two queens attack each other.

Given an integer n, return the number of distinct solutions to the n-queens
puzzle.

Example:

Input: 4
Output: 2
Explanation: There are two distinct solutions to the 4-queens puzzle as shown
below.
[
 [".Q..", // Solution 1
 "...Q",
 "Q...",
 "..Q."],

 ["..Q.", // Solution 2
 "Q...",
 "...Q",
 ".Q.."]
]

class Solution {
public:
 int totalNQueens(int n) {
 int ret = 0;
 vector<bool> col(n, false), diag1(2 * n - 1, false), diag2(2 * n - 1,
false);
 backtrack(0, n, ret, col, diag1, diag2);
 return ret;
 }

 void backtrack(int r, int n, int& ret, vector<bool>& col, vector<bool>& diag1,
vector<bool>& diag2) {
 if (r == n) {

https://leetcode.com/problems/n-queens-ii/

90. Subsets II
Description

Solution

05/26/2020:

 ++ret;
 return;
 }

 for (int c = 0; c < n; ++c) {
 if (!col[c] && !diag1[r + c] && !diag2[r - c + n + 1]) {
 col[c] = diag1[r + c] = diag2[r - c + n + 1] = true;
 backtrack(r + 1, n, ret, col, diag1, diag2);
 col[c] = diag1[r + c] = diag2[r - c + n + 1] = false;
 }
 }
 }
};

Given a collection of integers that might contain duplicates, nums, return all
possible subsets (the power set).

Note: The solution set must not contain duplicate subsets.

Example:

Input: [1,2,2]
Output:
[
 [2],
 [1],
 [1,2,2],
 [2,2],
 [1,2],
 []
]

class Solution {
public:
 vector<vector<int>> subsetsWithDup(vector<int>& nums) {
 vector<vector<int>> ret;
 vector<int> subset;

https://leetcode.com/problems/subsets-ii/

 sort(nums.begin(), nums.end());
 backtrack(0, nums, subset, ret);
 return ret;
 }

 void backtrack(int k, vector<int>& nums, vector<int>& subset,
vector<vector<int>>& ret) {
 ret.push_back(subset);
 for (int i = k; i < (int)nums.size(); ++i) {
 if (i != k && nums[i] == nums[i - 1]) continue;
 subset.push_back(nums[i]);
 backtrack(i + 1, nums, subset, ret);
 subset.pop_back();
 }
 }
};

class Solution {
public:
 vector<vector<int>> subsetsWithDup(vector<int>& nums) {
 sort(nums.begin(), nums.end());
 unordered_set<int> seen;
 vector<vector<int>> ret;
 vector<int> subset;
 backtrack(0, nums, subset, ret, seen);
 return ret;
 }

 void backtrack(int k, vector<int>& nums, vector<int>& subset,
vector<vector<int>>& ret, unordered_set<int>& seen) {
 int n = nums.size();
 if (k == n) {
 int h = hash(subset);
 if (seen.count(h) == 0) {
 seen.insert(h);
 ret.push_back(subset);
 }
 return;
 }
 subset.push_back(nums[k]);
 backtrack(k + 1, nums, subset, ret, seen);
 subset.pop_back();
 backtrack(k + 1, nums, subset, ret, seen);
 }

 int hash(vector<int>& nums) {
 long long h = 1;
 const int MOD = 1e9 + 7;

1101. The Earliest Moment When Everyone Become Friends
Description

 for (auto& n : nums) {
 h = (h * 31 + n) % MOD;
 }
 return h;
 }
};

In a social group, there are N people, with unique integer ids from 0 to N-1.

We have a list of logs, where each logs[i] = [timestamp, id_A, id_B] contains a
non-negative integer timestamp, and the ids of two different people.

Each log represents the time in which two different people became friends.
Friendship is symmetric: if A is friends with B, then B is friends with A.

Let's say that person A is acquainted with person B if A is friends with B, or A
is a friend of someone acquainted with B.

Return the earliest time for which every person became acquainted with every
other person. Return -1 if there is no such earliest time.

Example 1:

Input: logs = [[20190101,0,1],[20190104,3,4],[20190107,2,3],[20190211,1,5],
[20190224,2,4],[20190301,0,3],[20190312,1,2],[20190322,4,5]], N = 6
Output: 20190301
Explanation:
The first event occurs at timestamp = 20190101 and after 0 and 1 become friends
we have the following friendship groups [0,1], [2], [3], [4], [5].
The second event occurs at timestamp = 20190104 and after 3 and 4 become friends
we have the following friendship groups [0,1], [2], [3,4], [5].
The third event occurs at timestamp = 20190107 and after 2 and 3 become friends
we have the following friendship groups [0,1], [2,3,4], [5].
The fourth event occurs at timestamp = 20190211 and after 1 and 5 become friends
we have the following friendship groups [0,1,5], [2,3,4].
The fifth event occurs at timestamp = 20190224 and as 2 and 4 are already friend
anything happens.
The sixth event occurs at timestamp = 20190301 and after 0 and 3 become friends
we have that all become friends.

https://leetcode.com/problems/the-earliest-moment-when-everyone-become-friends/

Solution

05/05/2020:

Note:

2 <= N <= 100
1 <= logs.length <= 10^4
0 <= logs[i][0] <= 10^9
0 <= logs[i][1], logs[i][2] <= N - 1
It's guaranteed that all timestamps in logs[i][0] are different.
logs are not necessarily ordered by some criteria.
logs[i][1] != logs[i][2]

class UnionFind {
private:
 vector<int> id;
 vector<int> sz;

public:
 UnionFind(int n) {
 id.resize(n);
 iota(id.begin(), id.end(), 0);
 sz.resize(n, 1);
 }

 bool full() {
 return sz[find(0)] == (int)sz.size();
 }

 int find(int x) {
 if (x == id[x]) return x;
 return id[x] = find(id[x]);
 }

 bool connected(int x, int y) {
 return find(x) == find(y);
 }

 void merge(int x, int y) {
 int i = find(x);
 int j = find(y);
 if (i == j) return;
 if (sz[i] > sz[j]) {
 id[j] = i;
 sz[i] += sz[j];
 } else {

1319. Number of Operations to Make Network Connected
Description

 id[i] = j;
 sz[j] += sz[i];
 }
 }
};

class Solution {
public:
 int earliestAcq(vector<vector<int>>& logs, int n) {
 if (n <= 1 || logs.empty() || logs[0].empty()) return -1;
 UnionFind uf(n);
 sort(logs.begin(), logs.end());
 for (auto& log : logs) {
 uf.merge(log[1], log[2]);
 if (uf.full()) {
 return log[0];
 }
 }
 return -1;
 }
};

There are n computers numbered from 0 to n-1 connected by ethernet cables
connections forming a network where connections[i] = [a, b] represents a
connection between computers a and b. Any computer can reach any other computer
directly or indirectly through the network.

Given an initial computer network connections. You can extract certain cables
between two directly connected computers, and place them between any pair of
disconnected computers to make them directly connected. Return the minimum
number of times you need to do this in order to make all the computers
connected. If it's not possible, return -1.

Example 1:

Input: n = 4, connections = [[0,1],[0,2],[1,2]]
Output: 1

https://leetcode.com/problems/number-of-operations-to-make-network-connected/

Solution

05/06/2020:

Explanation: Remove cable between computer 1 and 2 and place between computers 1
and 3.
Example 2:

Input: n = 6, connections = [[0,1],[0,2],[0,3],[1,2],[1,3]]
Output: 2
Example 3:

Input: n = 6, connections = [[0,1],[0,2],[0,3],[1,2]]
Output: -1
Explanation: There are not enough cables.
Example 4:

Input: n = 5, connections = [[0,1],[0,2],[3,4],[2,3]]
Output: 0

Constraints:

1 <= n <= 10^5
1 <= connections.length <= min(n*(n-1)/2, 10^5)
connections[i].length == 2
0 <= connections[i][0], connections[i][1] < n
connections[i][0] != connections[i][1]
There are no repeated connections.
No two computers are connected by more than one cable.

class UnionFind {
private:
 vector<int> id;
 vector<int> sz;

public:
 UnionFind(int n) {
 id.resize(n);
 iota(id.begin(), id.end(), 0);
 sz.resize(n, 1);
 }

 int find(int x) {
 if (x == id[x]) return x;
 return id[x] = find(id[x]);

Binary Search
69. Sqrt(x)

Description

 }

 void merge(int x, int y) {
 int i = find(x);
 int j = find(y);
 if (i == j) return;
 if (sz[i] > sz[j]) {
 id[j] = i;
 sz[i] += sz[j];
 } else {
 id[i] = j;
 sz[j] += sz[i];
 }
 }
};

class Solution {
public:
 int makeConnected(int n, vector<vector<int>>& connections) {
 if (connections.size() < n - 1) return -1;
 UnionFind uf(n);
 for (auto& c : connections)
 uf.merge(c[0], c[1]);
 unordered_set<int> components;
 for (int i = 0; i < n; ++i)
 components.insert(uf.find(i));
 return components.size() - 1;
 }
};

Implement int sqrt(int x).

Compute and return the square root of x, where x is guaranteed to be a non-
negative integer.

https://leetcode.com/problems/sqrtx/

Solution

04/23/2020:

275. H-Index II
Description

Since the return type is an integer, the decimal digits are truncated and only
the integer part of the result is returned.

Example 1:

Input: 4
Output: 2
Example 2:

Input: 8
Output: 2
Explanation: The square root of 8 is 2.82842..., and since
 the decimal part is truncated, 2 is returned.

class Solution {
public:
 int mySqrt(int x) {
 long long lo = 0, hi = x;
 while (lo <= hi) {
 long long mid = lo + (hi - lo) / 2;
 long long s = mid * mid;
 if (s == x) {
 return mid;
 } else if (s > x) {
 hi = mid - 1;
 } else {
 lo = mid + 1;
 }
 }
 return hi;
 }
};

Given an array of citations sorted in ascending order (each citation is a non-
negative integer) of a researcher, write a function to compute the researcher's
h-index.

https://leetcode.com/problems/h-index-ii/

Solution

05/31/2020:

According to the definition of h-index on Wikipedia: "A scientist has index h if
h of his/her N papers have at least h citations each, and the other N − h papers
have no more than h citations each."

Example:

Input: citations = [0,1,3,5,6]
Output: 3
Explanation: [0,1,3,5,6] means the researcher has 5 papers in total and each of
them had
 received 0, 1, 3, 5, 6 citations respectively.
 Since the researcher has 3 papers with at least 3 citations each
and the remaining
 two with no more than 3 citations each, her h-index is 3.
Note:

If there are several possible values for h, the maximum one is taken as the h-
index.

Follow up:

This is a follow up problem to H-Index, where citations is now guaranteed to be
sorted in ascending order.
Could you solve it in logarithmic time complexity?

class Solution {
public:
 int hIndex(vector<int>& citations) {
 int n = citations.size(), lo = 0, hi = n - 1;
 while (lo <= hi) {
 int mid = lo + ((hi - lo) >> 1);
 if (citations[n - 1 - mid] >= mid + 1) {
 lo = mid + 1;
 } else {
 hi = mid - 1;
 }
 }
 return lo;
 }
};

367. Valid Perfect Square
Description

Solution

04/23/2020:

441. Arranging Coins
Description

Given a positive integer num, write a function which returns True if num is a
perfect square else False.

Note: Do not use any built-in library function such as sqrt.

Example 1:

Input: 16
Output: true
Example 2:

Input: 14
Output: false

class Solution {
public:
 bool isPerfectSquare(int num) {
 int lo = 0, hi = num;
 while (lo <= hi) {
 int mid = lo + (hi - lo) / 2;
 long long s = (long long)mid * mid;
 if (s == num) {
 return true;
 } else if (s > num) {
 hi = mid - 1;
 } else {
 lo = mid + 1;
 }
 }
 return (long long)hi * hi == num;
 }
};

https://leetcode.com/problems/valid-perfect-square/
https://leetcode.com/problems/arranging-coins/

Solution

04/23/2020:

You have a total of n coins that you want to form in a staircase shape, where
every k-th row must have exactly k coins.

Given n, find the total number of full staircase rows that can be formed.

n is a non-negative integer and fits within the range of a 32-bit signed
integer.

Example 1:

n = 5

The coins can form the following rows:
¤
¤ ¤
¤ ¤

Because the 3rd row is incomplete, we return 2.
Example 2:

n = 8

The coins can form the following rows:
¤
¤ ¤
¤ ¤ ¤
¤ ¤

Because the 4th row is incomplete, we return 3.

class Solution {
public:
 int arrangeCoins(int n) {
 long lo = 0, hi = n;
 while (lo <= hi) {
 long mid = lo + (hi - lo) / 2;
 if ((mid + 1) * mid / 2 > n) {
 hi = mid - 1;
 } else {
 lo = mid + 1;
 }
 }
 return lo - 1;
 }

Math:

744. Find Smallest Letter Greater Than Target
Description

};

class Solution {
public:
 int arrangeCoins(int n) {
 return floor(sqrt(2.0 * n + 1.0 / 4) - 1.0/2);
 }
};

Given a list of sorted characters letters containing only lowercase letters, and
given a target letter target, find the smallest element in the list that is
larger than the given target.

Letters also wrap around. For example, if the target is target = 'z' and letters
= ['a', 'b'], the answer is 'a'.

Examples:

Input:
letters = ["c", "f", "j"]
target = "a"
Output: "c"

Input:
letters = ["c", "f", "j"]
target = "c"
Output: "f"

Input:
letters = ["c", "f", "j"]
target = "d"
Output: "f"

Input:
letters = ["c", "f", "j"]
target = "g"
Output: "j"

Input:

https://leetcode.com/problems/find-smallest-letter-greater-than-target/

Solution

04/23/2020:

892. Surface Area of 3D Shapes
Description

letters = ["c", "f", "j"]
target = "j"
Output: "c"

Input:
letters = ["c", "f", "j"]
target = "k"
Output: "c"
Note:

letters has a length in range [2, 10000].
letters consists of lowercase letters, and contains at least 2 unique letters.
target is a lowercase letter.

class Solution {
public:
 char nextGreatestLetter(vector<char>& letters, char target) {
 int n = letters.size();
 int lo = 0, hi = n - 1;
 while (lo <= hi) {
 int mid = lo + (hi - lo) / 2;
 if (letters[mid] <= target) {
 lo = mid + 1;
 } else {
 hi = mid - 1;
 }
 }
 return letters[lo % n];
 }
};

On a N * N grid, we place some 1 * 1 * 1 cubes.

Each value v = grid[i][j] represents a tower of v cubes placed on top of grid
cell (i, j).

Return the total surface area of the resulting shapes.

https://leetcode.com/problems/surface-area-of-3d-shapes/

Solution

05/17/2020:

Example 1:

Input: [[2]]
Output: 10
Example 2:

Input: [[1,2],[3,4]]
Output: 34
Example 3:

Input: [[1,0],[0,2]]
Output: 16
Example 4:

Input: [[1,1,1],[1,0,1],[1,1,1]]
Output: 32
Example 5:

Input: [[2,2,2],[2,1,2],[2,2,2]]
Output: 46

Note:

1 <= N <= 50
0 <= grid[i][j] <= 50

class Solution {
public:
 int surfaceArea(vector<vector<int>>& grid) {
 if (grid.empty() && grid[0].empty()) return 0;
 int m = grid.size(), n = grid[0].size(), area = 0;
 int dir[4][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} };
 for (int i = 0; i < m; ++i) {
 for (int j = 0; j < n; ++j) {
 if (i == 0) area += grid[i][j];
 if (i == m - 1) area += grid[i][j];
 if (j == 0) area += grid[i][j];
 if (j == n - 1) area += grid[i][j];
 if (grid[i][j] > 0) area += 2;
 for (int d = 0; d < 4; ++d) {

 int ni = i + dir[d][0], nj = j + dir[d][1];
 if (ni >= 0 & ni < m && nj >= 0 && nj < n && grid[i][j] > grid[ni]
[nj]) {
 area += grid[i][j] - grid[ni][nj];
 }
 }
 }
 }
 return area;
 }
};

class Solution {
public:
 int surfaceArea(vector<vector<int>>& grid) {
 if (grid.empty() && grid[0].empty()) return 0;
 int m = grid.size(), n = grid[0].size(), area = 0;
 int dir[4][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} };
 for (int i = 0; i < m; ++i) {
 for (int j = 0; j < n; ++j) {
 if (grid[i][j] > 0) area += 2;
 for (int d = 0; d < 4; ++d) {
 int ni = i + dir[d][0], nj = j + dir[d][1], nv = 0;
 if (0 <= ni && ni < m && 0 <= nj && nj < n) nv = grid[ni][nj];
 area += max(grid[i][j] - nv, 0);
 }
 }
 }
 return area;
 }
};

class Solution {
public:
 int surfaceArea(vector<vector<int>>& grid) {
 if (grid.empty() && grid[0].empty()) return 0;
 int m = grid.size(), n = grid[0].size(), area = 0;
 for (int i = 0; i < m; ++i) {
 for (int j = 0; j < n; ++j) {
 if (grid[i][j]) area += grid[i][j] * 4 + 2;
 if (i) area -= 2 * min(grid[i][j], grid[i - 1][j]);
 if (j) area -= 2 * min(grid[i][j], grid[i][j - 1]);
 }
 }
 return area;
 }
};

976. Largest Perimeter Triangle
Description

Solution

05/17/2020:

Given an array A of positive lengths, return the largest perimeter of a triangle
with non-zero area, formed from 3 of these lengths.

If it is impossible to form any triangle of non-zero area, return 0.

Example 1:

Input: [2,1,2]
Output: 5
Example 2:

Input: [1,2,1]
Output: 0
Example 3:

Input: [3,2,3,4]
Output: 10
Example 4:

Input: [3,6,2,3]
Output: 8

Note:

3 <= A.length <= 10000
1 <= A[i] <= 10^6

https://leetcode.com/problems/largest-perimeter-triangle/

1198. Find Smallest Common Element in All Rows
Description

Solution

05/20/2020:

class Solution {
public:
 int largestPerimeter(vector<int>& A) {
 sort(A.begin(), A.end(), greater<int>());
 for (int i = 0; i < (int)A.size() - 2; ++i)
 if (A[i] < A[i + 1] + A[i + 2])
 return A[i] + A[i + 1] + A[i + 2];
 return 0;
 }
};

Given a matrix mat where every row is sorted in increasing order, return the
smallest common element in all rows.

If there is no common element, return -1.

Example 1:

Input: mat = [[1,2,3,4,5],[2,4,5,8,10],[3,5,7,9,11],[1,3,5,7,9]]
Output: 5

Constraints:

1 <= mat.length, mat[i].length <= 500
1 <= mat[i][j] <= 10^4
mat[i] is sorted in increasing order.

class Solution {
public:
 int smallestCommonElement(vector<vector<int>>& mat) {
 if (mat.empty() || mat[0].empty()) return -1;
 int m = mat.size(), n = mat[0].size();
 for (int j = 0; j < n; ++j) {
 bool isCommon = true;

https://leetcode.com/problems/find-smallest-common-element-in-all-rows/

Array
1. Two Sum

Description

 for (int i = 1; i < m; ++i) {
 if (!binary_search(mat[i].begin(), mat[i].end(), mat[0][j])) {
 isCommon = false;
 break;
 }
 }
 if (isCommon) return mat[0][j];
 }
 return -1;
 }
};

class Solution {
public:
 int smallestCommonElement(vector<vector<int>>& mat) {
 if (mat.empty() || mat[0].empty()) return -1;
 int nrow = mat.size();
 unordered_map<int, int> mp;
 for (auto& ma : mat) {
 for (auto& m : ma) {
 if (++mp[m] == nrow) {
 return m;
 }
 }
 }
 return -1;
 }
};

https://leetcode.com/problems/two-sum/

Solution

01/25/2020:

73. Set Matrix Zeroes
Description

Given an array of integers, return indices of the two numbers such that they add
up to a specific target.

You may assume that each input would have exactly one solution, and you may not
use the same element twice.

Example:

Given nums = [2, 7, 11, 15], target = 9,

Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].

class Solution {
public:
 vector<int> twoSum(vector<int>& nums, int target) {
 unordered_map<int, int> m;
 for (int i = 0; i < (int)nums.size(); ++i) {
 if (m.find(target - nums[i]) == m.end()) {
 m[nums[i]] = i;
 } else {
 return {i, m[target - nums[i]]};
 }
 }
 return {-1, -1};
 }
};

Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do
it in-place.

Example 1:

Input:
[
 [1,1,1],
 [1,0,1],

https://leetcode.com/problems/set-matrix-zeroes/

Solution

05/23/2020:

 [1,1,1]
]
Output:
[
 [1,0,1],
 [0,0,0],
 [1,0,1]
]
Example 2:

Input:
[
 [0,1,2,0],
 [3,4,5,2],
 [1,3,1,5]
]
Output:
[
 [0,0,0,0],
 [0,4,5,0],
 [0,3,1,0]
]
Follow up:

A straight forward solution using O(mn) space is probably a bad idea.
A simple improvement uses O(m + n) space, but still not the best solution.
Could you devise a constant space solution?

class Solution {
public:
 void setZeroes(vector<vector<int>>& matrix) {
 if (matrix.empty() || matrix[0].empty()) return;
 int nrow = matrix.size(), ncol = matrix[0].size();
 vector<pair<int, int>> zeros;
 vector<bool> isRowZero(nrow, true);
 vector<bool> isColZero(ncol, true);
 for (int i = 0; i < nrow; ++i) {
 for (int j = 0; j < ncol; ++j) {
 if (matrix[i][j] == 0) {
 zeros.emplace_back(i, j);
 } else {
 isRowZero[i] = false;
 isColZero[j] = false;
 }

167. Two Sum II - Input array is sorted
Description

Solution

01/25/2020:

 }
 }
 for (auto& p : zeros) {
 int i = p.first, j = p.second;
 if (!isRowZero[i]) {
 for (int k = 0; k < ncol; ++k) matrix[i][k] = 0;
 isRowZero[i] = true;
 }
 if (!isColZero[j]) {
 for (int k = 0; k < nrow; ++k) matrix[k][j] = 0;
 isColZero[j] = true;
 }
 }
 }
};

Given an array of integers that is already sorted in ascending order, find two
numbers such that they add up to a specific target number.

The function twoSum should return indices of the two numbers such that they add
up to the target, where index1 must be less than index2.

Note:

Your returned answers (both index1 and index2) are not zero-based.
You may assume that each input would have exactly one solution and you may not
use the same element twice.
Example:

Input: numbers = [2,7,11,15], target = 9
Output: [1,2]
Explanation: The sum of 2 and 7 is 9. Therefore index1 = 1, index2 = 2.

class Solution {
public:
 vector<int> twoSum(vector<int>& numbers, int target) {
 for (int l = 0, r = numbers.size() - 1; l < r;) {

https://leetcode.com/problems/two-sum-ii-input-array-is-sorted/

170. Two Sum III - Data structure design
Description

Solution

01/25/2020:

 if (numbers[l] + numbers[r] == target) {
 return {l + 1, r + 1};
 } else if (numbers[l] + numbers[r] < target) {
 ++l;
 } else {
 --r;
 }
 }
 return {-1, -1};
 }
};

Design and implement a TwoSum class. It should support the following operations:
add and find.

add - Add the number to an internal data structure.
find - Find if there exists any pair of numbers which sum is equal to the value.

Example 1:

add(1); add(3); add(5);
find(4) -> true
find(7) -> false
Example 2:

add(3); add(1); add(2);
find(3) -> true
find(6) -> false

class TwoSum {
public:
 vector<int> nums;
 /** Initialize your data structure here. */
 TwoSum() {
 }

 /** Add the number to an internal data structure.. */

https://leetcode.com/problems/two-sum-iii-data-structure-design/

01/25/2020:

 void add(int number) {
 nums.push_back(number);
 }

 /** Find if there exists any pair of numbers which sum is equal to the value.
*/
 bool find(int value) {
 unordered_set<int> seen;
 for (int i = 0; i < (int)nums.size(); ++i) {
 if (seen.find(value - nums[i]) == seen.end()) {
 seen.insert(nums[i]);
 } else {
 return true;
 }
 }
 return false;
 }
};

/**
 * Your TwoSum object will be instantiated and called as such:
 * TwoSum* obj = new TwoSum();
 * obj->add(number);
 * bool param_2 = obj->find(value);
 */

class TwoSum {
private:
 unordered_map<int, int> m;

public:
 /** Initialize your data structure here. */
 TwoSum() {
 }

 /** Add the number to an internal data structure.. */
 void add(int number) {
 ++m[number];
 }

 /** Find if there exists any pair of numbers which sum is equal to the value.
*/
 bool find(int value) {
 for (auto& n : m) {
 if ((value == n.first * 2 && n.second > 1) || (value != n.first * 2 &&
m.count(value - n.first) > 0))

463. Island Perimeter
Description

Solution

 return true;
 }
 return false;
 }
};

/**
 * Your TwoSum object will be instantiated and called as such:
 * TwoSum* obj = new TwoSum();
 * obj->add(number);
 * bool param_2 = obj->find(value);
 */

You are given a map in form of a two-dimensional integer grid where 1 represents
land and 0 represents water.

Grid cells are connected horizontally/vertically (not diagonally). The grid is
completely surrounded by water, and there is exactly one island (i.e., one or
more connected land cells).

The island doesn't have "lakes" (water inside that isn't connected to the water
around the island). One cell is a square with side length 1. The grid is
rectangular, width and height don't exceed 100. Determine the perimeter of the
island.

Example:

Input:
[[0,1,0,0],
 [1,1,1,0],
 [0,1,0,0],
 [1,1,0,0]]

Output: 16

Explanation: The perimeter is the 16 yellow stripes in the image below:

https://leetcode.com/problems/island-perimeter/

01/26/2020:

509. Fibonacci Number
Description

class Solution {
public:
 int islandPerimeter(vector<vector<int>>& grid) {
 int ret = 0, m = grid.size(), n = grid[0].size();
 for (int i = 0; i < m; ++i) {
 for (int j = 0; j < n; ++j) {
 if (grid[i][j] == 1) {
 if (i - 1 < 0) ++ret;
 if (i + 1 == m) ++ret;
 if (i - 1 >= 0 && grid[i - 1][j] == 0) ++ret;
 if (i + 1 < m && grid[i + 1][j] == 0) ++ret;
 if (j - 1 < 0) ++ret;
 if (j + 1 == n) ++ret;
 if (j - 1 >= 0 && grid[i][j - 1] == 0) ++ret;
 if (j + 1 < n && grid[i][j + 1] == 0) ++ret;
 }
 }
 }
 return ret;
 }
};

The Fibonacci numbers, commonly denoted F(n) form a sequence, called the
Fibonacci sequence, such that each number is the sum of the two preceding ones,
starting from 0 and 1. That is,

F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), for N > 1.
Given N, calculate F(N).

Example 1:

Input: 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:

https://leetcode.com/problems/fibonacci-number/

Solution

01/31/2020:

561. Array Partition I
Description

Input: 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:

Input: 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.

Note:

0 ≤ N ≤ 30.

class Solution {
public:
 int fib(int N) {
 if (N == 0) return 0;
 if (N == 1) return 1;
 int f0 = 0, f1 = 1;
 for (int i = 2; i <= N; ++i) {
 f0 = f0 + f1;
 swap(f0, f1);
 }
 return f1;
 }
};

https://leetcode.com/problems/array-partition-i/

Solution

01/30/2020:

566. Reshape the Matrix
Description

Given an array of 2n integers, your task is to group these integers into n pairs
of integer, say (a1, b1), (a2, b2), ..., (an, bn) which makes sum of min(ai, bi)
for all i from 1 to n as large as possible.

Example 1:
Input: [1,4,3,2]

Output: 4
Explanation: n is 2, and the maximum sum of pairs is 4 = min(1, 2) + min(3, 4).
Note:
n is a positive integer, which is in the range of [1, 10000].
All the integers in the array will be in the range of [-10000, 10000].

class Solution {
public:
 int arrayPairSum(vector<int>& nums) {
 sort(nums.begin(), nums.end());
 int ret = 0;
 for (int i = 0; i < (int)nums.size(); i += 2) {
 ret += nums[i];
 }
 return ret;
 }
};

In MATLAB, there is a very useful function called 'reshape', which can reshape a
matrix into a new one with different size but keep its original data.

You're given a matrix represented by a two-dimensional array, and two positive
integers r and c representing the row number and column number of the wanted
reshaped matrix, respectively.

The reshaped matrix need to be filled with all the elements of the original
matrix in the same row-traversing order as they were.

If the 'reshape' operation with given parameters is possible and legal, output
the new reshaped matrix; Otherwise, output the original matrix.

https://leetcode.com/problems/reshape-the-matrix/

Solution

05/10/2020:

Example 1:

Input:
nums =
[[1,2],
 [3,4]]
r = 1, c = 4
Output:
[[1,2,3,4]]
Explanation:
The row-traversing of nums is [1,2,3,4]. The new reshaped matrix is a 1 * 4
matrix, fill it row by row by using the previous list.
Example 2:

Input:
nums =
[[1,2],
 [3,4]]
r = 2, c = 4
Output:
[[1,2],
 [3,4]]
Explanation:
There is no way to reshape a 2 * 2 matrix to a 2 * 4 matrix. So output the
original matrix.
Note:

The height and width of the given matrix is in range [1, 100].
The given r and c are all positive.

class Solution {
public:
 vector<vector<int>> matrixReshape(vector<vector<int>>& nums, int r, int c) {
 if (nums.empty() && nums[0].empty()) return { {} };
 int m = nums.size(), n = nums[0].size();
 if (m * n != r * c) return nums;
 vector<vector<int>> ret(r, vector<int>(c, 0));
 for (int i = 0; i < r; ++i) {
 for (int j = 0; j < c; ++j) {
 int idx = i * c + j;
 ret[i][j] = nums[idx / n][(idx % n)];
 }
 }

594. Longest Harmonious Subsequence
Description

Solution

05/18/2020:

624. Maximum Distance in Arrays
Description

 return ret;
 }
};

We define a harmounious array as an array where the difference between its
maximum value and its minimum value is exactly 1.

Now, given an integer array, you need to find the length of its longest
harmonious subsequence among all its possible subsequences.

Example 1:

Input: [1,3,2,2,5,2,3,7]
Output: 5
Explanation: The longest harmonious subsequence is [3,2,2,2,3].

class Solution {
public:
 int findLHS(vector<int>& nums) {
 if (nums.empty()) return 0;
 map<int, int> cnt;
 for (auto& n : nums) ++cnt[n];
 int ret = 0;
 for (auto& m : cnt)
 if (cnt[m.first - 1] > 0 && cnt[m.first] > 0)
 ret = max(ret, cnt[m.first - 1] + cnt[m.first]);
 return ret;
 }
};

https://leetcode.com/problems/longest-harmonious-subsequence/
https://leetcode.com/problems/maximum-distance-in-arrays/

Solution

05/20/2020:

Given m arrays, and each array is sorted in ascending order. Now you can pick up
two integers from two different arrays (each array picks one) and calculate the
distance. We define the distance between two integers a and b to be their
absolute difference |a-b|. Your task is to find the maximum distance.

Example 1:

Input:
[[1,2,3],
 [4,5],
 [1,2,3]]
Output: 4
Explanation:
One way to reach the maximum distance 4 is to pick 1 in the first or third array
and pick 5 in the second array.
Note:

Each given array will have at least 1 number. There will be at least two non-
empty arrays.
The total number of the integers in all the m arrays will be in the range of [2,
10000].
The integers in the m arrays will be in the range of [-10000, 10000].

class Solution {
public:
 int maxDistance(vector<vector<int>>& arrays) {
 int n = arrays.size();
 vector<pair<int, int>> mins, maxs;
 int ret = 0;
 for (int i = 0; i < n; ++i) {
 mins.emplace_back(arrays[i].front(), i);
 maxs.emplace_back(arrays[i].back(), i);
 }
 sort(mins.begin(), mins.end());
 sort(maxs.begin(), maxs.end(), greater<pair<int, int>>());
 ret = maxs.front().second != mins.front().second ? maxs.front().first -
mins.front().first : max(maxs[1].first - mins[0].first, maxs[0].first -
mins[1].first);
 return ret;
 }
};

653. Two Sum IV - Input is a BST
Description

Solution

01/25/2020:

Given a Binary Search Tree and a target number, return true if there exist two
elements in the BST such that their sum is equal to the given target.

Example 1:

Input:
 5
 / \
 3 6
 / \ \
2 4 7

Target = 9

Output: True

Example 2:

Input:
 5
 / \
 3 6
 / \ \
2 4 7

Target = 28

Output: False

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */

https://leetcode.com/problems/two-sum-iv-input-is-a-bst/

01/25/2019:

654. Maximum Binary Tree
Description

class Solution {
public:
 bool findTarget(TreeNode* root, int k) {
 vector<int> nums;
 tree2vector(root, nums);
 for (int l = 0, r = nums.size() - 1; l < r;) {
 int s = nums[l] + nums[r];
 if (s == k) {
 return true;
 } else if (s < k) {
 ++l;
 } else {
 --r;
 }
 }
 return false;
 }
 void tree2vector(TreeNode* root, vector<int>& nums) {
 if (root == nullptr) return;
 tree2vector(root->left, nums);
 nums.push_back(root->val);
 tree2vector(root->right, nums);
 }
};

class Solution {
public:
 unordered_set<int> seen;
 bool findTarget(TreeNode* root, int k) {
 if (root == nullptr) return false;
 if (seen.find(k - root->val) == seen.end()) {
 seen.insert(root->val);
 } else {
 return true;
 }
 return findTarget(root->left, k) || findTarget(root->right, k);
 }
};

https://leetcode.com/problems/maximum-binary-tree/

Solution

Discussion: Mimicking merge_sort, we can split the array into left subarray and right subarray which are
separated by the maximum of the array. The subtrees constructed by left subarray and right subarray
becomes left subtree and right subtree, respectively. Time Complexity: O(n^2) and Space Complexity:
O(n^2).

Given an integer array with no duplicates. A maximum tree building on this array
is defined as follow:

The root is the maximum number in the array.
The left subtree is the maximum tree constructed from left part subarray divided
by the maximum number.
The right subtree is the maximum tree constructed from right part subarray
divided by the maximum number.
Construct the maximum tree by the given array and output the root node of this
tree.

Example 1:

Input: [3,2,1,6,0,5]
Output: return the tree root node representing the following tree:

 6
 / \
 3 5
 \ /
 2 0
 \
 1
Note:

The size of the given array will be in the range [1,1000].

https://leetcode.com/problems/maximum-binary-tree/discuss/577159/C++-Divide-and-Conquer

It could be more space efficient with Space Complexity O(n):

623. Add One Row to Tree
Description

class Solution {
public:
 TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
 if (nums.size() == 0) return nullptr;
 auto max_iter = max_element(nums.begin(), nums.end());
 TreeNode* root = new TreeNode(*max_iter);
 vector<int> nums_left(nums.begin(), max_iter);
 vector<int> nums_right(max_iter + 1, nums.end());
 root->left = constructMaximumBinaryTree(nums_left);
 root->right = constructMaximumBinaryTree(nums_right);
 return root;
 }
};

class Solution {
public:
 TreeNode* constructMaximumBinaryTree(vector<int>& nums, int start = 0, int
stop = INT_MAX) {
 if (stop == INT_MAX) stop = nums.size() - 1;
 if (start > stop) return nullptr;
 auto middle = max_element(nums.begin() + start, nums.begin() + stop + 1) -
nums.begin();
 TreeNode* root = new TreeNode(nums[middle]);
 root->left = constructMaximumBinaryTree(nums, start, middle - 1);
 root->right = constructMaximumBinaryTree(nums, middle + 1, stop);
 return root;
 }
};

Given the root of a binary tree, then value v and depth d, you need to add a row
of nodes with value v at the given depth d. The root node is at depth 1.

The adding rule is: given a positive integer depth d, for each NOT null tree
nodes N in depth d-1, create two tree nodes with value v as N's left subtree
root and right subtree root. And N's original left subtree should be the left
subtree of the new left subtree root, its original right subtree should be the
right subtree of the new right subtree root. If depth d is 1 that means there is
no depth d-1 at all, then create a tree node with value v as the new root of the
whole original tree, and the original tree is the new root's left subtree.

https://leetcode.com/problems/add-one-row-to-tree/

Example 1:
Input:
A binary tree as following:
 4
 / \
 2 6
 / \ /
 3 1 5

v = 1

d = 2

Output:
 4
 / \
 1 1
 / \
 2 6
 / \ /
 3 1 5

Example 2:
Input:
A binary tree as following:
 4
 /
 2
 / \
 3 1

v = 1

d = 3

Output:
 4
 /
 2
 / \
 1 1
 / \
3 1
Note:
The given d is in range [1, maximum depth of the given tree + 1].
The given binary tree has at least one tree node.

Solution

06/09/2020:

695. Max Area of Island
Description

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode() : val(0), left(nullptr), right(nullptr) {}
 * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
right(right) {}
 * };
 */
class Solution {
public:
 TreeNode* addOneRow(TreeNode* root, int v, int d) {
 if (d == 1) return new TreeNode(v, root, nullptr);
 queue<TreeNode*> q;
 q.emplace(root);
 while (!q.empty()) {
 --d;
 int sz = q.size();
 for (int s = 0; s < sz; ++s) {
 TreeNode* cur = q.front(); q.pop();
 if (d == 1) {
 cur->left = cur->left ? new TreeNode(v, cur->left, nullptr) : new
TreeNode(v);
 cur->right = cur->right ? new TreeNode(v, nullptr, cur->right) : new
TreeNode(v);
 } else {
 if (cur->left) q.push(cur->left);
 if (cur->right) q.push(cur->right);
 }
 }
 }
 return root;
 }
};

https://leetcode.com/problems/max-area-of-island/

Solution

01/26/2020:

Given a non-empty 2D array grid of 0's and 1's, an island is a group of 1's
(representing land) connected 4-directionally (horizontal or vertical.) You may
assume all four edges of the grid are surrounded by water.

Find the maximum area of an island in the given 2D array. (If there is no
island, the maximum area is 0.)

Example 1:

[[0,0,1,0,0,0,0,1,0,0,0,0,0],
 [0,0,0,0,0,0,0,1,1,1,0,0,0],
 [0,1,1,0,1,0,0,0,0,0,0,0,0],
 [0,1,0,0,1,1,0,0,1,0,1,0,0],
 [0,1,0,0,1,1,0,0,1,1,1,0,0],
 [0,0,0,0,0,0,0,0,0,0,1,0,0],
 [0,0,0,0,0,0,0,1,1,1,0,0,0],
 [0,0,0,0,0,0,0,1,1,0,0,0,0]]
Given the above grid, return 6. Note the answer is not 11, because the island
must be connected 4-directionally.
Example 2:

[[0,0,0,0,0,0,0,0]]
Given the above grid, return 0.
Note: The length of each dimension in the given grid does not exceed 50.

class Solution {
public:
 int maxAreaOfIsland(vector<vector<int>>& grid) {
 int m = grid.size(), n = grid[0].size();
 int ret = 0;
 for (int i = 0; i < m; ++i) {
 for (int j = 0; j < n; ++j) {
 int area = 0;
 if (grid[i][j] == 1) dfs(grid, i, j, area);
 ret = max(ret, area);
 }
 }
 return ret;
 }

 void dfs(vector<vector<int>>& grid, int i, int j, int& area) {
 int m = grid.size(), n = grid[0].size();
 if (grid[i][j] == 1) {
 area += 1;

760. Find Anagram Mappings
Description

Solution

01/29/2020:

 grid[i][j] = 0;
 if (i > 0) dfs(grid, i - 1, j, area);
 if (j > 0) dfs(grid, i, j - 1, area);
 if (i < m - 1) dfs(grid, i + 1, j, area);
 if (j < n - 1) dfs(grid, i, j + 1, area);
 }
 }
};

Given two lists Aand B, and B is an anagram of A. B is an anagram of A means B
is made by randomizing the order of the elements in A.

We want to find an index mapping P, from A to B. A mapping P[i] = j means the
ith element in A appears in B at index j.

These lists A and B may contain duplicates. If there are multiple answers,
output any of them.

For example, given

A = [12, 28, 46, 32, 50]
B = [50, 12, 32, 46, 28]
We should return
[1, 4, 3, 2, 0]
as P[0] = 1 because the 0th element of A appears at B[1], and P[1] = 4 because
the 1st element of A appears at B[4], and so on.
Note:

A, B have equal lengths in range [1, 100].
A[i], B[i] are integers in range [0, 10^5].

class Solution {
public:
 vector<int> anagramMappings(vector<int>& A, vector<int>& B) {
 unordered_map<int, int> m;
 vector<int> ret(A.size(), 0);
 for (int i = 0; i < B.size(); ++i) {

https://leetcode.com/problems/find-anagram-mappings/

766. Toeplitz Matrix
Description

 m[B[i]] = i;
 }
 for (int i = 0; i < (int)A.size(); ++i) {
 ret[i] = m[A[i]];
 }
 return ret;
 }
};

A matrix is Toeplitz if every diagonal from top-left to bottom-right has the
same element.

Now given an M x N matrix, return True if and only if the matrix is Toeplitz.

Example 1:

Input:
matrix = [
 [1,2,3,4],
 [5,1,2,3],
 [9,5,1,2]
]
Output: True
Explanation:
In the above grid, the diagonals are:
"[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]".
In each diagonal all elements are the same, so the answer is True.
Example 2:

Input:
matrix = [
 [1,2],
 [2,2]
]
Output: False
Explanation:
The diagonal "[1, 2]" has different elements.

Note:

matrix will be a 2D array of integers.

https://leetcode.com/problems/toeplitz-matrix/

Solution

02/03/2020:

811. Subdomain Visit Count
Description

matrix will have a number of rows and columns in range [1, 20].
matrix[i][j] will be integers in range [0, 99].

Follow up:

What if the matrix is stored on disk, and the memory is limited such that you
can only load at most one row of the matrix into the memory at once?
What if the matrix is so large that you can only load up a partial row into the
memory at once?

class Solution {
public:
 bool isToeplitzMatrix(vector<vector<int>>& matrix) {
 for (int i = 0; i < (int)matrix.size(); ++i) {
 for (int k = 1; k < (int)matrix[0].size(); ++k) {
 if (i + k < (int)matrix.size() && matrix[i + k][k] != matrix[i + k - 1]
[k - 1]) {
 return false;
 }
 }
 }
 for (int j = 0; j < (int)matrix[0].size(); ++j) {
 for (int k = 1; k < (int)matrix.size(); ++k) {
 if (j + k < (int)matrix[0].size() && matrix[k][j + k] != matrix[k - 1][j
+ k - 1]) {
 return false;
 }
 }
 }
 return true;
 }
};

https://leetcode.com/problems/subdomain-visit-count/

Solution

01/31/2020:

A website domain like "discuss.leetcode.com" consists of various subdomains. At
the top level, we have "com", at the next level, we have "leetcode.com", and at
the lowest level, "discuss.leetcode.com". When we visit a domain like
"discuss.leetcode.com", we will also visit the parent domains "leetcode.com" and
"com" implicitly.

Now, call a "count-paired domain" to be a count (representing the number of
visits this domain received), followed by a space, followed by the address. An
example of a count-paired domain might be "9001 discuss.leetcode.com".

We are given a list cpdomains of count-paired domains. We would like a list of
count-paired domains, (in the same format as the input, and in any order), that
explicitly counts the number of visits to each subdomain.

Example 1:
Input:
["9001 discuss.leetcode.com"]
Output:
["9001 discuss.leetcode.com", "9001 leetcode.com", "9001 com"]
Explanation:
We only have one website domain: "discuss.leetcode.com". As discussed above, the
subdomain "leetcode.com" and "com" will also be visited. So they will all be
visited 9001 times.

Example 2:
Input:
["900 google.mail.com", "50 yahoo.com", "1 intel.mail.com", "5 wiki.org"]
Output:
["901 mail.com","50 yahoo.com","900 google.mail.com","5 wiki.org","5 org","1
intel.mail.com","951 com"]
Explanation:
We will visit "google.mail.com" 900 times, "yahoo.com" 50 times,
"intel.mail.com" once and "wiki.org" 5 times. For the subdomains, we will visit
"mail.com" 900 + 1 = 901 times, "com" 900 + 50 + 1 = 951 times, and "org" 5
times.

Notes:

The length of cpdomains will not exceed 100.
The length of each domain name will not exceed 100.
Each address will have either 1 or 2 "." characters.
The input count in any count-paired domain will not exceed 10000.
The answer output can be returned in any order.

832. Flipping an Image
Description

class Solution {
public:
 vector<string> subdomainVisits(vector<string>& cpdomains) {
 unordered_map<string, int> cnt;
 for (auto& s : cpdomains) {
 istringstream iss(s);
 int n;
 string str;
 iss >> n >> str;
 while (str.size() > 0) {
 // cout << n << " " << str << endl;
 cnt[str] += n;
 int i = 0;
 for (; i < (int)str.size(); ++i) {
 if (str[i] == '.') {
 break;
 }
 }
 if (i < str.size()) {
 str = str.substr(i + 1, str.size() - i - 1);
 } else {
 str = "";
 }
 }
 }
 vector<string> ret;
 for (auto it = cnt.begin(); it != cnt.end(); ++it) {
 // cout << it->first << " " << it->second << endl;
 ret.push_back(to_string(it->second) + " " + it->first);
 }
 return ret;
 }
};

Given a binary matrix A, we want to flip the image horizontally, then invert it,
and return the resulting image.

To flip an image horizontally means that each row of the image is reversed. For
example, flipping [1, 1, 0] horizontally results in [0, 1, 1].

https://leetcode.com/problems/flipping-an-image/

Solution

01/29/2020:

852. Peak Index in a Mountain Array

To invert an image means that each 0 is replaced by 1, and each 1 is replaced by
0. For example, inverting [0, 1, 1] results in [1, 0, 0].

Example 1:

Input: [[1,1,0],[1,0,1],[0,0,0]]
Output: [[1,0,0],[0,1,0],[1,1,1]]
Explanation: First reverse each row: [[0,1,1],[1,0,1],[0,0,0]].
Then, invert the image: [[1,0,0],[0,1,0],[1,1,1]]
Example 2:

Input: [[1,1,0,0],[1,0,0,1],[0,1,1,1],[1,0,1,0]]
Output: [[1,1,0,0],[0,1,1,0],[0,0,0,1],[1,0,1,0]]
Explanation: First reverse each row: [[0,0,1,1],[1,0,0,1],[1,1,1,0],[0,1,0,1]].
Then invert the image: [[1,1,0,0],[0,1,1,0],[0,0,0,1],[1,0,1,0]]
Notes:

1 <= A.length = A[0].length <= 20
0 <= A[i][j] <= 1

class Solution {
public:
 vector<vector<int>> flipAndInvertImage(vector<vector<int>>& A) {
 int m = A.size(), n = A[0].size();
 bool even_col = n % 2 == 1;
 for (int i = 0; i < m; ++i) {
 for (int l = 0, r = n - 1; l < r; ++l, --r) {
 swap(A[i][l], A[i][r]);
 A[i][l] ^= 1;
 A[i][r] ^= 1;
 }
 if (even_col) {
 A[i][n / 2] ^= 1;
 }
 }
 return A;
 }
};

Description

Solution

01/30/2020:

867. Transpose Matrix
Description

Let's call an array A a mountain if the following properties hold:

A.length >= 3
There exists some 0 < i < A.length - 1 such that A[0] < A[1] < ... A[i-1] < A[i]
> A[i+1] > ... > A[A.length - 1]
Given an array that is definitely a mountain, return any i such that A[0] < A[1]
< ... A[i-1] < A[i] > A[i+1] > ... > A[A.length - 1].

Example 1:

Input: [0,1,0]
Output: 1
Example 2:

Input: [0,2,1,0]
Output: 1
Note:

3 <= A.length <= 10000
0 <= A[i] <= 10^6
A is a mountain, as defined above.

class Solution {
public:
 int peakIndexInMountainArray(vector<int>& A) {
 for (int i = 0; i < (int)A.size() - 1; ++i) {
 if (A[i] > A[i + 1]) {
 return i;
 }
 }
 return A.size() - 1;
 }
};

Given a matrix A, return the transpose of A.

https://leetcode.com/problems/peak-index-in-a-mountain-array/
https://leetcode.com/problems/transpose-matrix/

Solution

02/03/2020:

905. Sort Array By Parity
Description

The transpose of a matrix is the matrix flipped over it's main diagonal,
switching the row and column indices of the matrix.

Example 1:

Input: [[1,2,3],[4,5,6],[7,8,9]]
Output: [[1,4,7],[2,5,8],[3,6,9]]
Example 2:

Input: [[1,2,3],[4,5,6]]
Output: [[1,4],[2,5],[3,6]]

Note:

1 <= A.length <= 1000
1 <= A[0].length <= 1000

class Solution {
public:
 vector<vector<int>> transpose(vector<vector<int>>& A) {
 int m = A.size(), n = A[0].size();
 vector<vector<int>> ret(n, vector<int>(m, 0));
 for (int i = 0; i < m; ++i) {
 for (int j = 0; j < n; ++j) {
 ret[j][i] = A[i][j];
 }
 }
 return ret;
 }
};

https://leetcode.com/problems/sort-array-by-parity/

Solution

01/30/2020:

918. Maximum Sum Circular Subarray
Description

Given an array A of non-negative integers, return an array consisting of all the
even elements of A, followed by all the odd elements of A.

You may return any answer array that satisfies this condition.

Example 1:

Input: [3,1,2,4]
Output: [2,4,3,1]
The outputs [4,2,3,1], [2,4,1,3], and [4,2,1,3] would also be accepted.

Note:

1 <= A.length <= 5000
0 <= A[i] <= 5000

class Solution {
public:
 vector<int> sortArrayByParity(vector<int>& A) {
 vector<int> odd;
 vector<int> even;
 for (auto& n : A) {
 if (n % 2 == 1) {
 odd.push_back(n);
 } else {
 even.push_back(n);
 }
 }
 even.insert(even.end(), odd.begin(), odd.end());
 return even;
 }
};

https://leetcode.com/problems/maximum-sum-circular-subarray/

Solution

05/17/2020:

Given a circular array C of integers represented by A, find the maximum possible
sum of a non-empty subarray of C.

Here, a circular array means the end of the array connects to the beginning of
the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] =
C[i] when i >= 0.)

Also, a subarray may only include each element of the fixed buffer A at most
once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i
<= k1, k2 <= j with k1 % A.length = k2 % A.length.)

Example 1:

Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:

Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:

Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:

Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:

Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1

Note:

-30000 <= A[i] <= 30000
1 <= A.length <= 30000

class Solution {
public:
 int maxSubarraySumCircular(vector<int>& A) {
 int cur_max = A.front(), s = 0;
 int n = A.size();
 for (int i = 0; i < n; ++i) {
 s = max(s, 0) + A[i];
 cur_max = max(cur_max, s);
 }
 vector<int> prefix_sum(A);
 vector<int> suffix_sum(A);
 for (int i = 1; i < n; ++i) {
 prefix_sum[i] += prefix_sum[i - 1];
 suffix_sum[n - 1 - i] += suffix_sum[n - i];
 }
 for (int i = 1; i < n; ++i) {
 prefix_sum[i] = max(prefix_sum[i], prefix_sum[i - 1]);
 suffix_sum[n - 1 - i] = max(suffix_sum[n - 1 - i], suffix_sum[n - i]);
 }
 for (int i = 1; i < n; ++i) {
 cur_max = max(cur_max, prefix_sum[i - 1] + suffix_sum[i]);
 }
 return cur_max;
 }
};

class Solution {
public:
 int maxSubarraySumCircular(vector<int>& A) {
 int cur_max = A.front(), s = 0;
 int n = A.size();
 for (int i = 0; i < n; ++i) {
 s = max(s, 0) + A[i];
 cur_max = max(cur_max, s);
 }
 vector<int> prefix_sum(A), suffix_sum(A);
 partial_sum(A.cbegin(), A.cend(), prefix_sum.begin(), plus<int>());
 partial_sum(A.crbegin(), A.crend(), suffix_sum.rbegin(), plus<int>());
 for (int i = 1; i < n; ++i) {
 prefix_sum[i] = max(prefix_sum[i], prefix_sum[i - 1]);
 suffix_sum[n - 1 - i] = max(suffix_sum[n - 1 - i], suffix_sum[n - i]);
 cur_max = max(cur_max, prefix_sum[i - 1] + suffix_sum[i]);
 }
 return cur_max;
 }
};

922. Sort Array By Parity II
Description

Solution

01/30/2020:

Given an array A of non-negative integers, half of the integers in A are odd,
and half of the integers are even.

Sort the array so that whenever A[i] is odd, i is odd; and whenever A[i] is
even, i is even.

You may return any answer array that satisfies this condition.

Example 1:

Input: [4,2,5,7]
Output: [4,5,2,7]
Explanation: [4,7,2,5], [2,5,4,7], [2,7,4,5] would also have been accepted.

Note:

2 <= A.length <= 20000
A.length % 2 == 0
0 <= A[i] <= 1000

class Solution {
public:
 vector<int> sortArrayByParityII(vector<int>& A) {
 int n = A.size();
 vector<int> ret(n, 0);
 for (int i = 0, even = 0, odd = 1; i < n; ++i) {
 if (A[i] % 2 == 1) {
 ret[odd] = A[i];
 odd += 2;
 } else {
 ret[even] = A[i];
 even += 2;
 }
 }
 return ret;
 }

https://leetcode.com/problems/sort-array-by-parity-ii/

961. N-Repeated Element in Size 2N Array
Description

Solution

01/30/2020:

};

In a array A of size 2N, there are N+1 unique elements, and exactly one of these
elements is repeated N times.

Return the element repeated N times.

Example 1:

Input: [1,2,3,3]
Output: 3
Example 2:

Input: [2,1,2,5,3,2]
Output: 2
Example 3:

Input: [5,1,5,2,5,3,5,4]
Output: 5

Note:

4 <= A.length <= 10000
0 <= A[i] < 10000
A.length is even

https://leetcode.com/problems/n-repeated-element-in-size-2n-array/

977. Squares of a Sorted Array
Description

Solution

01/30/2020:

class Solution {
public:
 int repeatedNTimes(vector<int>& A) {
 unordered_map<int, int> m;
 for (auto& n : A) {
 if (++m[n] > 1) {
 return n;
 }
 }
 return -1;
 }
};

Given an array of integers A sorted in non-decreasing order, return an array of
the squares of each number, also in sorted non-decreasing order.

Example 1:

Input: [-4,-1,0,3,10]
Output: [0,1,9,16,100]
Example 2:

Input: [-7,-3,2,3,11]
Output: [4,9,9,49,121]

Note:

1 <= A.length <= 10000
-10000 <= A[i] <= 10000
A is sorted in non-decreasing order.

class Solution {
public:
 vector<int> sortedSquares(vector<int>& A) {

https://leetcode.com/problems/squares-of-a-sorted-array/

994. Rotting Oranges
Description

 vector<int> ret;
 for (int l = 0, r = A.size() - 1; l <= r;) {
 if (abs(A[l]) > abs(A[r])) {
 ret.push_back(pow(A[l], 2));
 ++l;
 } else {
 ret.push_back(pow(A[r], 2));
 --r;
 }
 }
 reverse(ret.begin(), ret.end());
 return ret;
 }
};

In a given grid, each cell can have one of three values:

the value 0 representing an empty cell;
the value 1 representing a fresh orange;
the value 2 representing a rotten orange.
Every minute, any fresh orange that is adjacent (4-directionally) to a rotten
orange becomes rotten.

Return the minimum number of minutes that must elapse until no cell has a fresh
orange. If this is impossible, return -1 instead.

Example 1:

Input: [[2,1,1],[1,1,0],[0,1,1]]
Output: 4
Example 2:

Input: [[2,1,1],[0,1,1],[1,0,1]]
Output: -1
Explanation: The orange in the bottom left corner (row 2, column 0) is never
rotten, because rotting only happens 4-directionally.
Example 3:

https://leetcode.com/problems/rotting-oranges/

Solution

05/07/2020:

Input: [[0,2]]
Output: 0
Explanation: Since there are already no fresh oranges at minute 0, the answer
is just 0.

Note:

1 <= grid.length <= 10
1 <= grid[0].length <= 10
grid[i][j] is only 0, 1, or 2.

class Solution {
public:
 int orangesRotting(vector<vector<int>>& grid) {
 if (grid.empty() || grid[0].empty()) return 0;
 int dir[4][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} };
 int fresh = 0, count = 0, m = grid.size(), n = grid[0].size();
 queue<pair<int, int>> q;
 for (int i = 0; i < m; ++i) {
 for (int j = 0; j < n; ++j) {
 if (grid[i][j] == 1) {
 ++fresh;
 } else if (grid[i][j] == 2) {
 q.emplace(i, j);
 }
 }
 }
 if (fresh == 0) return 0;
 while (!q.empty()) {
 int sz = q.size();
 for (int k = 0; k < sz; ++k) {
 pair<int, int> cur = q.front(); q.pop();
 int i = cur.first, j = cur.second;
 for (int d = 0; d < 4; ++d) {
 int ni = i + dir[d][0], nj = j + dir[d][1];
 if (ni >= 0 && ni < m && nj >= 0 && nj < n && grid[ni][nj] == 1) {
 --fresh;
 grid[ni][nj] = 2;
 q.emplace(ni, nj);
 }
 }
 }
 ++count;

1051. Height Checker
Description

Solution

01/31/2020:

 }
 return fresh > 0 ? -1 : count - 1;
 }
};

Students are asked to stand in non-decreasing order of heights for an annual
photo.

Return the minimum number of students that must move in order for all students
to be standing in non-decreasing order of height.

Example 1:

Input: heights = [1,1,4,2,1,3]
Output: 3

Constraints:

1 <= heights.length <= 100
1 <= heights[i] <= 100

class Solution {
public:
 int heightChecker(vector<int>& heights) {
 vector<int> sorted(heights.begin(), heights.end());
 sort(sorted.begin(), sorted.end());
 int ret = 0;
 for (int i = 0; i < (int)heights.size(); ++i) {
 if (heights[i] != sorted[i]) {
 ++ret;
 }
 }
 return ret;
 }

https://leetcode.com/problems/height-checker/

1064. Fixed Point
Description

Solution

01/30/2020:

};

Given an array A of distinct integers sorted in ascending order, return the
smallest index i that satisfies A[i] == i. Return -1 if no such i exists.

Example 1:

Input: [-10,-5,0,3,7]
Output: 3
Explanation:
For the given array, A[0] = -10, A[1] = -5, A[2] = 0, A[3] = 3, thus the output
is 3.
Example 2:

Input: [0,2,5,8,17]
Output: 0
Explanation:
A[0] = 0, thus the output is 0.
Example 3:

Input: [-10,-5,3,4,7,9]
Output: -1
Explanation:
There is no such i that A[i] = i, thus the output is -1.

Note:

1 <= A.length < 10^4
-10^9 <= A[i] <= 10^9

class Solution {
public:
 int fixedPoint(vector<int>& A) {
 int lo = 0, hi = A.size() - 1;

https://leetcode.com/problems/fixed-point/

1085. Sum of Digits in the Minimum Number
Description

 while (lo < hi) {
 int mi = (lo + hi) >> 1;
 if (A[mi] < mi) {
 lo = mi + 1;
 } else {
 hi = mi;
 }
 }
 return A[lo] == lo ? lo : -1;
 }
};

class Solution {
public:
 int fixedPoint(vector<int>& A) {
 int lo = 0, hi = A.size() - 1, mi = (lo + hi) / 2;
 while (lo < hi) {
 if (A[mi] > mi) {
 hi = mi - 1;
 } else if (A[mi] < mi) {
 lo = mi + 1;
 } else {
 break;
 }
 mi = (lo + hi) / 2;
 }
 for (; mi >= 0 && A[mi] == mi; --mi);
 return mi + 1 >= A.size() || A[mi + 1] != mi + 1 ? -1 : mi + 1;
 }
};

Given an array A of positive integers, let S be the sum of the digits of the
minimal element of A.

Return 0 if S is odd, otherwise return 1.

Example 1:

Input: [34,23,1,24,75,33,54,8]

https://leetcode.com/problems/sum-of-digits-in-the-minimum-number/

Solution

01/30/2020:

1086. High Five
Description

Output: 0
Explanation:
The minimal element is 1, and the sum of those digits is S = 1 which is odd, so
the answer is 0.
Example 2:

Input: [99,77,33,66,55]
Output: 1
Explanation:
The minimal element is 33, and the sum of those digits is S = 3 + 3 = 6 which is
even, so the answer is 1.

Note:

1 <= A.length <= 100
1 <= A[i].length <= 100

class Solution {
public:
 int sumOfDigits(vector<int>& A) {
 int m = *min_element(A.begin(), A.end());
 string s = to_string(m);
 int t = 0;
 for (auto& c : s) {
 t += c - '0';
 }
 return t % 2 == 1 ? 0 : 1;
 }
};

Given a list of scores of different students, return the average score of each
student's top five scores in the order of each student's id.

Each entry items[i] has items[i][0] the student's id, and items[i][1] the
student's score. The average score is calculated using integer division.

https://leetcode.com/problems/high-five/

Solution

01/30/2020:

Example 1:

Input: [[1,91],[1,92],[2,93],[2,97],[1,60],[2,77],[1,65],[1,87],[1,100],[2,100],
[2,76]]
Output: [[1,87],[2,88]]
Explanation:
The average of the student with id = 1 is 87.
The average of the student with id = 2 is 88.6. But with integer division their
average converts to 88.

Note:

1 <= items.length <= 1000
items[i].length == 2
The IDs of the students is between 1 to 1000
The score of the students is between 1 to 100
For each student, there are at least 5 scores

class Solution {
public:
 vector<vector<int>> highFive(vector<vector<int>>& items) {
 sort(items.begin(), items.end(), [](vector<int>& a, vector<int>& b){
 if (a[0] != b[0]) {
 return a[0] < b[0];
 } else {
 return a[1] > b[1];
 }
 });
 // for (auto& item : items) {
 // cout << item[0] << " " << item[1] << endl;
 // }
 vector<vector<int>> ret;
 for (int i = 0, id = items[0][0]; i < (int)items.size(); id = items[i][0]) {
 int scores = 0;
 for (int j = 0; j < 5; ++j) {
 scores += items[i + j][1];
 }
 ret.push_back({id, scores / 5});
 for (i += 4; i < (int)items.size() && id == items[i][0]; ++i);
 if (i >= items.size()) break;
 }

1099. Two Sum Less Than K
Description

Solution

01/25/2020:

 return ret;
 }
};

Given an array A of integers and integer K, return the maximum S such that there
exists i < j with A[i] + A[j] = S and S < K. If no i, j exist satisfying this
equation, return -1.

Example 1:

Input: A = [34,23,1,24,75,33,54,8], K = 60
Output: 58
Explanation:
We can use 34 and 24 to sum 58 which is less than 60.
Example 2:

Input: A = [10,20,30], K = 15
Output: -1
Explanation:
In this case it's not possible to get a pair sum less that 15.

Note:

1 <= A.length <= 100
1 <= A[i] <= 1000
1 <= K <= 2000

class Solution {
public:
 int twoSumLessThanK(vector<int>& A, int K) {
 sort(A.begin(), A.end());
 int ret = -1;
 for (int l = 0, r = A.size() - 1; l < r;) {
 int s = A[l] + A[r];

https://leetcode.com/problems/two-sum-less-than-k/

1122. Relative Sort Array
Description

Solution

01/31/2020:

 if (s < K) {
 ret = max(ret, s);
 ++l;
 } else {
 --r;
 }
 }
 return ret;
 }
};

Given two arrays arr1 and arr2, the elements of arr2 are distinct, and all
elements in arr2 are also in arr1.

Sort the elements of arr1 such that the relative ordering of items in arr1 are
the same as in arr2. Elements that don't appear in arr2 should be placed at the
end of arr1 in ascending order.

Example 1:

Input: arr1 = [2,3,1,3,2,4,6,7,9,2,19], arr2 = [2,1,4,3,9,6]
Output: [2,2,2,1,4,3,3,9,6,7,19]

Constraints:

arr1.length, arr2.length <= 1000
0 <= arr1[i], arr2[i] <= 1000
Each arr2[i] is distinct.
Each arr2[i] is in arr1.

class Solution {
public:
 vector<int> relativeSortArray(vector<int>& arr1, vector<int>& arr2) {
 vector<int> ret;

https://leetcode.com/problems/relative-sort-array/

1133. Largest Unique Number
Description

 map<int, int> m;
 for (auto& n : arr1) {
 ++m[n];
 }
 for (auto& n : arr2) {
 while (m[n]-- > 0) {
 ret.push_back(n);
 }
 }
 for (auto it = m.begin(); it != m.end(); ++it) {
 while (it->second-- > 0) {
 ret.push_back(it->first);
 }
 }
 return ret;
 }
};

Given an array of integers A, return the largest integer that only occurs once.

If no integer occurs once, return -1.

Example 1:

Input: [5,7,3,9,4,9,8,3,1]
Output: 8
Explanation:
The maximum integer in the array is 9 but it is repeated. The number 8 occurs
only once, so it's the answer.
Example 2:

Input: [9,9,8,8]
Output: -1
Explanation:
There is no number that occurs only once.

Note:

1 <= A.length <= 2000

https://leetcode.com/problems/largest-unique-number/

Solution

01/31/2020:

1196. How Many Apples Can You Put into the Basket
Description

0 <= A[i] <= 1000

class Solution {
public:
 int largestUniqueNumber(vector<int>& A) {
 if (A.size() == 0) return -1;
 if (A.size() == 1) return A[0];
 sort(A.begin(), A.end());
 for (int i = A.size() - 1; i >= 0; --i) {
 if (i == A.size() - 1 && A[i] != A[i - 1]) {
 return A[i];
 } else if (i == 0 && A[i] != A[i + 1]) {
 return A[i];
 } else if (i < A.size() - 1 && i > 0 && A[i] != A[i - 1] && A[i] != A[i +
1]) {
 return A[i];
 }
 }
 return -1;
 }
};

You have some apples, where arr[i] is the weight of the i-th apple. You also
have a basket that can carry up to 5000 units of weight.

Return the maximum number of apples you can put in the basket.

Example 1:

Input: arr = [100,200,150,1000]
Output: 4
Explanation: All 4 apples can be carried by the basket since their sum of
weights is 1450.
Example 2:

https://leetcode.com/problems/how-many-apples-can-you-put-into-the-basket/

Solution

01/30/2020:

1200. Minimum Absolute Difference
Description

Input: arr = [900,950,800,1000,700,800]
Output: 5
Explanation: The sum of weights of the 6 apples exceeds 5000 so we choose any 5
of them.

Constraints:

1 <= arr.length <= 10^3
1 <= arr[i] <= 10^3

class Solution {
public:
 int maxNumberOfApples(vector<int>& arr) {
 const int N = 1001;
 vector<int> weights(N, 0);
 int s = 0, ret = 0;
 for (auto& a : arr) {
 ++weights[a];
 }
 for (int i = 0; i < N; ++i) {
 while (weights[i] > 0 && s + i <= 5000) {
 s += i;
 --weights[i];
 ++ret;
 }
 }
 return ret;
 }
};

Given an array of distinct integers arr, find all pairs of elements with the
minimum absolute difference of any two elements.

Return a list of pairs in ascending order(with respect to pairs), each pair [a,
b] follows

https://leetcode.com/problems/minimum-absolute-difference/

Solution

02/03/2020:

a, b are from arr
a < b
b - a equals to the minimum absolute difference of any two elements in arr

Example 1:

Input: arr = [4,2,1,3]
Output: [[1,2],[2,3],[3,4]]
Explanation: The minimum absolute difference is 1. List all pairs with
difference equal to 1 in ascending order.
Example 2:

Input: arr = [1,3,6,10,15]
Output: [[1,3]]
Example 3:

Input: arr = [3,8,-10,23,19,-4,-14,27]
Output: [[-14,-10],[19,23],[23,27]]

Constraints:

2 <= arr.length <= 10^5
-10^6 <= arr[i] <= 10^6

class Solution {
public:
 vector<vector<int>> minimumAbsDifference(vector<int>& arr) {
 sort(arr.begin(), arr.end());
 vector<vector<int>> ret;
 int diff = INT_MAX;
 for (int i = 1; i < (int)arr.size(); ++i) {
 if (diff == arr[i] - arr[i - 1]) {
 ret.push_back({arr[i - 1], arr[i]});
 } else if (diff > arr[i] - arr[i - 1]) {
 ret.clear();
 ret.push_back({arr[i - 1], arr[i]});
 diff = arr[i] - arr[i - 1];
 }
 }
 return ret;
 }
};

1207. Unique Number of Occurrences
Description

Solution

01/30/2020:

Given an array of integers arr, write a function that returns true if and only
if the number of occurrences of each value in the array is unique.

Example 1:

Input: arr = [1,2,2,1,1,3]
Output: true
Explanation: The value 1 has 3 occurrences, 2 has 2 and 3 has 1. No two values
have the same number of occurrences.
Example 2:

Input: arr = [1,2]
Output: false
Example 3:

Input: arr = [-3,0,1,-3,1,1,1,-3,10,0]
Output: true

Constraints:

1 <= arr.length <= 1000
-1000 <= arr[i] <= 1000

class Solution {
public:
 bool uniqueOccurrences(vector<int>& arr) {
 unordered_map<int, int> m;
 unordered_set<int> occurence;
 for (auto& n : arr) {
 ++m[n];
 }
 for (auto& n : m) {
 occurence.insert(n.second);
 }
 return occurence.size() == m.size();
 }

https://leetcode.com/problems/unique-number-of-occurrences/

1213. Intersection of Three Sorted Arrays
Description

Solution

01/29/2020:

};

Given three integer arrays arr1, arr2 and arr3 sorted in strictly increasing
order, return a sorted array of only the integers that appeared in all three
arrays.

Example 1:

Input: arr1 = [1,2,3,4,5], arr2 = [1,2,5,7,9], arr3 = [1,3,4,5,8]
Output: [1,5]
Explanation: Only 1 and 5 appeared in the three arrays.

Constraints:

1 <= arr1.length, arr2.length, arr3.length <= 1000
1 <= arr1[i], arr2[i], arr3[i] <= 2000

class Solution {
public:
 vector<int> arraysIntersection(vector<int>& arr1, vector<int>& arr2,
vector<int>& arr3) {
 const int N = 2001;
 vector<int> m(N, 0);
 vector<int> ret;
 for (auto& a : arr1) ++m[a];
 for (auto& a : arr2) ++m[a];
 for (auto& a : arr3) ++m[a];
 for (int i = 0; i < N; ++i) {
 if (m[i] == 3) {
 ret.push_back(i);
 }
 }
 return ret;
 }

https://leetcode.com/problems/intersection-of-three-sorted-arrays/

1217. Play with Chips
Description

Solution

02/03/2020:

};

There are some chips, and the i-th chip is at position chips[i].

You can perform any of the two following types of moves any number of times
(possibly zero) on any chip:

Move the i-th chip by 2 units to the left or to the right with a cost of 0.
Move the i-th chip by 1 unit to the left or to the right with a cost of 1.
There can be two or more chips at the same position initially.

Return the minimum cost needed to move all the chips to the same position (any
position).

Example 1:

Input: chips = [1,2,3]
Output: 1
Explanation: Second chip will be moved to positon 3 with cost 1. First chip will
be moved to position 3 with cost 0. Total cost is 1.
Example 2:

Input: chips = [2,2,2,3,3]
Output: 2
Explanation: Both fourth and fifth chip will be moved to position two with cost
1. Total minimum cost will be 2.

Constraints:

1 <= chips.length <= 100
1 <= chips[i] <= 10^9

class Solution {
public:

https://leetcode.com/problems/play-with-chips/

1243. Array Transformation
Description

 int minCostToMoveChips(vector<int>& chips) {
 int odd = 0, even = 0;
 for (auto& c : chips) {
 if (c % 2 == 1) {
 ++odd;
 } else {
 ++even;
 }
 }
 return min(odd, even);
 }
};

Given an initial array arr, every day you produce a new array using the array of
the previous day.

On the i-th day, you do the following operations on the array of day i-1 to
produce the array of day i:

If an element is smaller than both its left neighbor and its right neighbor,
then this element is incremented.
If an element is bigger than both its left neighbor and its right neighbor, then
this element is decremented.
The first and last elements never change.
After some days, the array does not change. Return that final array.

Example 1:

Input: arr = [6,2,3,4]
Output: [6,3,3,4]
Explanation:
On the first day, the array is changed from [6,2,3,4] to [6,3,3,4].
No more operations can be done to this array.
Example 2:

Input: arr = [1,6,3,4,3,5]
Output: [1,4,4,4,4,5]
Explanation:
On the first day, the array is changed from [1,6,3,4,3,5] to [1,5,4,3,4,5].
On the second day, the array is changed from [1,5,4,3,4,5] to [1,4,4,4,4,5].

https://leetcode.com/problems/array-transformation/

Solution

05/20/2020:

1252. Cells with Odd Values in a Matrix
Description

No more operations can be done to this array.

Constraints:

1 <= arr.length <= 100
1 <= arr[i] <= 100

class Solution {
public:
 vector<int> transformArray(vector<int>& arr) {
 vector<int> newarr(arr);
 while (true) {
 for (int i = 1; i < (int)arr.size() - 1; ++i) {
 if (arr[i - 1] < newarr[i] && newarr[i] > arr[i + 1]) {
 --newarr[i];
 } else if (arr[i - 1] > newarr[i] && newarr[i] < arr[i + 1]) {
 ++newarr[i];
 }
 }
 if (arr == newarr) break;
 arr = newarr;
 }
 return newarr;
 }
};

Given n and m which are the dimensions of a matrix initialized by zeros and
given an array indices where indices[i] = [ri, ci]. For each pair of [ri, ci]
you have to increment all cells in row ri and column ci by 1.

Return the number of cells with odd values in the matrix after applying the
increment to all indices.

Example 1:

https://leetcode.com/problems/cells-with-odd-values-in-a-matrix/

Solution

01/29/2020:

1266. Minimum Time Visiting All Points

Input: n = 2, m = 3, indices = [[0,1],[1,1]]
Output: 6
Explanation: Initial matrix = [[0,0,0],[0,0,0]].
After applying first increment it becomes [[1,2,1],[0,1,0]].
The final matrix will be [[1,3,1],[1,3,1]] which contains 6 odd numbers.
Example 2:

Input: n = 2, m = 2, indices = [[1,1],[0,0]]
Output: 0
Explanation: Final matrix = [[2,2],[2,2]]. There is no odd number in the final
matrix.

Constraints:

1 <= n <= 50
1 <= m <= 50
1 <= indices.length <= 100
0 <= indices[i][0] < n
0 <= indices[i][1] < m

class Solution {
public:
 int oddCells(int n, int m, vector<vector<int>>& indices) {
 vector<bool> row(n, false), col(n, false);
 int nr = 0, nc = 0;
 for (auto& index : indices) {
 row[index[0]] = !row[index[0]];
 col[index[1]] = !col[index[1]];
 nr += row[index[0]] ? 1 : -1;
 nc += col[index[1]] ? 1 : -1;
 }
 return m * nr + n * nc - 2 * nr * nc;
 }
};

Description

Solution

01/29/2020:

On a plane there are n points with integer coordinates points[i] = [xi, yi].
Your task is to find the minimum time in seconds to visit all points.

You can move according to the next rules:

In one second always you can either move vertically, horizontally by one unit or
diagonally (it means to move one unit vertically and one unit horizontally in
one second).
You have to visit the points in the same order as they appear in the array.

Example 1:

Input: points = [[1,1],[3,4],[-1,0]]
Output: 7
Explanation: One optimal path is [1,1] -> [2,2] -> [3,3] -> [3,4] -> [2,3] ->
[1,2] -> [0,1] -> [-1,0]
Time from [1,1] to [3,4] = 3 seconds
Time from [3,4] to [-1,0] = 4 seconds
Total time = 7 seconds
Example 2:

Input: points = [[3,2],[-2,2]]
Output: 5

Constraints:

points.length == n
1 <= n <= 100
points[i].length == 2
-1000 <= points[i][0], points[i][1] <= 1000

https://leetcode.com/problems/minimum-time-visiting-all-points/

1299. Replace Elements with Greatest Element on Right Side
Description

Solution

01/29/2020:

class Solution {
public:
 int minTimeToVisitAllPoints(vector<vector<int>>& points) {
 int ret = 0;
 for (int i = 1; i < (int)points.size(); ++i) {
 ret += max(abs(points[i][0] - points[i - 1][0]), abs(points[i][1] -
points[i - 1][1]));
 }
 return ret;
 }
};

Given an array arr, replace every element in that array with the greatest
element among the elements to its right, and replace the last element with -1.

After doing so, return the array.

Example 1:

Input: arr = [17,18,5,4,6,1]
Output: [18,6,6,6,1,-1]

Constraints:

1 <= arr.length <= 10^4
1 <= arr[i] <= 10^5

https://leetcode.com/problems/replace-elements-with-greatest-element-on-right-side/

1304. Find N Unique Integers Sum up to Zero
Description

Solution

01/29/2020:

class Solution {
public:
 vector<int> replaceElements(vector<int>& arr) {
 int cur_max = INT_MIN;
 for (int i = arr.size() - 1; i >= 0; --i) {
 int tmp = arr[i];
 arr[i] = cur_max;
 cur_max = max(cur_max, tmp);
 }
 arr.back() = -1;
 return arr;
 }
};

Given an integer n, return any array containing n unique integers such that they
add up to 0.

Example 1:

Input: n = 5
Output: [-7,-1,1,3,4]
Explanation: These arrays also are accepted [-5,-1,1,2,3] , [-3,-1,2,-2,4].
Example 2:

Input: n = 3
Output: [-1,0,1]
Example 3:

Input: n = 1
Output: [0]

Constraints:

1 <= n <= 1000

https://leetcode.com/problems/find-n-unique-integers-sum-up-to-zero/

1305. All Elements in Two Binary Search Trees
Description

class Solution {
public:
 vector<int> sumZero(int n) {
 vector<int> ret(n, 0);
 for (int i = 0; i < n - 1; i += 2) {
 ret[i] = (i + 1);
 ret[i + 1] = -(i + 1);
 }
 return ret;
 }
};

Given two binary search trees root1 and root2.

Return a list containing all the integers from both trees sorted in ascending
order.

Example 1:

Input: root1 = [2,1,4], root2 = [1,0,3]
Output: [0,1,1,2,3,4]
Example 2:

Input: root1 = [0,-10,10], root2 = [5,1,7,0,2]
Output: [-10,0,0,1,2,5,7,10]
Example 3:

Input: root1 = [], root2 = [5,1,7,0,2]
Output: [0,1,2,5,7]
Example 4:

Input: root1 = [0,-10,10], root2 = []
Output: [-10,0,10]
Example 5:

Input: root1 = [1,null,8], root2 = [8,1]
Output: [1,1,8,8]

https://leetcode.com/problems/all-elements-in-two-binary-search-trees/

Solution

Discussion:

Using inorder traversal to obtain two sorted subarrays from the BST's, then merge the subarrays into one
sorted array like that in merge_sort.

1313. Decompress Run-Length Encoded List
Description

Constraints:

Each tree has at most 5000 nodes.
Each node's value is between [-10^5, 10^5].

class Solution {
public:
 vector<int> getAllElements(TreeNode* root1, TreeNode* root2) {
 vector<int> v1, v2, ret;
 inorder(root1, v1);
 inorder(root2, v2);
 for (auto it1 = v1.begin(), it2 = v2.begin(); it1 != v1.end() || it2 !=
v2.end();)
 ret.push_back(it2 == v2.end() || (it1 != v1.end() && *it1 < *it2) ? *it1++
: *it2++);
 return ret;
 }

 void inorder(TreeNode* root, vector<int>& nums) {
 if (root == nullptr) return;
 inorder(root->left, nums);
 nums.push_back(root->val);
 inorder(root->right, nums);
 }
};

We are given a list nums of integers representing a list compressed with run-
length encoding.

Consider each adjacent pair of elements [a, b] = [nums[2*i], nums[2*i+1]] (with
i >= 0). For each such pair, there are a elements with value b in the
decompressed list.

https://leetcode.com/problems/all-elements-in-two-binary-search-trees/discuss/577446/C++-10-line-concise-solution-using-inorder-traversal-and-merge-operation
https://leetcode.com/problems/decompress-run-length-encoded-list/

Solution

01/29/2020:

1337. The K Weakest Rows in a Matrix
Description

Return the decompressed list.

Example 1:

Input: nums = [1,2,3,4]
Output: [2,4,4,4]
Explanation: The first pair [1,2] means we have freq = 1 and val = 2 so we
generate the array [2].
The second pair [3,4] means we have freq = 3 and val = 4 so we generate [4,4,4].
At the end the concatenation [2] + [4,4,4,4] is [2,4,4,4].

Constraints:

2 <= nums.length <= 100
nums.length % 2 == 0
1 <= nums[i] <= 100

class Solution {
public:
 vector<int> decompressRLElist(vector<int>& nums) {
 vector<int> ret;
 for (int i = 0; i < nums.size(); i += 2) {
 for (int j = 0; j < nums[i]; ++j) {
 ret.push_back(nums[i + 1]);
 }
 }
 return ret;
 }
};

Given a m * n matrix mat of ones (representing soldiers) and zeros (representing
civilians), return the indexes of the k weakest rows in the matrix ordered from
the weakest to the strongest.

https://leetcode.com/problems/the-k-weakest-rows-in-a-matrix/

A row i is weaker than row j, if the number of soldiers in row i is less than
the number of soldiers in row j, or they have the same number of soldiers but i
is less than j. Soldiers are always stand in the frontier of a row, that is,
always ones may appear first and then zeros.

Example 1:

Input: mat =
[[1,1,0,0,0],
 [1,1,1,1,0],
 [1,0,0,0,0],
 [1,1,0,0,0],
 [1,1,1,1,1]],
k = 3
Output: [2,0,3]
Explanation:
The number of soldiers for each row is:
row 0 -> 2
row 1 -> 4
row 2 -> 1
row 3 -> 2
row 4 -> 5
Rows ordered from the weakest to the strongest are [2,0,3,1,4]
Example 2:

Input: mat =
[[1,0,0,0],
 [1,1,1,1],
 [1,0,0,0],
 [1,0,0,0]],
k = 2
Output: [0,2]
Explanation:
The number of soldiers for each row is:
row 0 -> 1
row 1 -> 4
row 2 -> 1
row 3 -> 1
Rows ordered from the weakest to the strongest are [0,2,3,1]

Constraints:

m == mat.length
n == mat[i].length
2 <= n, m <= 100

Solution

02/02/2020:

1338. Reduce Array Size to The Half
Description

1 <= k <= m
matrix[i][j] is either 0 or 1.

class Solution {
public:
 vector<int> kWeakestRows(vector<vector<int>>& mat, int k) {
 vector<pair<int, int>> p;
 for (int i = 0; i < (int)mat.size(); ++i) {
 int cnt = 0;
 for (int j = 0; j < (int)mat[0].size(); ++j) {
 ++cnt;
 if (mat[i][j] == 0) {
 --cnt;
 break;
 }
 }
 p.push_back({i, cnt});
 }
 sort(p.begin(), p.end(), [](pair<int, int> p1, pair<int, int> p2){
 if (p1.second == p2.second)
 return p1.first < p2.first;
 return p1.second < p2.second;
 });
 vector<int> ret;
 for (int i = 0; i < k; ++i) {
 ret.push_back(p[i].first);
 }
 return ret;
 }
};

Given an array arr. You can choose a set of integers and remove all the
occurrences of these integers in the array.

Return the minimum size of the set so that at least half of the integers of the
array are removed.

https://leetcode.com/problems/reduce-array-size-to-the-half/

Solution

02/02/2020:

Example 1:

Input: arr = [3,3,3,3,5,5,5,2,2,7]
Output: 2
Explanation: Choosing {3,7} will make the new array [5,5,5,2,2] which has size 5
(i.e equal to half of the size of the old array).
Possible sets of size 2 are {3,5},{3,2},{5,2}.
Choosing set {2,7} is not possible as it will make the new array [3,3,3,3,5,5,5]
which has size greater than half of the size of the old array.
Example 2:

Input: arr = [7,7,7,7,7,7]
Output: 1
Explanation: The only possible set you can choose is {7}. This will make the new
array empty.
Example 3:

Input: arr = [1,9]
Output: 1
Example 4:

Input: arr = [1000,1000,3,7]
Output: 1
Example 5:

Input: arr = [1,2,3,4,5,6,7,8,9,10]
Output: 5

Constraints:

1 <= arr.length <= 10^5
arr.length is even.
1 <= arr[i] <= 10^5

class Solution {
public:
 int minSetSize(vector<int>& arr) {
 unordered_map<int, int> m;
 for (auto& n : arr) ++m[n];
 vector<int> p;
 for (auto it = m.begin(); it != m.end(); ++it) {

1413. Minimum Value to Get Positive Step by Step Sum
Description

 p.push_back(it->second);
 }
 sort(p.begin(), p.end(), [](int a, int b) {return a > b;});
 int ret = 0, s = 0, as = arr.size() / 2;
 for (auto& n : p) {
 s += n;
 ++ret;
 if (s >= as)
 break;
 }
 return ret;
 }
};

Given an array of integers nums, you start with an initial positive value
startValue.

In each iteration, you calculate the step by step sum of startValue plus
elements in nums (from left to right).

Return the minimum positive value of startValue such that the step by step sum
is never less than 1.

Example 1:

Input: nums = [-3,2,-3,4,2]
Output: 5
Explanation: If you choose startValue = 4, in the third iteration your step by
step sum is less than 1.
 step by step sum
 startValue = 4 | startValue = 5 | nums
 (4 -3) = 1 | (5 -3) = 2 | -3
 (1 +2) = 3 | (2 +2) = 4 | 2
 (3 -3) = 0 | (4 -3) = 1 | -3
 (0 +4) = 4 | (1 +4) = 5 | 4
 (4 +2) = 6 | (5 +2) = 7 | 2
Example 2:

Input: nums = [1,2]
Output: 1

https://leetcode.com/problems/minimum-value-to-get-positive-step-by-step-sum/

Solution

06/11/2020:

1423. Maximum Points You Can Obtain from Cards
Description

Explanation: Minimum start value should be positive.
Example 3:

Input: nums = [1,-2,-3]
Output: 5

Constraints:

1 <= nums.length <= 100
-100 <= nums[i] <= 100

class Solution {
public:
 int minStartValue(vector<int>& nums) {
 partial_sum(nums.begin(), nums.end(), nums.begin());
 int ret = *min_element(nums.begin(), nums.end());
 return ret >= 0 ? 1 : 1 - ret;
 }
};

There are several cards arranged in a row, and each card has an associated
number of points The points are given in the integer array cardPoints.

In one step, you can take one card from the beginning or from the end of the
row. You have to take exactly k cards.

Your score is the sum of the points of the cards you have taken.

Given the integer array cardPoints and the integer k, return the maximum score
you can obtain.

Example 1:

Input: cardPoints = [1,2,3,4,5,6,1], k = 3

https://leetcode.com/problems/maximum-points-you-can-obtain-from-cards/

Solution

04/25/2020:

Output: 12
Explanation: After the first step, your score will always be 1. However,
choosing the rightmost card first will maximize your total score. The optimal
strategy is to take the three cards on the right, giving a final score of 1 + 6
+ 5 = 12.
Example 2:

Input: cardPoints = [2,2,2], k = 2
Output: 4
Explanation: Regardless of which two cards you take, your score will always be
4.
Example 3:

Input: cardPoints = [9,7,7,9,7,7,9], k = 7
Output: 55
Explanation: You have to take all the cards. Your score is the sum of points of
all cards.
Example 4:

Input: cardPoints = [1,1000,1], k = 1
Output: 1
Explanation: You cannot take the card in the middle. Your best score is 1.
Example 5:

Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3
Output: 202

Constraints:

1 <= cardPoints.length <= 10^5
1 <= cardPoints[i] <= 10^4
1 <= k <= cardPoints.length

class Solution {
public:
 int maxScore(vector<int>& cardPoints, int k) {
 int n = cardPoints.size();
 vector<int> sub(2 * k, 0);
 sub[0] = cardPoints[n - k];
 for (int i = -k + 1; i < k; ++i) {
 sub[i + k] = sub[i + k - 1] + cardPoints[(n + i) % n];
 }
 int ret = sub[k - 1];

1425. Constrained Subset Sum
Description

Solution

04/25/2020:

 for (int i = k; i < 2 * k; ++i) {
 ret = max(sub[i] - sub[i - k], ret);
 }
 return ret;
 }
};

Given an integer array nums and an integer k, return the maximum sum of a non-
empty subset of that array such that for every two consecutive integers in the
subset, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied.

A subset of an array is obtained by deleting some number of elements (can be
zero) from the array, leaving the remaining elements in their original order.

Example 1:

Input: nums = [10,2,-10,5,20], k = 2
Output: 37
Explanation: The subset is [10, 2, 5, 20].
Example 2:

Input: nums = [-1,-2,-3], k = 1
Output: -1
Explanation: The subset must be non-empty, so we choose the largest number.
Example 3:

Input: nums = [10,-2,-10,-5,20], k = 2
Output: 23
Explanation: The subset is [10, -2, -5, 20].

Constraints:

1 <= k <= nums.length <= 10^5
-10^4 <= nums[i] <= 10^4

https://leetcode.com/problems/constrained-subset-sum/

1428. Leftmost Column with at Least a One
Description

class Solution {
public:
 int constrainedSubsetSum(vector<int>& nums, int k) {
 int n = nums.size();
 int ret = nums[0];
 priority_queue<pair<int, int>> pq; // store the pair (sum, i), the sum at i
 for (int i = 0; i < n; ++i) {
 int tmp = 0;
 while (!pq.empty() && i - pq.top().second > k) {
 pq.pop();
 }
 if (!pq.empty()) {
 tmp = max(tmp, pq.top().first);
 }
 ret = max(ret, tmp + nums[i]);
 pq.emplace(tmp + nums[i], i);
 }
 return ret;
 }
};

(This problem is an interactive problem.)

A binary matrix means that all elements are 0 or 1. For each individual row of
the matrix, this row is sorted in non-decreasing order.

Given a row-sorted binary matrix binaryMatrix, return leftmost column index(0-
indexed) with at least a 1 in it. If such index doesn't exist, return -1.

You can't access the Binary Matrix directly. You may only access the matrix
using a BinaryMatrix interface:

BinaryMatrix.get(row, col) returns the element of the matrix at index (row, col)
(0-indexed).
BinaryMatrix.dimensions() returns a list of 2 elements [rows, cols], which means
the matrix is rows * cols.
Submissions making more than 1000 calls to BinaryMatrix.get will be judged Wrong
Answer. Also, any solutions that attempt to circumvent the judge will result in
disqualification.

https://leetcode.com/problems/leftmost-column-with-at-least-a-one/

Solution

05/04/2020:

For custom testing purposes you're given the binary matrix mat as input in the
following four examples. You will not have access the binary matrix directly.

Example 1:

Input: mat = [[0,0],[1,1]]
Output: 0
Example 2:

Input: mat = [[0,0],[0,1]]
Output: 1
Example 3:

Input: mat = [[0,0],[0,0]]
Output: -1
Example 4:

Input: mat = [[0,0,0,1],[0,0,1,1],[0,1,1,1]]
Output: 1

Constraints:

rows == mat.length
cols == mat[i].length
1 <= rows, cols <= 100
mat[i][j] is either 0 or 1.
mat[i] is sorted in a non-decreasing way.

/**

1431. Kids With the Greatest Number of Candies
Description

 * // This is the BinaryMatrix's API interface.
 * // You should not implement it, or speculate about its implementation
 * class BinaryMatrix {
 * public:
 * int get(int x, int y);
 * vector<int> dimensions();
 * };
 */

class Solution {
public:
 int leftMostColumnWithOne(BinaryMatrix &binaryMatrix) {
 vector<int> sz = binaryMatrix.dimensions();
 int m = sz[0], n = sz[1], ret = INT_MAX;
 int lo = 0, hi = n - 1, mid;
 for (int i = 0; i < m; ++i) {
 lo = 0;
 int lo_val = binaryMatrix.get(i, lo);
 if (lo_val == 1) {
 ret = min(ret, lo);
 hi = lo;
 continue;
 }
 int hi_val = binaryMatrix.get(i, hi);
 if (hi_val == 0) continue;
 while (lo < hi) {
 mid = (lo + hi) / 2;
 int mid_val = binaryMatrix.get(i, mid);
 if (mid_val == 1) {
 hi = mid;
 } else {
 lo = mid + 1;
 }
 ret = min(ret, hi);
 }
 }
 return ret == INT_MAX ? -1 : ret;
 }
};

Given the array candies and the integer extraCandies, where candies[i]
represents the number of candies that the ith kid has.

https://leetcode.com/problems/kids-with-the-greatest-number-of-candies/

Solution

05/02/2020:

For each kid check if there is a way to distribute extraCandies among the kids
such that he or she can have the greatest number of candies among them. Notice
that multiple kids can have the greatest number of candies.

Example 1:

Input: candies = [2,3,5,1,3], extraCandies = 3
Output: [true,true,true,false,true]
Explanation:
Kid 1 has 2 candies and if he or she receives all extra candies (3) will have 5
candies --- the greatest number of candies among the kids.
Kid 2 has 3 candies and if he or she receives at least 2 extra candies will have
the greatest number of candies among the kids.
Kid 3 has 5 candies and this is already the greatest number of candies among the
kids.
Kid 4 has 1 candy and even if he or she receives all extra candies will only
have 4 candies.
Kid 5 has 3 candies and if he or she receives at least 2 extra candies will have
the greatest number of candies among the kids.
Example 2:

Input: candies = [4,2,1,1,2], extraCandies = 1
Output: [true,false,false,false,false]
Explanation: There is only 1 extra candy, therefore only kid 1 will have the
greatest number of candies among the kids regardless of who takes the extra
candy.
Example 3:

Input: candies = [12,1,12], extraCandies = 10
Output: [true,false,true]

Constraints:

2 <= candies.length <= 100
1 <= candies[i] <= 100
1 <= extraCandies <= 50

1437. Check If All 1's Are at Least Length K Places Away
Description

class Solution {
public:
 vector<bool> kidsWithCandies(vector<int>& candies, int extraCandies) {
 int max_val = *max_element(candies.begin(), candies.end());
 int n = candies.size();
 vector<bool> ret(n, false);
 for(int i = 0; i < n; ++i) {
 ret[i] = candies[i] + extraCandies >= max_val;
 }
 return ret;
 }
};

Given an array nums of 0s and 1s and an integer k, return True if all 1's are at
least k places away from each other, otherwise return False.

Example 1:

Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.
Example 2:

Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.
Example 3:

Input: nums = [1,1,1,1,1], k = 0
Output: true
Example 4:

Input: nums = [0,1,0,1], k = 1
Output: true

https://leetcode.com/problems/check-if-all-1s-are-at-least-length-k-places-away/

Solution

04/28/2020:

1442. Count Triplets That Can Form Two Arrays of Equal
XOR

Description

Constraints:

1 <= nums.length <= 10^5
0 <= k <= nums.length
nums[i] is 0 or 1

class Solution {
public:
 bool kLengthApart(vector<int>& nums, int k) {
 int min_dist = 1e6;
 int lastOne = -1e6;
 for (int i = 0; i < (int)nums.size(); ++i) {
 if (nums[i] == 1) {
 min_dist = min(i - lastOne - 1, min_dist);
 lastOne = i;
 if (min_dist < k) return false;
 }
 }
 return true;
 }
};

Given an array of integers arr.

We want to select three indices i, j and k where (0 <= i < j <= k < arr.length).

Let's define a and b as follows:

a = arr[i] ^ arr[i + 1] ^ ... ^ arr[j - 1]
b = arr[j] ^ arr[j + 1] ^ ... ^ arr[k]
Note that ^ denotes the bitwise-xor operation.

Return the number of triplets (i, j and k) Where a == b.

https://leetcode.com/problems/count-triplets-that-can-form-two-arrays-of-equal-xor/

Solution

05/10/2020:

Example 1:

Input: arr = [2,3,1,6,7]
Output: 4
Explanation: The triplets are (0,1,2), (0,2,2), (2,3,4) and (2,4,4)
Example 2:

Input: arr = [1,1,1,1,1]
Output: 10
Example 3:

Input: arr = [2,3]
Output: 0
Example 4:

Input: arr = [1,3,5,7,9]
Output: 3
Example 5:

Input: arr = [7,11,12,9,5,2,7,17,22]
Output: 8

Constraints:

1 <= arr.length <= 300
1 <= arr[i] <= 10^8

class Solution {
public:
 int countTriplets(vector<int>& arr) {
 int n = arr.size();
 vector<int> nums(n);
 nums[0] = arr[0];
 for (int i = 1; i < n; ++i) nums[i] = nums[i - 1] ^ arr[i];
 // a = arr[i] ^ ... arr[j - 1] = nums[j - 1] ^ nums[i - 1]
 // b = arr[j] ^ ... arr[k] = nums[k] ^ nums[j - 1]
 int a, b, cnt = 0;
 for (int i = 0; i < n - 1; ++i) {
 for (int j = i + 1; j < n; ++j) {
 if (i > 0)
 a = nums[j - 1] ^ nums[i - 1];

1450. Number of Students Doing Homework at a Given
Time

Description

 else
 a = nums[j - 1];
 for (int k = j; k < n; ++k) {
 int b = nums[k] ^ nums[j - 1];
 if (a == b) {
 ++cnt;
 }
 }
 }
 }
 return cnt;
 }
};

Given two integer arrays startTime and endTime and given an integer queryTime.

The ith student started doing their homework at the time startTime[i] and
finished it at time endTime[i].

Return the number of students doing their homework at time queryTime. More
formally, return the number of students where queryTime lays in the interval
[startTime[i], endTime[i]] inclusive.

Example 1:

Input: startTime = [1,2,3], endTime = [3,2,7], queryTime = 4
Output: 1
Explanation: We have 3 students where:
The first student started doing homework at time 1 and finished at time 3 and
wasn't doing anything at time 4.
The second student started doing homework at time 2 and finished at time 2 and
also wasn't doing anything at time 4.
The third student started doing homework at time 3 and finished at time 7 and
was the only student doing homework at time 4.
Example 2:

Input: startTime = [4], endTime = [4], queryTime = 4
Output: 1

https://leetcode.com/problems/number-of-students-doing-homework-at-a-given-time/

Solution

05/17/2020:

1460. Make Two Arrays Equal by Reversing Sub-arrays
Description

Explanation: The only student was doing their homework at the queryTime.
Example 3:

Input: startTime = [4], endTime = [4], queryTime = 5
Output: 0
Example 4:

Input: startTime = [1,1,1,1], endTime = [1,3,2,4], queryTime = 7
Output: 0
Example 5:

Input: startTime = [9,8,7,6,5,4,3,2,1], endTime = [10,10,10,10,10,10,10,10,10],
queryTime = 5
Output: 5

Constraints:

startTime.length == endTime.length
1 <= startTime.length <= 100
1 <= startTime[i] <= endTime[i] <= 1000
1 <= queryTime <= 1000

class Solution {
public:
 int busyStudent(vector<int>& startTime, vector<int>& endTime, int queryTime) {
 int cnt = 0, n = startTime.size();
 for (int i = 0; i < n; ++i) {
 if (queryTime >= startTime[i] && queryTime <= endTime[i]) {
 ++cnt;
 }
 }
 return cnt;
 }
};

Given two integer arrays of equal length target and arr.

https://leetcode.com/problems/make-two-arrays-equal-by-reversing-sub-arrays/

Solution

05/30/2020:

In one step, you can select any non-empty sub-array of arr and reverse it. You
are allowed to make any number of steps.

Return True if you can make arr equal to target, or False otherwise.

Example 1:

Input: target = [1,2,3,4], arr = [2,4,1,3]
Output: true
Explanation: You can follow the next steps to convert arr to target:
1- Reverse sub-array [2,4,1], arr becomes [1,4,2,3]
2- Reverse sub-array [4,2], arr becomes [1,2,4,3]
3- Reverse sub-array [4,3], arr becomes [1,2,3,4]
There are multiple ways to convert arr to target, this is not the only way to do
so.
Example 2:

Input: target = [7], arr = [7]
Output: true
Explanation: arr is equal to target without any reverses.
Example 3:

Input: target = [1,12], arr = [12,1]
Output: true
Example 4:

Input: target = [3,7,9], arr = [3,7,11]
Output: false
Explanation: arr doesn't have value 9 and it can never be converted to target.
Example 5:

Input: target = [1,1,1,1,1], arr = [1,1,1,1,1]
Output: true

Constraints:

target.length == arr.length
1 <= target.length <= 1000
1 <= target[i] <= 1000
1 <= arr[i] <= 1000

1464. Maximum Product of Two Elements in an Array
Description

Solution

05/30/2020:

class Solution {
public:
 bool canBeEqual(vector<int>& target, vector<int>& arr) {
 sort(target.begin(), target.end());
 sort(arr.begin(), arr.end());
 return target == arr;
 }
};

Given the array of integers nums, you will choose two different indices i and j
of that array. Return the maximum value of (nums[i]-1)*(nums[j]-1).

Example 1:

Input: nums = [3,4,5,2]
Output: 12
Explanation: If you choose the indices i=1 and j=2 (indexed from 0), you will
get the maximum value, that is, (nums[1]-1)*(nums[2]-1) = (4-1)*(5-1) = 3*4 =
12.
Example 2:

Input: nums = [1,5,4,5]
Output: 16
Explanation: Choosing the indices i=1 and j=3 (indexed from 0), you will get the
maximum value of (5-1)*(5-1) = 16.
Example 3:

Input: nums = [3,7]
Output: 12

Constraints:

2 <= nums.length <= 500
1 <= nums[i] <= 10^3

https://leetcode.com/problems/maximum-product-of-two-elements-in-an-array/

1465. Maximum Area of a Piece of Cake After Horizontal
and Vertical Cuts

Description

class Solution {
public:
 int maxProduct(vector<int>& nums) {
 int n = nums.size();
 sort(nums.begin(), nums.end());
 return (nums[n - 1] - 1) * (nums[n - 2] - 1);
 }
};

Given a rectangular cake with height h and width w, and two arrays of integers
horizontalCuts and verticalCuts where horizontalCuts[i] is the distance from the
top of the rectangular cake to the ith horizontal cut and similarly,
verticalCuts[j] is the distance from the left of the rectangular cake to the jth
vertical cut.

Return the maximum area of a piece of cake after you cut at each horizontal and
vertical position provided in the arrays horizontalCuts and verticalCuts. Since
the answer can be a huge number, return this modulo 10^9 + 7.

Example 1:

Input: h = 5, w = 4, horizontalCuts = [1,2,4], verticalCuts = [1,3]
Output: 4
Explanation: The figure above represents the given rectangular cake. Red lines
are the horizontal and vertical cuts. After you cut the cake, the green piece of
cake has the maximum area.
Example 2:

Input: h = 5, w = 4, horizontalCuts = [3,1], verticalCuts = [1]
Output: 6
Explanation: The figure above represents the given rectangular cake. Red lines
are the horizontal and vertical cuts. After you cut the cake, the green and
yellow pieces of cake have the maximum area.

https://leetcode.com/problems/maximum-area-of-a-piece-of-cake-after-horizontal-and-vertical-cuts/

Solution

05/30/2020:

1470. Shuffle the Array
Description

Example 3:

Input: h = 5, w = 4, horizontalCuts = [3], verticalCuts = [3]
Output: 9

Constraints:

2 <= h, w <= 10^9
1 <= horizontalCuts.length < min(h, 10^5)
1 <= verticalCuts.length < min(w, 10^5)
1 <= horizontalCuts[i] < h
1 <= verticalCuts[i] < w
It is guaranteed that all elements in horizontalCuts are distinct.
It is guaranteed that all elements in verticalCuts are distinct.

class Solution {
public:
 int maxArea(int h, int w, vector<int>& horizontalCuts, vector<int>&
verticalCuts) {
 horizontalCuts.push_back(0);
 horizontalCuts.push_back(h);
 verticalCuts.push_back(0);
 verticalCuts.push_back(w);
 sort(horizontalCuts.begin(), horizontalCuts.end());
 sort(verticalCuts.begin(), verticalCuts.end());
 long long maxH = 0, maxW = 0;
 for (int i = 1; i < (int)horizontalCuts.size(); ++i) {
 maxH = max(maxH, (long long)horizontalCuts[i] - horizontalCuts[i - 1]);
 }
 for (int i = 1; i < (int)verticalCuts.size(); ++i) {
 maxW = max(maxW, (long long)verticalCuts[i] - verticalCuts[i - 1]);
 }
 const int MOD = 1e9 + 7;
 return maxH * maxW % MOD;
 }
};

https://leetcode.com/problems/shuffle-the-array/

Solution

06/06/2020:

Given the array nums consisting of 2n elements in the form
[x1,x2,...,xn,y1,y2,...,yn].

Return the array in the form [x1,y1,x2,y2,...,xn,yn].

Example 1:

Input: nums = [2,5,1,3,4,7], n = 3
Output: [2,3,5,4,1,7]
Explanation: Since x1=2, x2=5, x3=1, y1=3, y2=4, y3=7 then the answer is
[2,3,5,4,1,7].
Example 2:

Input: nums = [1,2,3,4,4,3,2,1], n = 4
Output: [1,4,2,3,3,2,4,1]
Example 3:

Input: nums = [1,1,2,2], n = 2
Output: [1,2,1,2]

Constraints:

1 <= n <= 500
nums.length == 2n
1 <= nums[i] <= 10^3

class Solution {
public:
 vector<int> shuffle(vector<int>& nums, int n) {
 vector<int> ret;
 for (int i = 0; i < n; ++i) {
 ret.push_back(nums[i]);
 ret.push_back(nums[i + n]);
 }
 return ret;
 }
};

1475. Final Prices With a Special Discount in a Shop
Description

Solution

06/13/2020:

Given the array prices where prices[i] is the price of the ith item in a shop.
There is a special discount for items in the shop, if you buy the ith item, then
you will receive a discount equivalent to prices[j] where j is the minimum index
such that j > i and prices[j] <= prices[i], otherwise, you will not receive any
discount at all.

Return an array where the ith element is the final price you will pay for the
ith item of the shop considering the special discount.

Example 1:

Input: prices = [8,4,6,2,3]
Output: [4,2,4,2,3]
Explanation:
For item 0 with price[0]=8 you will receive a discount equivalent to
prices[1]=4, therefore, the final price you will pay is 8 - 4 = 4.
For item 1 with price[1]=4 you will receive a discount equivalent to
prices[3]=2, therefore, the final price you will pay is 4 - 2 = 2.
For item 2 with price[2]=6 you will receive a discount equivalent to
prices[3]=2, therefore, the final price you will pay is 6 - 2 = 4.
For items 3 and 4 you will not receive any discount at all.
Example 2:

Input: prices = [1,2,3,4,5]
Output: [1,2,3,4,5]
Explanation: In this case, for all items, you will not receive any discount at
all.
Example 3:

Input: prices = [10,1,1,6]
Output: [9,0,1,6]

Constraints:

1 <= prices.length <= 500
1 <= prices[i] <= 10^3

https://leetcode.com/problems/final-prices-with-a-special-discount-in-a-shop/

1481. Least Number of Unique Integers after K Removals
Description

Solution

class Solution {
public:
 vector<int> finalPrices(vector<int>& prices) {
 int n = prices.size();
 for (int i = 0; i < n; ++i) {
 for (int j = i + 1; j < n; ++j) {
 if (prices[i] >= prices[j]) {
 prices[i] -= prices[j];
 break;
 }
 }
 }
 return prices;
 }
};

Given an array of integers arr and an integer k. Find the least number of unique
integers after removing exactly k elements.

Example 1:

Input: arr = [5,5,4], k = 1
Output: 1
Explanation: Remove the single 4, only 5 is left.
Example 2:
Input: arr = [4,3,1,1,3,3,2], k = 3
Output: 2
Explanation: Remove 4, 2 and either one of the two 1s or three 3s. 1 and 3 will
be left.

Constraints:

1 <= arr.length <= 10^5
1 <= arr[i] <= 10^9
0 <= k <= arr.length

https://leetcode.com/problems/least-number-of-unique-integers-after-k-removals/

06/13/2020:

1491. Average Salary Excluding the Minimum and
Maximum Salary

Description

class Solution {
public:
 int findLeastNumOfUniqueInts(vector<int>& arr, int k) {
 unordered_map<int, int> cnt;
 for (auto& a : arr) ++cnt[a];
 vector<pair<int, int>> p;
 for (auto& c : cnt) p.push_back({c.second, c.first});
 sort(p.rbegin(), p.rend());
 while (k > 0 && !p.empty()) {
 k -= p.back().first;
 if (k >= 0) {
 p.pop_back();
 }
 }
 return p.size();
 }
};

Given an array of unique integers salary where salary[i] is the salary of the
employee i.

Return the average salary of employees excluding the minimum and maximum salary.

Example 1:

Input: salary = [4000,3000,1000,2000]
Output: 2500.00000
Explanation: Minimum salary and maximum salary are 1000 and 4000 respectively.
Average salary excluding minimum and maximum salary is (2000+3000)/2= 2500
Example 2:

Input: salary = [1000,2000,3000]
Output: 2000.00000
Explanation: Minimum salary and maximum salary are 1000 and 3000 respectively.
Average salary excluding minimum and maximum salary is (2000)/1= 2000

https://leetcode.com/problems/average-salary-excluding-the-minimum-and-maximum-salary/

Solution

06/27/2020:

Tree
104. Maximum Depth of Binary Tree

Description

Example 3:

Input: salary = [6000,5000,4000,3000,2000,1000]
Output: 3500.00000
Example 4:

Input: salary = [8000,9000,2000,3000,6000,1000]
Output: 4750.00000

Constraints:

3 <= salary.length <= 100
10^3 <= salary[i] <= 10^6
salary[i] is unique.
Answers within 10^-5 of the actual value will be accepted as correct.

class Solution {
public:
 double average(vector<int>& salary) {
 double avg = 0;
 int n = salary.size();
 for (auto s : salary) avg += s;
 avg -= *max_element(salary.begin(), salary.end());
 avg -= *min_element(salary.begin(), salary.end());
 return avg / (n - 2);
 }
};

Given a binary tree, find its maximum depth.

https://leetcode.com/problems/maximum-depth-of-binary-tree/

Solution

02/03/2020:

111. Minimum Depth of Binary Tree
Description

The maximum depth is the number of nodes along the longest path from the root
node down to the farthest leaf node.

Note: A leaf is a node with no children.

Example:

Given binary tree [3,9,20,null,null,15,7],

 3
 / \
 9 20
 / \
 15 7
return its depth = 3.

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
 int maxDepth(TreeNode* root, int depth = 0) {
 if (root == nullptr) return 0;
 if (root->left == nullptr && root->right == nullptr) return depth + 1;
 return max(maxDepth(root->left, depth + 1), maxDepth(root->right, depth +
1));
 }
};

Given a binary tree, find its minimum depth.

https://leetcode.com/problems/minimum-depth-of-binary-tree/

Solution

Discussion: Non-recursive DFS:

Recursive DFS:

The minimum depth is the number of nodes along the shortest path from the root
node down to the nearest leaf node.

Note: A leaf is a node with no children.

Example:

Given binary tree [3,9,20,null,null,15,7],

 3
 / \
 9 20
 / \
 15 7
return its minimum depth = 2.

class Solution {
public:
 int minDepth(TreeNode* root) {
 if (root == nullptr) return 0;
 stack<pair<TreeNode*, int>> st;
 st.emplace(root, 1);
 int min_depth = numeric_limits<int>::max();
 while (!st.empty()) {
 pair<TreeNode*, int> cur = st.top(); st.pop();
 if (cur.first->left == nullptr && cur.first->right == nullptr) min_depth =
min(min_depth, cur.second);
 if (cur.first->left != nullptr) st.emplace(cur.first->left, cur.second +
1);
 if (cur.first->right != nullptr) st.emplace(cur.first->right, cur.second +
1);
 }
 return min_depth;
 }
};

https://leetcode.com/problems/minimum-depth-of-binary-tree/discuss/578010/C++-Non-recursive-and-Recursive-DFS

144. Binary Tree Preorder Traversal
Description

Solution

01/30/2020:

class Solution {
public:
 int minDepth(TreeNode* root) {
 if (root == nullptr) return 0;
 int min_depth = numeric_limits<int>::max();
 if (root->left != nullptr) min_depth = min(min_depth, minDepth(root->left) +
1);
 if (root->right != nullptr) min_depth = min(min_depth, minDepth(root->right)
+ 1);
 return min_depth == numeric_limits<int>::max() ? 1 : min_depth;
 }
};

Given a binary tree, return the preorder traversal of its nodes' values.

Example:

Input: [1,null,2,3]
 1
 \
 2
 /
 3

Output: [1,2,3]
Follow up: Recursive solution is trivial, could you do it iteratively?

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {

https://leetcode.com/problems/binary-tree-preorder-traversal/

199. Binary Tree Right Side View
Description

Solution

05/06/2020:

public:
 vector<int> preorderTraversal(TreeNode* root) {
 if (root == nullptr) return {};
 vector<int> ret;
 ret.push_back(root->val);
 vector<int> l = preorderTraversal(root->left);
 vector<int> r = preorderTraversal(root->right);
 ret.insert(ret.end(), l.begin(), l.end());
 ret.insert(ret.end(), r.begin(), r.end());
 return ret;
 }
};

Given a binary tree, imagine yourself standing on the right side of it, return
the values of the nodes you can see ordered from top to bottom.

Example:

Input: [1,2,3,null,5,null,4]
Output: [1, 3, 4]
Explanation:

 1 <---
 / \
2 3 <---
 \ \
 5 4 <---

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode() : val(0), left(nullptr), right(nullptr) {}
 * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}

https://leetcode.com/problems/binary-tree-right-side-view/

513. Find Bottom Left Tree Value
Description

 * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
right(right) {}
 * };
 */
class Solution {
public:
 vector<int> rightSideView(TreeNode* root) {
 if (root == nullptr) return {};
 vector<int> ret;
 queue<TreeNode*> q;
 q.push(root);
 while (!q.empty()) {
 int n = q.size();
 ret.push_back(q.front()->val);
 for (int i = 0; i < n; ++i) {
 TreeNode* cur = q.front(); q.pop();
 if (cur->right) q.push(cur->right);
 if (cur->left) q.push(cur->left);
 }
 }
 return ret;
 }
};

Given a binary tree, find the leftmost value in the last row of the tree.

Example 1:

Input:

 2
 / \
 1 3

Output:
1
Example 2:

Input:

 1
 / \

https://leetcode.com/problems/find-bottom-left-tree-value/

Solution

05/04/2020:

515. Find Largest Value in Each Tree Row

 2 3
 / / \
 4 5 6
 /
 7

Output:
7
Note: You may assume the tree (i.e., the given root node) is not NULL.

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
 int findBottomLeftValue(TreeNode* root) {
 if (root == nullptr) return -1;
 queue<TreeNode*> q;
 q.push(root);
 int leftmost = root->val;
 while (!q.empty()) {
 int n = q.size();
 leftmost = q.front()->val;
 for (int i = 0; i < n; ++i) {
 TreeNode* cur = q.front(); q.pop();
 if (cur->left) q.push(cur->left);
 if (cur->right) q.push(cur->right);
 }
 }
 return leftmost;
 }
};

Description

Solution

05/04/2020:

You need to find the largest value in each row of a binary tree.

Example:

Input:

 1
 / \
 3 2
 / \ \
 5 3 9

Output: [1, 3, 9]

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
 vector<int> largestValues(TreeNode* root) {
 if (root == nullptr) return {};
 vector<int> ret;
 queue<TreeNode*> q;
 q.push(root);
 while (!q.empty()) {
 int n = q.size();
 int maxValue = q.front()->val;
 for (int i = 0; i < n; ++i) {
 TreeNode* cur = q.front(); q.pop();
 maxValue = max(maxValue, cur->val);
 if (cur->left) q.push(cur->left);
 if (cur->right) q.push(cur->right);
 }
 ret.push_back(maxValue);
 }
 return ret;

https://leetcode.com/problems/find-largest-value-in-each-tree-row/

559. Maximum Depth of N-ary Tree
Description

Solution

01/31/2020:

 }
};

Given a n-ary tree, find its maximum depth.

The maximum depth is the number of nodes along the longest path from the root
node down to the farthest leaf node.

Nary-Tree input serialization is represented in their level order traversal,
each group of children is separated by the null value (See examples).

Example 1:

Input: root = [1,null,3,2,4,null,5,6]
Output: 3
Example 2:

Input: root =
[1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null
,null,14]
Output: 5

Constraints:

The depth of the n-ary tree is less than or equal to 1000.
The total number of nodes is between [0, 10^4].

/*
// Definition for a Node.
class Node {

https://leetcode.com/problems/maximum-depth-of-n-ary-tree/

563. Binary Tree Tilt
Description

public:
 int val;
 vector<Node*> children;

 Node() {}

 Node(int _val) {
 val = _val;
 }

 Node(int _val, vector<Node*> _children) {
 val = _val;
 children = _children;
 }
};
*/
class Solution {
public:
 int maxDepth(Node* root) {
 if (root == nullptr) return 0;
 int depth = 0;
 for (auto& c : root->children) {
 int d = maxDepth(c);
 depth = max(d, depth);
 }
 return depth + 1;
 }
};

Given a binary tree, return the tilt of the whole tree.

The tilt of a tree node is defined as the absolute difference between the sum of
all left subtree node values and the sum of all right subtree node values. Null
node has tilt 0.

The tilt of the whole tree is defined as the sum of all nodes' tilt.

Example:

Input:
 1
 / \

https://leetcode.com/problems/binary-tree-tilt/

Solution

05/20/2020:

589. N-ary Tree Preorder Traversal
Description

 2 3
Output: 1
Explanation:
Tilt of node 2 : 0
Tilt of node 3 : 0
Tilt of node 1 : |2-3| = 1
Tilt of binary tree : 0 + 0 + 1 = 1
Note:

The sum of node values in any subtree won't exceed the range of 32-bit integer.
All the tilt values won't exceed the range of 32-bit integer.

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode() : val(0), left(nullptr), right(nullptr) {}
 * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
right(right) {}
 * };
 */
class Solution {
public:
 int findTilt(TreeNode* root) {
 if (!root) return 0;
 return abs(sum(root->left) - sum(root->right)) + findTilt(root->left) +
findTilt(root->right);
 }

 int sum(TreeNode* root) {
 if (!root) return 0;
 return root->val + sum(root->left) + sum(root->right);
 }
};

https://leetcode.com/problems/n-ary-tree-preorder-traversal/

Solution

Discussion

01/30/2020:

Given an n-ary tree, return the preorder traversal of its nodes' values.

Nary-Tree input serialization is represented in their level order traversal,
each group of children is separated by the null value (See examples).

Follow up:

Recursive solution is trivial, could you do it iteratively?

Example 1:

Input: root = [1,null,3,2,4,null,5,6]
Output: [1,3,5,6,2,4]
Example 2:

Input: root =
[1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null
,null,14]
Output: [1,2,3,6,7,11,14,4,8,12,5,9,13,10]

Constraints:

The height of the n-ary tree is less than or equal to 1000
The total number of nodes is between [0, 10^4]

/*
// Definition for a Node.
class Node {
public:
 int val;
 vector<Node*> children;

 Node() {}

https://leetcode.com/problems/n-ary-tree-preorder-traversal/discuss/599524/C++-Recursive-and-Non-Recursive-DFS

04/26/2020 (Non-recursive):

04/26/2020 (Space efficient DFS):

 Node(int _val) {
 val = _val;
 }

 Node(int _val, vector<Node*> _children) {
 val = _val;
 children = _children;
 }
};
*/
class Solution {
public:
 vector<int> preorder(Node* root) {
 if (root == nullptr) return {};
 vector<int> ret;
 ret.push_back(root->val);
 for (auto& c : root->children) {
 vector<int> t = preorder(c);
 ret.insert(ret.end(), t.begin(), t.end());
 }
 return ret;
 }
};

class Solution {
public:
 vector<int> preorder(Node* root) {
 vector<int> ret;
 if (root == nullptr) return ret;
 stack<Node*> st;
 st.push(root);
 while (!st.empty()) {
 Node* cur = st.top(); st.pop();
 ret.push_back(cur->val);
 for (auto it = cur->children.crbegin(); it != cur->children.crend(); ++it)
{
 st.push(*it);
 }
 }
 return ret;
 }
};

590. N-ary Tree Postorder Traversal
Description

class Solution {
public:
 vector<int> preorder(Node* root) {
 vector<int> ret;
 dfs(root, ret);
 return ret;
 }

 void dfs(Node* root, vector<int>& ret) {
 if (root == nullptr) return;
 ret.push_back(root->val);
 for (auto& c : root->children) {
 dfs(c, ret);
 }
 }
};

Given an n-ary tree, return the postorder traversal of its nodes' values.

Nary-Tree input serialization is represented in their level order traversal,
each group of children is separated by the null value (See examples).

Follow up:

Recursive solution is trivial, could you do it iteratively?

Example 1:

Input: root = [1,null,3,2,4,null,5,6]
Output: [5,6,3,2,4,1]
Example 2:

https://leetcode.com/problems/n-ary-tree-postorder-traversal/

Solution

01/30/2020:

Input: root =
[1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null
,null,14]
Output: [2,6,14,11,7,3,12,8,4,13,9,10,5,1]

Constraints:

The height of the n-ary tree is less than or equal to 1000
The total number of nodes is between [0, 10^4]

/*
// Definition for a Node.
class Node {
public:
 int val;
 vector<Node*> children;

 Node() {}

 Node(int _val) {
 val = _val;
 }

 Node(int _val, vector<Node*> _children) {
 val = _val;
 children = _children;
 }
};
*/
class Solution {
public:
 vector<int> postorder(Node* root) {
 if (root == nullptr) return {};
 vector<int> nums;
 for (auto& c : root->children) {
 vector<int> n = postorder(c);
 nums.insert(nums.end(), n.begin(), n.end());
 }
 nums.push_back(root->val);
 return nums;
 }
};

04/26/2020 (Non-recursive postorder traversal):

Reverse the process becomes preorder traversal:

class Solution {
public:
 vector<int> postorder(Node* root) {
 if (root == nullptr) return {};
 stack<Node*> st;
 st.push(root);
 vector<int> ret;
 unordered_set<Node*> visited;
 while (!st.empty()) {
 Node* cur = st.top(); st.pop();
 if (cur->children.empty()) {
 visited.insert(cur);
 ret.push_back(cur->val);
 } else {
 bool allChidrenVisited = true;
 for (auto& c : cur->children) {
 if (visited.count(c) == 0) {
 allChidrenVisited = false;
 break;
 }
 }
 if (visited.count(cur) == 0) {
 if (allChidrenVisited) {
 visited.insert(cur);
 ret.push_back(cur->val);
 } else {
 st.push(cur);
 for (auto it = cur->children.crbegin(); it != cur->children.crend();
++it) {
 if (visited.count(*it) == 0) {
 st.push(*it);
 }
 }
 }
 }
 }
 }
 return ret;
 }
};

class Solution {
public:
 vector<int> postorder(Node* root) {

617. Merge Two Binary Trees
Description

 if (root == nullptr) return {};
 vector<int> ret;
 stack<Node*> st;
 st.push(root);
 while (!st.empty()) {
 Node* cur = st.top(); st.pop();
 ret.push_back(cur->val);
 for (auto& c : cur->children) {
 st.push(c);
 }
 }
 reverse(ret.begin(), ret.end());
 return ret;
 }
};

Given two binary trees and imagine that when you put one of them to cover the
other, some nodes of the two trees are overlapped while the others are not.

You need to merge them into a new binary tree. The merge rule is that if two
nodes overlap, then sum node values up as the new value of the merged node.
Otherwise, the NOT null node will be used as the node of new tree.

Example 1:

Input:
 Tree 1 Tree 2
 1 2
 / \ / \
 3 2 1 3
 / \ \
 5 4 7
Output:
Merged tree:
 3
 / \
 4 5
 / \ \
 5 4 7

Note: The merging process must start from the root nodes of both trees.

https://leetcode.com/problems/merge-two-binary-trees/

Solution

01/30/2020:

655. Print Binary Tree
Description

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
 TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
 if (t1 == nullptr && t2 == nullptr) return nullptr;
 if (t1 == nullptr && t2 != nullptr) return t2;
 if (t1 != nullptr && t1 == nullptr) return t1;
 if (t1 != nullptr && t2 != nullptr) {
 t1->val += t2->val;
 t1->left = mergeTrees(t1->left, t2->left);
 t1->right = mergeTrees(t1->right, t2->right);
 }
 return t1;
 }
};

Print a binary tree in an m*n 2D string array following these rules:

The row number m should be equal to the height of the given binary tree.
The column number n should always be an odd number.

https://leetcode.com/problems/print-binary-tree/

The root node's value (in string format) should be put in the exactly middle of
the first row it can be put. The column and the row where the root node belongs
will separate the rest space into two parts (left-bottom part and right-bottom
part). You should print the left subtree in the left-bottom part and print the
right subtree in the right-bottom part. The left-bottom part and the right-
bottom part should have the same size. Even if one subtree is none while the
other is not, you don't need to print anything for the none subtree but still
need to leave the space as large as that for the other subtree. However, if two
subtrees are none, then you don't need to leave space for both of them.
Each unused space should contain an empty string "".
Print the subtrees following the same rules.
Example 1:

Input:
 1
 /
 2
Output:
[["", "1", ""],
 ["2", "", ""]]
Example 2:

Input:
 1
 / \
 2 3
 \
 4
Output:
[["", "", "", "1", "", "", ""],
 ["", "2", "", "", "", "3", ""],
 ["", "", "4", "", "", "", ""]]
Example 3:

Input:
 1
 / \
 2 5
 /
 3
 /
4
Output:

[["", "", "", "", "", "", "", "1", "", "", "", "", "", "", ""]
 ["", "", "", "2", "", "", "", "", "", "", "", "5", "", "", ""]
 ["", "3", "", "", "", "", "", "", "", "", "", "", "", "", ""]
 ["4", "", "", "", "", "", "", "", "", "", "", "", "", "", ""]]
Note: The height of binary tree is in the range of [1, 10].

Solution

05/20/2020:

700. Search in a Binary Search Tree
Description

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode() : val(0), left(nullptr), right(nullptr) {}
 * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
right(right) {}
 * };
 */
class Solution {
public:
 vector<vector<string>> printTree(TreeNode* root) {
 if (!root) return { {} };
 int h = height(root), m = h, n = pow(2, h) - 1;
 vector<vector<string>> ret(m, vector<string>(n, ""));
 stack<pair<TreeNode*, pair<int, int>>> st;
 st.push({root, {0, 0} });
 while (!st.empty()) {
 pair<TreeNode*, pair<int, int>> p = st.top(); st.pop();
 TreeNode* cur = p.first;
 int i = p.second.second, j = p.second.first;
 ret[i][n / 2 + j] = to_string(cur->val);
 if (cur->left) st.push({cur->left, {j - pow(2, h - 2 - i), i + 1} });
 if (cur->right) st.push({cur->right, {j + pow(2, h - 2 - i), i + 1} });
 }
 return ret;
 }

 int height(TreeNode* root) {
 if (!root) return 0;
 return max(height(root->left), height(root->right)) + 1;
 }
};

https://leetcode.com/problems/search-in-a-binary-search-tree/

Solution

01/30/2020:

Given the root node of a binary search tree (BST) and a value. You need to find
the node in the BST that the node's value equals the given value. Return the
subtree rooted with that node. If such node doesn't exist, you should return
NULL.

For example,

Given the tree:
 4
 / \
 2 7
 / \
 1 3

And the value to search: 2
You should return this subtree:

 2
 / \
 1 3
In the example above, if we want to search the value 5, since there is no node
with value 5, we should return NULL.

Note that an empty tree is represented by NULL, therefore you would see the
expected output (serialized tree format) as [], not null.

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
 TreeNode* searchBST(TreeNode* root, int val) {
 if (root == nullptr) return nullptr;
 if (root->val > val) return searchBST(root->left, val);
 if (root->val < val) return searchBST(root->right, val);
 return root;
 }
};

872. Leaf-Similar Trees
Description

Solution

02/03/2020:

Consider all the leaves of a binary tree. From left to right order, the values
of those leaves form a leaf value sequence.

For example, in the given tree above, the leaf value sequence is (6, 7, 4, 9,
8).

Two binary trees are considered leaf-similar if their leaf value sequence is the
same.

Return true if and only if the two given trees with head nodes root1 and root2
are leaf-similar.

Note:

Both of the given trees will have between 1 and 100 nodes.

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
 bool leafSimilar(TreeNode* root1, TreeNode* root2) {
 vector<int> nums1 = dfs(root1);
 vector<int> nums2 = dfs(root2);
 if (nums1.size() != nums2.size()) return false;
 for (int i = 0; i < (int)nums1.size(); ++i) {

https://leetcode.com/problems/leaf-similar-trees/

897. Increasing Order Search Tree
Description

 if (nums1[i] != nums2[i]) {
 return false;
 }
 }
 return true;
 }
 vector<int> dfs(TreeNode* root) {
 if (root == nullptr) return {};
 if (root->left == nullptr && root->right == nullptr) return {root->val};
 vector<int> nums1 = dfs(root->left);
 vector<int> nums2 = dfs(root->right);
 nums1.insert(nums1.end(), nums2.begin(), nums2.end());
 return nums1;
 }
};

Given a binary search tree, rearrange the tree in in-order so that the leftmost
node in the tree is now the root of the tree, and every node has no left child
and only 1 right child.

Example 1:
Input: [5,3,6,2,4,null,8,1,null,null,null,7,9]

 5
 / \
 3 6
 / \ \
 2 4 8
 / / \
1 7 9

Output: [1,null,2,null,3,null,4,null,5,null,6,null,7,null,8,null,9]

 1
 \
 2
 \
 3
 \
 4
 \
 5

https://leetcode.com/problems/increasing-order-search-tree/

Solution

01/31/2020:

 \
 6
 \
 7
 \
 8
 \
 9
Note:

The number of nodes in the given tree will be between 1 and 100.
Each node will have a unique integer value from 0 to 1000.

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
 TreeNode* increasingBST(TreeNode* root) {
 vector<int> nodes = inorder(root);
 TreeNode *pre = new TreeNode(0), *cur = pre;
 for (auto& n : nodes) {
 cur->right = new TreeNode(n);
 cur = cur->right;
 }
 return pre->right;
 }

 vector<int> inorder(TreeNode* root) {
 if (root == nullptr) return {};
 vector<int> nodes;
 vector<int> l = inorder(root->left);
 vector<int> r = inorder(root->right);
 nodes.insert(nodes.end(), l.begin(), l.end());
 nodes.push_back(root->val);
 nodes.insert(nodes.end(), r.begin(), r.end());
 return nodes;
 }

938. Range Sum of BST
Description

Solution

01/29/2020:

};

Given the root node of a binary search tree, return the sum of values of all
nodes with value between L and R (inclusive).

The binary search tree is guaranteed to have unique values.

Example 1:

Input: root = [10,5,15,3,7,null,18], L = 7, R = 15
Output: 32
Example 2:

Input: root = [10,5,15,3,7,13,18,1,null,6], L = 6, R = 10
Output: 23

Note:

The number of nodes in the tree is at most 10000.
The final answer is guaranteed to be less than 2^31.

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
 int rangeSumBST(TreeNode* root, int L, int R) {
 if (root == nullptr) return 0;

https://leetcode.com/problems/range-sum-of-bst/

965. Univalued Binary Tree
Description

Solution

01/31/2020:

 if (root->val > R) return rangeSumBST(root->left, L, R);
 if (root->val < L) return rangeSumBST(root->right, L, R);
 return root->val + rangeSumBST(root->left, L, R) + rangeSumBST(root->right,
L, R);
 }
};

A binary tree is univalued if every node in the tree has the same value.

Return true if and only if the given tree is univalued.

Example 1:

Input: [1,1,1,1,1,null,1]
Output: true
Example 2:

Input: [2,2,2,5,2]
Output: false

Note:

The number of nodes in the given tree will be in the range [1, 100].
Each node's value will be an integer in the range [0, 99].

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode(int x) : val(x), left(NULL), right(NULL) {}

https://leetcode.com/problems/univalued-binary-tree/

993. Cousins in Binary Tree
Description

 * };
 */
class Solution {
public:
 bool isUnivalTree(TreeNode* root) {
 if (root == nullptr) return true;
 return dfs(root, root->val);
 }

 bool dfs(TreeNode* root, int val) {
 if (root == nullptr) return true;
 if (root->val != val) return false;
 return dfs(root->left, val) && dfs(root->right, val);
 }
};

In a binary tree, the root node is at depth 0, and children of each depth k node
are at depth k+1.

Two nodes of a binary tree are cousins if they have the same depth, but have
different parents.

We are given the root of a binary tree with unique values, and the values x and
y of two different nodes in the tree.

Return true if and only if the nodes corresponding to the values x and y are
cousins.

Example 1:

Input: root = [1,2,3,4], x = 4, y = 3
Output: false
Example 2:

Input: root = [1,2,3,null,4,null,5], x = 5, y = 4
Output: true
Example 3:

https://leetcode.com/problems/cousins-in-binary-tree/

Solution

05/09/2020 Discussion:

We can create a new data structure Node to store the parent, depth of each node.

Then apply the standard BFS to search for x and y, then check the conditions of being cousins nodes.

BFS:

Input: root = [1,2,3,null,4], x = 2, y = 3
Output: false

Note:

The number of nodes in the tree will be between 2 and 100.
Each node has a unique integer value from 1 to 100.

class Node {
public:
 TreeNode* node;
 TreeNode* parent;
 int depth;
 Node(TreeNode* n, TreeNode* p, int d) : node(n), parent(p), depth(d) {};
};

class Solution {
public:
 bool isCousins(TreeNode* root, int x, int y) {
 Node nx = bfs(root, x);
 Node ny = bfs(root, y);
 return nx.parent != ny.parent && nx.depth == ny.depth;
 }

 Node bfs(TreeNode* root, int x) {
 queue<Node> q;
 q.emplace(root, nullptr, 0);
 while (!q.empty()) {
 int n = q.size();
 for (int i = 0; i < n; ++i) {
 Node cur = q.front(); q.pop();
 if (cur.node->val == x) return cur;
 if (cur.node->left) q.emplace(cur.node->left, cur.node, cur.depth + 1);
 if (cur.node->right) q.emplace(cur.node->right, cur.node, cur.depth +
1);

https://leetcode.com/problems/cousins-in-binary-tree/discuss/618124/C++-DFS-(recursive-and-non-recursive)-and-BFS

Since we store the information about the depth of each node, it doesn't really matter whether we search in
level-order. Thus the code can be simplified to the following: Non-recursive DFS:

Recursive DFS:

 }
 }
 return Node(nullptr, nullptr, -1);
 }
};

class Solution {
public:
 bool isCousins(TreeNode* root, int x, int y) {
 Node nx = dfs(root, x);
 Node ny = dfs(root, y);
 return nx.parent != ny.parent && nx.depth == ny.depth;
 }

 Node dfs(TreeNode* root, int x) {
 stack<Node> st;
 st.emplace(root, nullptr, 0);
 while (!st.empty()) {
 Node cur = st.top(); st.pop();
 if (cur.node->val == x) return cur;
 if (cur.node->left) st.emplace(cur.node->left, cur.node, cur.depth + 1);
 if (cur.node->right) st.emplace(cur.node->right, cur.node, cur.depth + 1);
 }
 return Node(nullptr, nullptr, -1);
 }
};

class Solution {
public:
 bool isCousins(TreeNode* root, int x, int y) {
 Node nx = dfs(Node(root, nullptr, 0), x);
 Node ny = dfs(Node(root, nullptr, 0), y);
 return nx.parent != ny.parent && nx.depth == ny.depth;
 }

 Node dfs(Node root, int x) {
 if (root.node == nullptr) return Node(nullptr, nullptr, -1);
 if (root.node->val == x) return root;
 Node left = dfs(Node(root.node->left, root.node, root.depth + 1), x);
 Node right = dfs(Node(root.node->right, root.node, root.depth + 1), x);
 if (left.node) return left;
 if (right.node) return right;

DFS without using Node:

Or we can directly check the parents of the nodes on each level: BFS without using Node:

 return Node(nullptr, nullptr, -1);
 }
};

class Solution {
public:
 bool isCousins(TreeNode* root, int x, int y) {
 pair<TreeNode*, int> nx = dfs(root, nullptr, x, 0);
 pair<TreeNode*, int> ny = dfs(root, nullptr, y, 0);
 return nx.first != ny.first && nx.second == ny.second;
 }

 pair<TreeNode*, int> dfs(TreeNode* root, TreeNode* parent, int x, int depth) {
 if (root == nullptr) return {nullptr, -1};
 if (root->val == x) return {parent, depth};
 pair<TreeNode*, int> left = dfs(root->left, root, x, depth + 1);
 pair<TreeNode*, int> right = dfs(root->right, root, x, depth + 1);
 if (left.first) return left;
 if (right.first) return right;
 return {nullptr, -1};
 }
};

class Solution {
public:
 bool isCousins(TreeNode* root, int x, int y) {
 queue<pair<TreeNode*, int>> q;
 q.emplace(root, -1);
 while (!q.empty()) {
 int n = q.size();
 unordered_map<int, int> parent;
 for (int i = 0; i < n; ++i) {
 pair<TreeNode*, int> cur = q.front(); q.pop();
 parent[cur.first->val] = cur.second;
 if (cur.first->left != nullptr) q.emplace(cur.first->left, cur.first-
>val);
 if (cur.first->right != nullptr) q.emplace(cur.first->right, cur.first-
>val);
 }
 if (parent.count(x) > 0 && parent.count(y) > 0 && parent[x] != parent[y])
return true;
 }
 return false;

1008. Construct Binary Search Tree from Preorder Traversal
Description

Solution

05/24/2020:

 }
};

Return the root node of a binary search tree that matches the given preorder
traversal.

(Recall that a binary search tree is a binary tree where for every node, any
descendant of node.left has a value < node.val, and any descendant of node.right
has a value > node.val. Also recall that a preorder traversal displays the
value of the node first, then traverses node.left, then traverses node.right.)

It's guaranteed that for the given test cases there is always possible to find a
binary search tree with the given requirements.

Example 1:

Input: [8,5,1,7,10,12]
Output: [8,5,10,1,7,null,12]

Constraints:

1 <= preorder.length <= 100
1 <= preorder[i] <= 10^8
The values of preorder are distinct.

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode() : val(0), left(nullptr), right(nullptr) {}
 * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
right(right) {}

https://leetcode.com/problems/construct-binary-search-tree-from-preorder-traversal/

1022. Sum of Root To Leaf Binary Numbers
Description

 * };
 */
class Solution {
public:
 TreeNode* bstFromPreorder(vector<int>& preorder, int start = 0, int stop =
INT_MAX) {
 if (preorder.empty()) return nullptr;
 if (stop == INT_MAX) stop = preorder.size() - 1;
 if (start > stop) return nullptr;
 TreeNode* root = new TreeNode(preorder[start]);
 int i = start + 1;
 for (; i <= stop; ++i)
 if (preorder[i] > preorder[start])
 break;
 root->left = bstFromPreorder(preorder, start + 1, i - 1);
 root->right = bstFromPreorder(preorder, i, stop);
 return root;
 }
};

Given a binary tree, each node has value 0 or 1. Each root-to-leaf path
represents a binary number starting with the most significant bit. For example,
if the path is 0 -> 1 -> 1 -> 0 -> 1, then this could represent 01101 in binary,
which is 13.

For all leaves in the tree, consider the numbers represented by the path from
the root to that leaf.

Return the sum of these numbers.

Example 1:

Input: [1,0,1,0,1,0,1]
Output: 22
Explanation: (100) + (101) + (110) + (111) = 4 + 5 + 6 + 7 = 22

Note:

https://leetcode.com/problems/sum-of-root-to-leaf-binary-numbers/

Solution

02/03/2020:

1325. Delete Leaves With a Given Value
Description

The number of nodes in the tree is between 1 and 1000.
node.val is 0 or 1.
The answer will not exceed 2^31 - 1.

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
 int sumRootToLeaf(TreeNode* root) {
 return dps(root, 0);
 }

 int dps(TreeNode* root, int sum) {
 if (root == nullptr) return 0;
 sum = sum * 2 + root->val;
 if (root->left == nullptr && root->right == nullptr) return sum;
 return dps(root->left, sum) + dps(root->right, sum);
 }
};

Given a binary tree root and an integer target, delete all the leaf nodes with
value target.

Note that once you delete a leaf node with value target, if it's parent node
becomes a leaf node and has the value target, it should also be deleted (you
need to continue doing that until you can't).

https://leetcode.com/problems/delete-leaves-with-a-given-value/

Solution

01/19/2020:

Example 1:

Input: root = [1,2,3,2,null,2,4], target = 2
Output: [1,null,3,null,4]
Explanation: Leaf nodes in green with value (target = 2) are removed (Picture in
left).
After removing, new nodes become leaf nodes with value (target = 2) (Picture in
center).
Example 2:

Input: root = [1,3,3,3,2], target = 3
Output: [1,3,null,null,2]
Example 3:

Input: root = [1,2,null,2,null,2], target = 2
Output: [1]
Explanation: Leaf nodes in green with value (target = 2) are removed at each
step.
Example 4:

Input: root = [1,1,1], target = 1
Output: []
Example 5:

Input: root = [1,2,3], target = 1
Output: [1,2,3]

Constraints:

1 <= target <= 1000
Each tree has at most 3000 nodes.
Each node's value is between [1, 1000].

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;

1333. Filter Restaurants by Vegan-Friendly, Price and
Distance

Description

 * TreeNode *left;
 * TreeNode *right;
 * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
 TreeNode* removeLeafNodes(TreeNode* root, int target) {
 if (root == nullptr) return root;
 root->left = removeLeafNodes(root->left, target);
 root->right = removeLeafNodes(root->right, target);
 if (root->left == nullptr && root->right == nullptr && root->val == target)
 root = nullptr;
 return root;
 }
};

Given the array restaurants where restaurants[i] = [idi, ratingi,
veganFriendlyi, pricei, distancei]. You have to filter the restaurants using
three filters.

The veganFriendly filter will be either true (meaning you should only include
restaurants with veganFriendlyi set to true) or false (meaning you can include
any restaurant). In addition, you have the filters maxPrice and maxDistance
which are the maximum value for price and distance of restaurants you should
consider respectively.

Return the array of restaurant IDs after filtering, ordered by rating from
highest to lowest. For restaurants with the same rating, order them by id from
highest to lowest. For simplicity veganFriendlyi and veganFriendly take value 1
when it is true, and 0 when it is false.

Example 1:

Input: restaurants = [[1,4,1,40,10],[2,8,0,50,5],[3,8,1,30,4],[4,10,0,10,3],
[5,1,1,15,1]], veganFriendly = 1, maxPrice = 50, maxDistance = 10
Output: [3,1,5]
Explanation:

https://leetcode.com/problems/filter-restaurants-by-vegan-friendly-price-and-distance/

Solution

01/25/2020:

The restaurants are:
Restaurant 1 [id=1, rating=4, veganFriendly=1, price=40, distance=10]
Restaurant 2 [id=2, rating=8, veganFriendly=0, price=50, distance=5]
Restaurant 3 [id=3, rating=8, veganFriendly=1, price=30, distance=4]
Restaurant 4 [id=4, rating=10, veganFriendly=0, price=10, distance=3]
Restaurant 5 [id=5, rating=1, veganFriendly=1, price=15, distance=1]
After filter restaurants with veganFriendly = 1, maxPrice = 50 and maxDistance =
10 we have restaurant 3, restaurant 1 and restaurant 5 (ordered by rating from
highest to lowest).
Example 2:

Input: restaurants = [[1,4,1,40,10],[2,8,0,50,5],[3,8,1,30,4],[4,10,0,10,3],
[5,1,1,15,1]], veganFriendly = 0, maxPrice = 50, maxDistance = 10
Output: [4,3,2,1,5]
Explanation: The restaurants are the same as in example 1, but in this case the
filter veganFriendly = 0, therefore all restaurants are considered.
Example 3:

Input: restaurants = [[1,4,1,40,10],[2,8,0,50,5],[3,8,1,30,4],[4,10,0,10,3],
[5,1,1,15,1]], veganFriendly = 0, maxPrice = 30, maxDistance = 3
Output: [4,5]

Constraints:

1 <= restaurants.length <= 10^4
restaurants[i].length == 5
1 <= idi, ratingi, pricei, distancei <= 10^5
1 <= maxPrice, maxDistance <= 10^5
veganFriendlyi and veganFriendly are 0 or 1.
All idi are distinct.

class Solution {
public:
 vector<int> filterRestaurants(vector<vector<int>>& restaurants, int
veganFriendly, int maxPrice, int maxDistance) {
 vector<vector<int>> filtered;
 for (auto& r : restaurants)
 if (r[3] <= maxPrice && r[4] <= maxDistance)
 if (veganFriendly == 0 || (veganFriendly == 1 && r[2] == 1))
 filtered.push_back(r);
 sort(filtered.begin(), filtered.end(), [](vector<int>& f1, vector<int>& f2)
-> bool { return f1[1] == f2[1] ? f1[0] > f2[0] : f1[1] > f2[1]; });
 vector<int> ret;

01/25/2020:

1443. Minimum Time to Collect All Apples in a Tree
Description

 for (auto& f : filtered) ret.push_back(f[0]);
 return ret;
 }
};

class Solution {
public:
 vector<int> filterRestaurants(vector<vector<int>>& restaurants, int
veganFriendly, int maxPrice, int maxDistance) {
 vector<int> ret;
 for (int i = 0; i < restaurants.size(); ++i) {
 if ((veganFriendly == 0 || (veganFriendly == 1 && restaurants[i][2] == 1))
 && restaurants[i][3] <= maxPrice
 && restaurants[i][4] <= maxDistance) {
 ret.push_back(i);
 }
 }
 quicksort(ret, 0, ret.size() - 1, restaurants);
 for (auto& r : ret) r = restaurants[r][0];
 return ret;
 }
 void quicksort(vector<int>& ret, int s1, int s2, vector<vector<int>>&
restaurants) {
 if (s1 >= s2) return;
 int j = s1;
 for (int i = s1; i <= s2; ++i) {
 if (restaurants[ret[i]][1] > restaurants[ret[s2]][1] ||
(restaurants[ret[i]][1] == restaurants[ret[s2]][1] && restaurants[ret[i]][0] >
restaurants[ret[s2]][0])) {
 swap(ret[i], ret[j++]);
 }
 }
 swap(ret[j], ret[s2]);
 quicksort(ret, s1, j - 1, restaurants);
 quicksort(ret, j + 1, s2, restaurants);
 }
};

https://leetcode.com/problems/minimum-time-to-collect-all-apples-in-a-tree/

Solution

Given an undirected tree consisting of n vertices numbered from 0 to n-1, which
has some apples in their vertices. You spend 1 second to walk over one edge of
the tree. Return the minimum time in seconds you have to spend in order to
collect all apples in the tree starting at vertex 0 and coming back to this
vertex.

The edges of the undirected tree are given in the array edges, where edges[i] =
[fromi, toi] means that exists an edge connecting the vertices fromi and toi.
Additionally, there is a boolean array hasApple, where hasApple[i] = true means
that vertex i has an apple, otherwise, it does not have any apple.

Example 1:

Input: n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple =
[false,false,true,false,true,true,false]
Output: 8
Explanation: The figure above represents the given tree where red vertices have
an apple. One optimal path to collect all apples is shown by the green arrows.
Example 2:

Input: n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple =
[false,false,true,false,false,true,false]
Output: 6
Explanation: The figure above represents the given tree where red vertices have
an apple. One optimal path to collect all apples is shown by the green arrows.
Example 3:

Input: n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple =
[false,false,false,false,false,false,false]
Output: 0

Constraints:

1 <= n <= 10^5
edges.length == n-1
edges[i].length == 2
0 <= fromi, toi <= n-1
fromi < toi
hasApple.length == n

05/10/2020:

class Solution {
public:
 int minTime(int n, vector<vector<int>>& edges, vector<bool>& hasApple) {
 if (n == 0 || edges.empty() || edges[0].empty() || hasApple.empty()) return
0;
 unordered_map<int, unordered_set<int>> g;
 for (auto& e : edges) {
 g[e[0]].insert(e[1]);
 g[e[1]].insert(e[0]);
 }
 const int INF = numeric_limits<int>::max();
 vector<int> dist(n, INF);
 vector<int> pred(n);
 iota(pred.begin(), pred.end(), 0);
 dist[0] = 0;
 priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int,
int>>> q;
 unordered_set<int> visited;
 q.emplace(dist[0], 0);
 while (!q.empty()) {
 pair<int, int> cur = q.top(); q.pop();
 int i = cur.second;
 if (visited.count(i)) continue;
 int j = pred[i];
 for (auto& k : g[i]) {
 if (dist[i] != INF && dist[k] > dist[i] + 1) {
 dist[k] = dist[i] + 1;
 pred[k] = i;
 }
 q.emplace(dist[k], k);
 }
 visited.insert(i);
 }
 set<pair<int, int>> paths;
 for (int i = 0; i < n; ++i) {
 if (hasApple[i] == false) continue;
 int cur = i;
 while (cur != 0) {
 paths.insert({pred[cur], cur});
 cur = pred[cur];
 }
 }
 return paths.size() * 2;
 }
};

1448. Count Good Nodes in Binary Tree
Description

Solution

05/17/2020:

Given a binary tree root, a node X in the tree is named good if in the path from
root to X there are no nodes with a value greater than X.

Return the number of good nodes in the binary tree.

Example 1:

Input: root = [3,1,4,3,null,1,5]
Output: 4
Explanation: Nodes in blue are good.
Root Node (3) is always a good node.
Node 4 -> (3,4) is the maximum value in the path starting from the root.
Node 5 -> (3,4,5) is the maximum value in the path
Node 3 -> (3,1,3) is the maximum value in the path.
Example 2:

Input: root = [3,3,null,4,2]
Output: 3
Explanation: Node 2 -> (3, 3, 2) is not good, because "3" is higher than it.
Example 3:

Input: root = [1]
Output: 1
Explanation: Root is considered as good.

Constraints:

The number of nodes in the binary tree is in the range [1, 10^5].
Each node's value is between [-10^4, 10^4].

/**
 * Definition for a binary tree node.

https://leetcode.com/problems/count-good-nodes-in-binary-tree/

1457. Pseudo-Palindromic Paths in a Binary Tree
Description

 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode() : val(0), left(nullptr), right(nullptr) {}
 * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
right(right) {}
 * };
 */
class Solution {
public:
 int goodNodes(TreeNode* root, int cur_max = INT_MIN) {
 if (!root) return 0;
 int n = root->val >= cur_max ? 1 : 0;
 cur_max = max(root->val, cur_max);
 return n + goodNodes(root->left, cur_max) + goodNodes(root->right, cur_max);
 }
};

Given a binary tree where node values are digits from 1 to 9. A path in the
binary tree is said to be pseudo-palindromic if at least one permutation of the
node values in the path is a palindrome.

Return the number of pseudo-palindromic paths going from the root node to leaf
nodes.

Example 1:

Input: root = [2,3,1,3,1,null,1]
Output: 2
Explanation: The figure above represents the given binary tree. There are three
paths going from the root node to leaf nodes: the red path [2,3,3], the green
path [2,1,1], and the path [2,3,1]. Among these paths only red path and green
path are pseudo-palindromic paths since the red path [2,3,3] can be rearranged
in [3,2,3] (palindrome) and the green path [2,1,1] can be rearranged in [1,2,1]
(palindrome).
Example 2:

https://leetcode.com/problems/pseudo-palindromic-paths-in-a-binary-tree/

Solution

05/23/2020:

Input: root = [2,1,1,1,3,null,null,null,null,null,1]
Output: 1
Explanation: The figure above represents the given binary tree. There are three
paths going from the root node to leaf nodes: the green path [2,1,1], the path
[2,1,3,1], and the path [2,1]. Among these paths only the green path is pseudo-
palindromic since [2,1,1] can be rearranged in [1,2,1] (palindrome).
Example 3:

Input: root = [9]
Output: 1

Constraints:

The given binary tree will have between 1 and 10^5 nodes.
Node values are digits from 1 to 9.

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode() : val(0), left(nullptr), right(nullptr) {}
 * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
right(right) {}
 * };
 */
class Solution {
public:
 int ret = 0;
 vector<int> cnt;
 int pseudoPalindromicPaths (TreeNode* root) {
 cnt.resize(10, 0);
 dfs(root, 0);
 return ret;
 }

 void dfs(TreeNode* root, int numberOfOdds) {
 if (root == nullptr) return;

 bool isOdd = ++cnt[root->val] % 2 == 1;
 numberOfOdds += isOdd ? 1 : -1;
 if (root->left == nullptr && root->right == nullptr) {
 ret += numberOfOdds <= 1 ? 1 : 0;
 --cnt[root->val];
 return;
 }
 dfs(root->left, numberOfOdds);
 dfs(root->right, numberOfOdds);
 --cnt[root->val];
 }
};

class Solution {
public:
 vector<vector<int>> nums;
 int pseudoPalindromicPaths (TreeNode* root) {
 int ret = 0;
 vector<int> path;
 dfs(root, path);
 for (auto& path : nums) ret += isPalindromic(path) ? 1 : 0;
 return ret;
 }

 void dfs(TreeNode* root, vector<int>& path) {
 if (root == nullptr) return;
 if (root->left == nullptr && root->right == nullptr) {
 path.push_back(root->val);
 nums.push_back(path);
 path.pop_back();
 return;
 }
 path.push_back(root->val);
 dfs(root->left, path);
 dfs(root->right, path);
 path.pop_back();
 }

 bool isPalindromic(vector<int>& path) {
 vector<int> freq(10, 0);
 int numberOfOdds = 0;
 for (auto& p : path) ++freq[p];
 for (int i = 0; i < 10; ++i) numberOfOdds += freq[i] % 2 ? 1 : 0;
 return numberOfOdds <= 1;
 }
};

1469. Find All The Lonely Nodes
Description

In a binary tree, a lonely node is a node that is the only child of its parent
node. The root of the tree is not lonely because it does not have a parent node.

Given the root of a binary tree, return an array containing the values of all
lonely nodes in the tree. Return the list in any order.

Example 1:

Input: root = [1,2,3,null,4]
Output: [4]
Explanation: Light blue node is the only lonely node.
Node 1 is the root and is not lonely.
Nodes 2 and 3 have the same parent and are not lonely.
Example 2:

Input: root = [7,1,4,6,null,5,3,null,null,null,null,null,2]
Output: [6,2]
Explanation: Light blue nodes are lonely nodes.
Please remember that order doesn't matter, [2,6] is also an acceptable answer.
Example 3:

Input: root = [11,99,88,77,null,null,66,55,null,null,44,33,null,null,22]
Output: [77,55,33,66,44,22]
Explanation: Nodes 99 and 88 share the same parent. Node 11 is the root.
All other nodes are lonely.
Example 4:

Input: root = [197]
Output: []
Example 5:

Input: root = [31,null,78,null,28]
Output: [78,28]

Constraints:

The number of nodes in the tree is in the range [1, 1000].

https://leetcode.com/problems/find-all-the-lonely-nodes/

Solution

06/11/2020:

Using iteration:

Using recursion:

Each node's value is between [1, 10^6].

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode() : val(0), left(nullptr), right(nullptr) {}
 * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
right(right) {}
 * };
 */
class Solution {
public:
 vector<int> getLonelyNodes(TreeNode* root) {
 vector<int> ret;
 stack<TreeNode*> st;
 if (root) st.push(root);
 while (!st.empty()) {
 TreeNode* cur = st.top(); st.pop();
 if (cur->right && !cur->left) ret.push_back(cur->right->val);
 if (cur->left && !cur->right) ret.push_back(cur->left->val);
 if (cur->right) st.push(cur->right);
 if (cur->left) st.push(cur->left);
 }
 return ret;
 }
};

1490. Clone N-ary Tree
Description

class Solution {
public:
 vector<int> ret;
 vector<int> getLonelyNodes(TreeNode* root) {
 if (root == nullptr || (!root->left && !root->right)) return ret;
 if (!root->left) ret.push_back(root->right->val);
 if (!root->right) ret.push_back(root->left->val);
 getLonelyNodes(root->left);
 getLonelyNodes(root->right);
 return ret;
 }
};

Given a root of an N-ary tree, return a deep copy (clone) of the tree.

Each node in the n-ary tree contains a val (int) and a list (List[Node]) of its
children.

class Node {
 public int val;
 public List<Node> children;
}
Nary-Tree input serialization is represented in their level order traversal,
each group of children is separated by the null value (See examples).

Follow up: Can your solution work for the graph problem?

Example 1:

Input: root = [1,null,3,2,4,null,5,6]
Output: [1,null,3,2,4,null,5,6]
Example 2:

https://leetcode.com/problems/clone-n-ary-tree/

Solution

06/27/2020:

Input: root =
[1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null
,null,14]
Output:
[1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null
,null,14]

Constraints:

The depth of the n-ary tree is less than or equal to 1000.
The total number of nodes is between [0, 10^4].

/*
// Definition for a Node.
class Node {
public:
 int val;
 vector<Node*> children;

 Node() {}

 Node(int _val) {
 val = _val;
 }

 Node(int _val, vector<Node*> _children) {
 val = _val;
 children = _children;
 }
};
*/

class Solution {
public:
 Node* cloneTree(Node* root) {
 if (!root) return nullptr;
 queue<Node*> q, qc;
 q.push(root);
 Node* clone = new Node(root->val);
 qc.push(clone);
 while (!q.empty()) {
 int sz = q.size();
 for (int s = 0; s < sz; ++s) {

Math
2. Add Two Numbers

Description

 Node* cur = q.front(); q.pop();
 Node* ccur = qc.front(); qc.pop();
 for (auto& c : cur->children) {
 q.push(c);
 Node* cnode = new Node(c->val);
 qc.push(cnode);
 ccur->children.push_back(cnode);
 }
 }
 }
 return clone;
 }
};

class Solution {
public:
 Node* cloneTree(Node* root) {
 if (!root) return nullptr;
 Node* clone = new Node(root->val);
 for (auto& c : root->children) clone->children.push_back(cloneTree(c));
 return clone;
 }
};

https://leetcode.com/problems/add-two-numbers/

Solution

01/25/2020:

7. Reverse Integer
Description

You are given two non-empty linked lists representing two non-negative integers.
The digits are stored in reverse order and each of their nodes contain a single
digit. Add the two numbers and return it as a linked list.

You may assume the two numbers do not contain any leading zero, except the
number 0 itself.

Example:

Input: (2 -> 4 -> 3) + (5 -> 6 -> 4)
Output: 7 -> 0 -> 8
Explanation: 342 + 465 = 807.

/**
 * Definition for singly-linked list.
 * struct ListNode {
 * int val;
 * ListNode *next;
 * ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
 ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {
 ListNode *pre = new ListNode(0), *cur = pre;
 for (int carry = 0; l1 || l2 || carry > 0; cur = cur->next, carry /= 10) {
 if (l1) carry += l1->val, l1 = l1->next;
 if (l2) carry += l2->val, l2 = l2->next;
 cur->next = new ListNode(carry % 10);
 }
 return pre->next;
 }
};

Given a 32-bit signed integer, reverse digits of an integer.

Example 1:

https://leetcode.com/problems/reverse-integer/

Solution

01/29/2020:

9. Palindrome Number
Description

Input: 123
Output: 321
Example 2:

Input: -123
Output: -321
Example 3:

Input: 120
Output: 21
Note:
Assume we are dealing with an environment which could only store integers within
the 32-bit signed integer range: [−231, 231 − 1]. For the purpose of this
problem, assume that your function returns 0 when the reversed integer
overflows.

class Solution {
public:
 int reverse(int x) {
 string s = x > 0 ? to_string(x) : to_string(-(long)x);
 while (s.size() > 1 && s.back() == '0') s.pop_back();
 std::reverse(s.begin(), s.end());
 try {
 return x > 0 ? stoi(s) : -1 * stoi(s);
 } catch(std::out_of_range& e) {
 return 0;
 }
 }
};

Determine whether an integer is a palindrome. An integer is a palindrome when it
reads the same backward as forward.

Example 1:

Input: 121

https://leetcode.com/problems/palindrome-number/

Solution

01/29/2020:

136. Single Number
Description

Output: true
Example 2:

Input: -121
Output: false
Explanation: From left to right, it reads -121. From right to left, it becomes
121-. Therefore it is not a palindrome.
Example 3:

Input: 10
Output: false
Explanation: Reads 01 from right to left. Therefore it is not a palindrome.
Follow up:

Coud you solve it without converting the integer to a string?

class Solution {
public:
 bool isPalindrome(int x) {
 if (x < 0) return false;
 string s = to_string(x);
 for (int l = 0, r = s.size() - 1; l < r; ++l, --r)
 if (s[l] != s[r]) return false;
 return true;
 }
};

Given a non-empty array of integers, every element appears twice except for one.
Find that single one.

Note:

Your algorithm should have a linear runtime complexity. Could you implement it
without using extra memory?

Example 1:

https://leetcode.com/problems/single-number/

Solution

02/03/2020:

172. Factorial Trailing Zeroes
Description

Solution

05/20/2020:

Input: [2,2,1]
Output: 1
Example 2:

Input: [4,1,2,1,2]
Output: 4

class Solution {
public:
 int singleNumber(vector<int>& nums) {
 int ret = 0;
 for (auto& n : nums) {
 ret ^= n;
 }
 return ret;
 }
};

Given an integer n, return the number of trailing zeroes in n!.

Example 1:

Input: 3
Output: 0
Explanation: 3! = 6, no trailing zero.
Example 2:

Input: 5
Output: 1
Explanation: 5! = 120, one trailing zero.
Note: Your solution should be in logarithmic time complexity.

https://leetcode.com/problems/factorial-trailing-zeroes/

202. Happy Number
Description

Solution

01/26/2020:

class Solution {
public:
 int trailingZeroes(int n) {
 int ret = 0;
 for (; n >= 5; ret += n / 5, n /= 5);
 return ret;
 }
};

class Solution {
public:
 int trailingZeroes(int n) {
 if (n < 5) return 0;
 return n / 5 + trailingZeroes(n / 5);
 }
};

Write an algorithm to determine if a number is "happy".

A happy number is a number defined by the following process: Starting with any
positive integer, replace the number by the sum of the squares of its digits,
and repeat the process until the number equals 1 (where it will stay), or it
loops endlessly in a cycle which does not include 1. Those numbers for which
this process ends in 1 are happy numbers.

Example:

Input: 19
Output: true
Explanation:
12 + 92 = 82
82 + 22 = 68
62 + 82 = 100
12 + 02 + 02 = 1

https://leetcode.com/problems/happy-number/

217. Contains Duplicate
Description

Solution

05/17/2020:

class Solution {
public:
 bool isHappy(int n) {
 unordered_set<int> s;
 for (int sum = 0; s.find(n) == s.end(); n = sum, sum = 0) {
 s.insert(n);
 for (; n > 0; n /= 10)
 sum += (n % 10) * (n % 10);
 }
 return s.find(1) != s.end();
 }
};

Given an array of integers, find if the array contains any duplicates.

Your function should return true if any value appears at least twice in the
array, and it should return false if every element is distinct.

Example 1:

Input: [1,2,3,1]
Output: true
Example 2:

Input: [1,2,3,4]
Output: false
Example 3:

Input: [1,1,1,3,3,4,3,2,4,2]
Output: true

https://leetcode.com/problems/contains-duplicate/

258. Add Digits
Description

Solution

05/23/2020:

class Solution {
public:
 bool containsDuplicate(vector<int>& nums) {
 unordered_set<int> s;
 for (auto& n : nums) {
 if (s.count(n) > 0) {
 return true;
 }
 s.insert(n);
 }
 return false;
 }
};

class Solution {
public:
 bool containsDuplicate(vector<int>& nums) {
 unordered_map<int, int> mp;
 for (auto& n : nums)
 if (++mp[n] > 1)
 return true;
 return false;
 }
};

Given a non-negative integer num, repeatedly add all its digits until the result
has only one digit.

Example:

Input: 38
Output: 2
Explanation: The process is like: 3 + 8 = 11, 1 + 1 = 2.
 Since 2 has only one digit, return it.
Follow up:
Could you do it without any loop/recursion in O(1) runtime?

https://leetcode.com/problems/add-digits/

263. Ugly Number
Description

Solution

05/23/2020:

class Solution {
public:
 int addDigits(int num) {
 int ret = num;
 while (ret > 9) {
 for (ret = 0; num != 0; ret += num % 10, num /= 10);
 num = ret;
 }
 return ret;
 }
};

Write a program to check whether a given number is an ugly number.

Ugly numbers are positive numbers whose prime factors only include 2, 3, 5.

Example 1:

Input: 6
Output: true
Explanation: 6 = 2 × 3
Example 2:

Input: 8
Output: true
Explanation: 8 = 2 × 2 × 2
Example 3:

Input: 14
Output: false
Explanation: 14 is not ugly since it includes another prime factor 7.
Note:

1 is typically treated as an ugly number.
Input is within the 32-bit signed integer range: [−231, 231 − 1].

https://leetcode.com/problems/ugly-number/

476. Number Complement
Description

Solution

02/03/2020:

class Solution {
public:
 bool isUgly(int num) {
 if (num <= 0) return false;
 while (num % 2 == 0) num /= 2;
 while (num % 3 == 0) num /= 3;
 while (num % 5 == 0) num /= 5;
 return num == 1;
 }
};

Given a positive integer, output its complement number. The complement strategy
is to flip the bits of its binary representation.

Note:

The given integer is guaranteed to fit within the range of a 32-bit signed
integer.
You could assume no leading zero bit in the integer’s binary representation.
Example 1:

Input: 5
Output: 2
Explanation: The binary representation of 5 is 101 (no leading zero bits), and
its complement is 010. So you need to output 2.
Example 2:

Input: 1
Output: 0
Explanation: The binary representation of 1 is 1 (no leading zero bits), and its
complement is 0. So you need to output 0.

https://leetcode.com/problems/number-complement/

645. Set Mismatch
Description

Solution

05/20/2020:

class Solution {
public:
 int findComplement(int num) {
 int ret = 0, bits = 0;
 for (; num != 0; num /= 2, ++bits) {
 if (num % 2 == 0) {
 ret += 1 << bits;
 }
 }
 return ret;
 }
};

The set S originally contains numbers from 1 to n. But unfortunately, due to the
data error, one of the numbers in the set got duplicated to another number in
the set, which results in repetition of one number and loss of another number.

Given an array nums representing the data status of this set after the error.
Your task is to firstly find the number occurs twice and then find the number
that is missing. Return them in the form of an array.

Example 1:

Input: nums = [1,2,2,4]
Output: [2,3]
Note:

The given array size will in the range [2, 10000].
The given array's numbers won't have any order.

class Solution {
public:
 vector<int> findErrorNums(vector<int>& nums) {
 int n = nums.size();
 vector<int> cnt(n, 0);
 vector<int> ret;
 for (auto& i : nums) {

https://leetcode.com/problems/set-mismatch/

728. Self Dividing Numbers
Description

Solution

01/30/2020:

 if (++cnt[i - 1] == 2) {
 ret.push_back(i);
 }
 }
 for (int i = 1; i <= n; ++i) {
 if (cnt[i - 1] == 0) {
 ret.push_back(i);
 }
 }
 return ret;
 }
};

A self-dividing number is a number that is divisible by every digit it contains.

For example, 128 is a self-dividing number because 128 % 1 == 0, 128 % 2 == 0,
and 128 % 8 == 0.

Also, a self-dividing number is not allowed to contain the digit zero.

Given a lower and upper number bound, output a list of every possible self
dividing number, including the bounds if possible.

Example 1:
Input:
left = 1, right = 22
Output: [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22]
Note:

The boundaries of each input argument are 1 <= left <= right <= 10000.

class Solution {
public:
 vector<int> selfDividingNumbers(int left, int right) {
 vector<int> ret;
 for (int i = left; i <= right; ++i) {
 if (self_dividing(i)) {

https://leetcode.com/problems/self-dividing-numbers/

869. Reordered Power of 2
Description

 ret.push_back(i);
 }
 }
 return ret;
 }

 bool self_dividing(int n) {
 string s = to_string(n);
 for (auto& c : s) {
 if (c == '0' || (c != '0' && n % (c - '0') != 0))
 return false;
 }
 return true;
 }
};

Starting with a positive integer N, we reorder the digits in any order
(including the original order) such that the leading digit is not zero.

Return true if and only if we can do this in a way such that the resulting
number is a power of 2.

Example 1:

Input: 1
Output: true
Example 2:

Input: 10
Output: false
Example 3:

Input: 16
Output: true
Example 4:

Input: 24
Output: false
Example 5:

https://leetcode.com/problems/reordered-power-of-2/

Solution

06/16/2020:

Input: 46
Output: true

Note:

1 <= N <= 10^9

class Solution {
public:
 bool reorderedPowerOf2(int N) {
 unordered_set<string> powerOfTwos;
 for (int i = 0; i < 32; ++i) {
 int n = 1 << i;
 string s = to_string(n);
 sort(s.begin(), s.end());
 powerOfTwos.insert(s);
 }
 string s = to_string(N);
 sort(s.begin(), s.end());
 return powerOfTwos.count(s) > 0;
 }
};

class Solution {
public:
 bool reorderedPowerOf2(int N) {
 string s = to_string(N);
 sort(s.begin(), s.end());
 unordered_set<string> seen;
 do {
 if (seen.count(s)) continue;
 if (s[0] == '0') continue;
 long n = stol(s);
 if (n <= INT_MAX && isPowerOfTwo(n)) return true;
 seen.insert(s);
 } while (next_permutation(s.begin(), s.end()));
 return false;
 }

 bool isPowerOfTwo(int n) {
 return n > 0 && __builtin_popcount(n) == 1;
 }

883. Projection Area of 3D Shapes
Description

};

On a N * N grid, we place some 1 * 1 * 1 cubes that are axis-aligned with the x,
y, and z axes.

Each value v = grid[i][j] represents a tower of v cubes placed on top of grid
cell (i, j).

Now we view the projection of these cubes onto the xy, yz, and zx planes.

A projection is like a shadow, that maps our 3 dimensional figure to a 2
dimensional plane.

Here, we are viewing the "shadow" when looking at the cubes from the top, the
front, and the side.

Return the total area of all three projections.

Example 1:

Input: [[2]]
Output: 5
Example 2:

Input: [[1,2],[3,4]]
Output: 17
Explanation:
Here are the three projections ("shadows") of the shape made with each axis-
aligned plane.

Example 3:

Input: [[1,0],[0,2]]
Output: 8
Example 4:

Input: [[1,1,1],[1,0,1],[1,1,1]]
Output: 14
Example 5:

https://leetcode.com/problems/projection-area-of-3d-shapes/

Solution

01/31/2020:

908. Smallest Range I
Description

Input: [[2,2,2],[2,1,2],[2,2,2]]
Output: 21

Note:

1 <= grid.length = grid[0].length <= 50
0 <= grid[i][j] <= 50

class Solution {
public:
 int projectionArea(vector<vector<int>>& grid) {
 int x = 0, y = 0, z = 0;
 vector<int> col_max(grid[0].size(), 0);
 vector<int> row_max(grid.size(), 0);
 for (int i = 0; i < (int)grid.size(); ++i) {
 for (int j = 0; j < (int)grid[0].size(); ++j) {
 if (grid[i][j] > 0) {
 ++z;
 }
 row_max[i] = max(row_max[i], grid[i][j]);
 }
 }
 for (int j = 0; j < (int)grid[0].size(); ++j) {
 for (int i = 0; i < (int)grid.size(); ++i) {
 col_max[j] = max(col_max[j], grid[i][j]);
 }
 }
 for (auto& r : row_max) {
 y += r;
 }
 for (auto& c : col_max) {
 x += c;
 }
 return x + y + z;
 }
};

https://leetcode.com/problems/smallest-range-i/

Solution

02/03/2020:

Given an array A of integers, for each integer A[i] we may choose any x with -K
<= x <= K, and add x to A[i].

After this process, we have some array B.

Return the smallest possible difference between the maximum value of B and the
minimum value of B.

Example 1:

Input: A = [1], K = 0
Output: 0
Explanation: B = [1]
Example 2:

Input: A = [0,10], K = 2
Output: 6
Explanation: B = [2,8]
Example 3:

Input: A = [1,3,6], K = 3
Output: 0
Explanation: B = [3,3,3] or B = [4,4,4]

Note:

1 <= A.length <= 10000
0 <= A[i] <= 10000
0 <= K <= 10000

class Solution {
public:
 int smallestRangeI(vector<int>& A, int K) {
 int r = *max_element(A.begin(), A.end()) - *min_element(A.begin(), A.end());
 return max(0, r - 2 * K);
 }
};

970. Powerful Integers
Description

Solution

05/20/2020:

Given two positive integers x and y, an integer is powerful if it is equal to
x^i + y^j for some integers i >= 0 and j >= 0.

Return a list of all powerful integers that have value less than or equal to
bound.

You may return the answer in any order. In your answer, each value should occur
at most once.

Example 1:

Input: x = 2, y = 3, bound = 10
Output: [2,3,4,5,7,9,10]
Explanation:
2 = 2^0 + 3^0
3 = 2^1 + 3^0
4 = 2^0 + 3^1
5 = 2^1 + 3^1
7 = 2^2 + 3^1
9 = 2^3 + 3^0
10 = 2^0 + 3^2
Example 2:

Input: x = 3, y = 5, bound = 15
Output: [2,4,6,8,10,14]

Note:

1 <= x <= 100
1 <= y <= 100
0 <= bound <= 10^6

class Solution {
public:
 vector<int> powerfulIntegers(int x, int y, int bound) {
 vector<int> xPowers, yPowers;

https://leetcode.com/problems/powerful-integers/

1103. Distribute Candies to People
Description

 unordered_set<int> ret;
 for (int i = 0; pow(x, i) <= bound; ++i) {
 xPowers.push_back(pow(x, i));
 if (x == 1) break;
 }
 for (int i = 0; pow(y, i) <= bound; ++i) {
 yPowers.push_back(pow(y, i));
 if (y == 1) break;
 }
 for (int i = 0; i < (int)xPowers.size(); ++i) {
 for (int j = 0; j < (int)yPowers.size(); ++j) {
 int p = xPowers[i] + yPowers[j];
 if (p <= bound) {
 ret.insert(p);
 }
 }
 }
 return vector<int>(ret.begin(), ret.end());
 }
};

We distribute some number of candies, to a row of n = num_people people in the
following way:

We then give 1 candy to the first person, 2 candies to the second person, and so
on until we give n candies to the last person.

Then, we go back to the start of the row, giving n + 1 candies to the first
person, n + 2 candies to the second person, and so on until we give 2 * n
candies to the last person.

This process repeats (with us giving one more candy each time, and moving to the
start of the row after we reach the end) until we run out of candies. The last
person will receive all of our remaining candies (not necessarily one more than
the previous gift).

Return an array (of length num_people and sum candies) that represents the final
distribution of candies.

Example 1:

https://leetcode.com/problems/distribute-candies-to-people/

Solution

05/10/2020:

Input: candies = 7, num_people = 4
Output: [1,2,3,1]
Explanation:
On the first turn, ans[0] += 1, and the array is [1,0,0,0].
On the second turn, ans[1] += 2, and the array is [1,2,0,0].
On the third turn, ans[2] += 3, and the array is [1,2,3,0].
On the fourth turn, ans[3] += 1 (because there is only one candy left), and the
final array is [1,2,3,1].
Example 2:

Input: candies = 10, num_people = 3
Output: [5,2,3]
Explanation:
On the first turn, ans[0] += 1, and the array is [1,0,0].
On the second turn, ans[1] += 2, and the array is [1,2,0].
On the third turn, ans[2] += 3, and the array is [1,2,3].
On the fourth turn, ans[0] += 4, and the final array is [5,2,3].

Constraints:

1 <= candies <= 10^9
1 <= num_people <= 1000

class Solution {
public:
 vector<int> distributeCandies(int candies, int num_people) {
 int n = num_people;
 vector<int> ret(n, 0);
 int i = 0;
 while (candies > 0) {
 if (i + 1 <= candies) {
 ret[i % n] += i + 1;
 candies -= i + 1;
 } else {
 ret[i % n] += candies;
 candies = 0;
 }
 ++i;
 }
 return ret;
 }
};

1134. Armstrong Number
Description

Solution

01/29/2020:

The k-digit number N is an Armstrong number if and only if the k-th power of
each digit sums to N.

Given a positive integer N, return true if and only if it is an Armstrong
number.

Example 1:

Input: 153
Output: true
Explanation:
153 is a 3-digit number, and 153 = 1^3 + 5^3 + 3^3.
Example 2:

Input: 123
Output: false
Explanation:
123 is a 3-digit number, and 123 != 1^3 + 2^3 + 3^3 = 36.

Note:

1 <= N <= 10^8

class Solution {
public:
 bool isArmstrong(int N) {
 int n = ceil(log10(N + 1)), t = 0;
 for (int m = N; m != 0; m /= 10) {
 t += pow(m % 10, n);
 }
 return t == N;
 }
};

https://leetcode.com/problems/armstrong-number/

1185. Day of the Week
Description

Solution

02/03/2020:

Given a date, return the corresponding day of the week for that date.

The input is given as three integers representing the day, month and year
respectively.

Return the answer as one of the following values {"Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday"}.

Example 1:

Input: day = 31, month = 8, year = 2019
Output: "Saturday"
Example 2:

Input: day = 18, month = 7, year = 1999
Output: "Sunday"
Example 3:

Input: day = 15, month = 8, year = 1993
Output: "Sunday"

Constraints:

The given dates are valid dates between the years 1971 and 2100.

class Solution {
public:
 int daysOfMonth[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
 string days[7] = {"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday"};

 string dayOfTheWeek(int day, int month, int year) {
 return days[daysFrom1971(day, month, year) % 7];
 }

 bool isLeapYear(int year) {

https://leetcode.com/problems/day-of-the-week/

1227. Airplane Seat Assignment Probability
Description

 if (year % 400 == 0 || (year % 4 == 0 && year % 100 != 0)) return true;
 return false;
 }

 int daysFrom1971(int day, int month, int year) {
 int days = 0;
 for (int i = 1971; i < year; ++i) {
 days += isLeapYear(i) ? 366 : 365;
 }
 for (int i = 0; i < month - 1; ++i) {
 if (i == 1) {
 days += isLeapYear(year) ? 29 : daysOfMonth[i];
 } else {
 days += daysOfMonth[i];
 }
 }
 days += day + 4;
 return days;
 }
};

n passengers board an airplane with exactly n seats. The first passenger has
lost the ticket and picks a seat randomly. But after that, the rest of
passengers will:

Take their own seat if it is still available,
Pick other seats randomly when they find their seat occupied
What is the probability that the n-th person can get his own seat?

Example 1:

Input: n = 1
Output: 1.00000
Explanation: The first person can only get the first seat.
Example 2:

Input: n = 2
Output: 0.50000
Explanation: The second person has a probability of 0.5 to get the second seat
(when first person gets the first seat).

https://leetcode.com/problems/airplane-seat-assignment-probability/

Solution

06/17/2020:

1228. Missing Number In Arithmetic Progression
Description

Constraints:

1 <= n <= 10^5

class Solution {
public:
 double nthPersonGetsNthSeat(int n) {
 return n == 1 ? 1 : 1.0 / 2;
 }
};

In some array arr, the values were in arithmetic progression: the values
arr[i+1] - arr[i] are all equal for every 0 <= i < arr.length - 1.

Then, a value from arr was removed that was not the first or last value in the
array.

Return the removed value.

Example 1:

Input: arr = [5,7,11,13]
Output: 9
Explanation: The previous array was [5,7,9,11,13].
Example 2:

Input: arr = [15,13,12]
Output: 14
Explanation: The previous array was [15,14,13,12].

Constraints:

https://leetcode.com/problems/missing-number-in-arithmetic-progression/

Solution

06/16/2020:

1232. Check If It Is a Straight Line
Description

3 <= arr.length <= 1000
0 <= arr[i] <= 10^5

class Solution {
public:
 int missingNumber(vector<int>& arr) {
 adjacent_difference(arr.begin(), arr.end(), arr.begin());
 for (int i = 1; i < (int)arr.size() - 1; ++i)
 if (abs(arr[i]) > abs(arr[i + 1]))
 return arr[0] + i * arr[i + 1];
 return arr[0] + (arr.size() - 1) * arr[1];
 }
};

You are given an array coordinates, coordinates[i] = [x, y], where [x, y]
represents the coordinate of a point. Check if these points make a straight line
in the XY plane.

Example 1:

Input: coordinates = [[1,2],[2,3],[3,4],[4,5],[5,6],[6,7]]
Output: true
Example 2:

Input: coordinates = [[1,1],[2,2],[3,4],[4,5],[5,6],[7,7]]
Output: false

Constraints:

https://leetcode.com/problems/check-if-it-is-a-straight-line/

Solution

05/07/2020:

1237. Find Positive Integer Solution for a Given Equation
Description

2 <= coordinates.length <= 1000
coordinates[i].length == 2
-10^4 <= coordinates[i][0], coordinates[i][1] <= 10^4
coordinates contains no duplicate point.

class Solution {
public:
 bool checkStraightLine(vector<vector<int>>& coordinates) {
 double x1 = coordinates[0][0], x2 = coordinates[1][0];
 double y1 = coordinates[0][1], y2 = coordinates[1][1];
 double slope = (y1 - y2) / (x1 - x2);
 int n = coordinates.size();
 for (int i = 1; i < n - 1; ++i){
 x1 = coordinates[i][0], x2 = coordinates[i + 1][0];
 y1 = coordinates[i][1], y2 = coordinates[i + 1][1];
 double newSlope = (y1 - y2) / (x1 - x2);
 if (slope != newSlope) return false;
 }
 return true;
 }
};

Given a function f(x, y) and a value z, return all positive integer pairs x and
y where f(x,y) == z.

The function is constantly increasing, i.e.:

f(x, y) < f(x + 1, y)
f(x, y) < f(x, y + 1)
The function interface is defined like this:

interface CustomFunction {
public:
 // Returns positive integer f(x, y) for any given positive integer x and y.
 int f(int x, int y);
};

https://leetcode.com/problems/find-positive-integer-solution-for-a-given-equation/

Solution

01/30/2020:

For custom testing purposes you're given an integer function_id and a target z
as input, where function_id represent one function from an secret internal list,
on the examples you'll know only two functions from the list.

You may return the solutions in any order.

Example 1:

Input: function_id = 1, z = 5
Output: [[1,4],[2,3],[3,2],[4,1]]
Explanation: function_id = 1 means that f(x, y) = x + y
Example 2:

Input: function_id = 2, z = 5
Output: [[1,5],[5,1]]
Explanation: function_id = 2 means that f(x, y) = x * y

Constraints:

1 <= function_id <= 9
1 <= z <= 100
It's guaranteed that the solutions of f(x, y) == z will be on the range 1 <= x,
y <= 1000
It's also guaranteed that f(x, y) will fit in 32 bit signed integer if 1 <= x, y
<= 1000

/*
 * // This is the custom function interface.
 * // You should not implement it, or speculate about its implementation
 * class CustomFunction {
 * public:
 * // Returns f(x, y) for any given positive integers x and y.
 * // Note that f(x, y) is increasing with respect to both x and y.
 * // i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
 * int f(int x, int y);
 * };
 */

class Solution {
public:
 vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {

 vector<vector<int>> ret;
 for (int x = 1, y = 1000; x <= 1000 && y > 0;) {
 if (customfunction.f(x, y) > z) {
 --y;
 } else if (customfunction.f(x, y) < z) {
 ++x;
 } else {
 ret.push_back({x, y});
 ++x;
 }
 }
 return ret;
 }
};

/*
 * // This is the custom function interface.
 * // You should not implement it, or speculate about its implementation
 * class CustomFunction {
 * public:
 * // Returns f(x, y) for any given positive integers x and y.
 * // Note that f(x, y) is increasing with respect to both x and y.
 * // i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
 * int f(int x, int y);
 * };
 */

class Solution {
public:
 vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {
 vector<vector<int>> ret;
 for (int x = 1; x <= 1000; ++x) {
 if (customfunction.f(x, 1) > z) break;
 for (int y = 1; y <= 1000; ++y) {
 if (customfunction.f(x, y) == z) {
 ret.push_back({x, y});
 } else if (customfunction.f(x, y) > z) {
 break;
 }
 }
 }
 return ret;
 }
};

1281. Subtract the Product and Sum of Digits of an Integer
Description

Solution

01/29/2020:

Given an integer number n, return the difference between the product of its
digits and the sum of its digits.

Example 1:

Input: n = 234
Output: 15
Explanation:
Product of digits = 2 * 3 * 4 = 24
Sum of digits = 2 + 3 + 4 = 9
Result = 24 - 9 = 15
Example 2:

Input: n = 4421
Output: 21
Explanation:
Product of digits = 4 * 4 * 2 * 1 = 32
Sum of digits = 4 + 4 + 2 + 1 = 11
Result = 32 - 11 = 21

Constraints:

1 <= n <= 10^5

class Solution {
public:
 int subtractProductAndSum(int n) {
 int ret = 1;
 for (int m = n; m != 0; m /= 10) {
 ret *= m % 10;
 }
 for (int m = n; m != 0; m /= 10) {
 ret -= m % 10;
 }
 return ret;
 }
};

https://leetcode.com/problems/subtract-the-product-and-sum-of-digits-of-an-integer/

1295. Find Numbers with Even Number of Digits
Description

Solution

01/29/2020:

Given an array nums of integers, return how many of them contain an even number
of digits.

Example 1:

Input: nums = [12,345,2,6,7896]
Output: 2
Explanation:
12 contains 2 digits (even number of digits).
345 contains 3 digits (odd number of digits).
2 contains 1 digit (odd number of digits).
6 contains 1 digit (odd number of digits).
7896 contains 4 digits (even number of digits).
Therefore only 12 and 7896 contain an even number of digits.
Example 2:

Input: nums = [555,901,482,1771]
Output: 1
Explanation:
Only 1771 contains an even number of digits.

Constraints:

1 <= nums.length <= 500
1 <= nums[i] <= 10^5

class Solution {
public:
 int findNumbers(vector<int>& nums) {
 int ret = 0;
 for (auto& n : nums) {
 ret += int(ceil(log10(n + 1))) % 2 == 0 ? 1 : 0;
 }
 return ret;
 }
};

https://leetcode.com/problems/find-numbers-with-even-number-of-digits/

1323. Maximum 69 Number
Description

Solution

01/19/2020:

Given a positive integer num consisting only of digits 6 and 9.

Return the maximum number you can get by changing at most one digit (6 becomes
9, and 9 becomes 6).

Example 1:

Input: num = 9669
Output: 9969
Explanation:
Changing the first digit results in 6669.
Changing the second digit results in 9969.
Changing the third digit results in 9699.
Changing the fourth digit results in 9666.
The maximum number is 9969.
Example 2:

Input: num = 9996
Output: 9999
Explanation: Changing the last digit 6 to 9 results in the maximum number.
Example 3:

Input: num = 9999
Output: 9999
Explanation: It is better not to apply any change.

Constraints:

1 <= num <= 10^4
num's digits are 6 or 9.

https://leetcode.com/problems/maximum-69-number/

String
20. Valid Parentheses

Description

class Solution {
public:
 int maximum69Number (int num) {
 string s = to_string(num);
 for (auto& c : s) {
 if (c == '6') {
 c = '9';
 break;
 }
 }
 return stoi(s);
 }
};

Given a string containing just the characters '(', ')', '{', '}', '[' and ']',
determine if the input string is valid.

An input string is valid if:

Open brackets must be closed by the same type of brackets.
Open brackets must be closed in the correct order.
Note that an empty string is also considered valid.

Example 1:

Input: "()"
Output: true
Example 2:

Input: "()[]{}"
Output: true
Example 3:

Input: "(]"
Output: false
Example 4:

https://leetcode.com/problems/valid-parentheses/

Solution

01/25/2020:

58. Length of Last Word
Description

Input: "([)]"
Output: false
Example 5:

Input: "{[]}"
Output: true

class Solution {
public:
 bool isValid(string s) {
 stack<char> p, q;
 for (auto it = s.begin(); it != s.end(); ++it) {
 if (*it == '(' || *it == '{' || *it == '[') {
 p.push(*it);
 } else if (p.size() > 0) {
 switch (*it) {
 case ')': if (p.top() == '(') p.pop(); break;
 case ']': if (p.top() == '[') p.pop(); break;
 case '}': if (p.top() == '{') p.pop(); break;
 }
 }
 }
 for (auto it = s.rbegin(); it != s.rend(); ++it) {
 if (*it == ')' || *it == '}' || *it == ']') {
 q.push(*it);
 } else if (q.size() > 0) {
 switch (*it) {
 case '(': if (q.top() == ')') q.pop(); break;
 case '[': if (q.top() == ']') q.pop(); break;
 case '{': if (q.top() == '}') q.pop(); break;
 }
 }
 }
 return p.size() == 0 && q.size() == 0;
 }
};

https://leetcode.com/problems/length-of-last-word/

Solution

05/27/2020:

71. Simplify Path
Description

Given a string s consists of upper/lower-case alphabets and empty space
characters ' ', return the length of last word (last word means the last
appearing word if we loop from left to right) in the string.

If the last word does not exist, return 0.

Note: A word is defined as a maximal substring consisting of non-space
characters only.

Example:

Input: "Hello World"
Output: 5

class Solution {
public:
 int lengthOfLastWord(string s) {
 if (s.empty()) return 0;
 string ss, last;
 istringstream iss(s);
 while (getline(iss, ss, ' '))
 if (!ss.empty())
 last = ss;
 return last.size();
 }
};

Given an absolute path for a file (Unix-style), simplify it. Or in other words,
convert it to the canonical path.

In a UNIX-style file system, a period . refers to the current directory.
Furthermore, a double period .. moves the directory up a level.

Note that the returned canonical path must always begin with a slash /, and
there must be only a single slash / between two directory names. The last
directory name (if it exists) must not end with a trailing /. Also, the
canonical path must be the shortest string representing the absolute path.

https://leetcode.com/problems/simplify-path/

Solution

05/27/2020:

Example 1:

Input: "/home/"
Output: "/home"
Explanation: Note that there is no trailing slash after the last directory name.
Example 2:

Input: "/../"
Output: "/"
Explanation: Going one level up from the root directory is a no-op, as the root
level is the highest level you can go.
Example 3:

Input: "/home//foo/"
Output: "/home/foo"
Explanation: In the canonical path, multiple consecutive slashes are replaced by
a single one.
Example 4:

Input: "/a/./b/../../c/"
Output: "/c"
Example 5:

Input: "/a/../../b/../c//.//"
Output: "/c"
Example 6:

Input: "/a//b////c/d//././/.."
Output: "/a/b/c"

class Solution {
public:
 string simplifyPath(string path) {
 stack<string> st;
 istringstream iss(path);
 string s;
 while (getline(iss, s, '/')) {
 if (s == "..") {
 if (!st.empty())
 st.pop();
 } else if (s.size() > 0 && s != ".") {

344. Reverse String
Description

Solution

02/03/2020:

 st.push(s);
 }
 }
 string ret;
 while (!st.empty()) {
 ret = "/" + st.top() + ret;
 st.pop();
 }
 return ret.empty() ? "/" : ret;
 }
};

Write a function that reverses a string. The input string is given as an array
of characters char[].

Do not allocate extra space for another array, you must do this by modifying the
input array in-place with O(1) extra memory.

You may assume all the characters consist of printable ascii characters.

Example 1:

Input: ["h","e","l","l","o"]
Output: ["o","l","l","e","h"]
Example 2:

Input: ["H","a","n","n","a","h"]
Output: ["h","a","n","n","a","H"]

https://leetcode.com/problems/reverse-string/

383. Ransom Note
Description

Solution

05/04/2020:

500. Keyboard Row

class Solution {
public:
 void reverseString(vector<char>& s) {
 for (int l = 0, r = (int)s.size() - 1; l < r; ++l, --r) {
 swap(s[l], s[r]);
 }
 }
};

Given an arbitrary ransom note string and another string containing letters from
all the magazines, write a function that will return true if the ransom note can
be constructed from the magazines ; otherwise, it will return false.

Each letter in the magazine string can only be used once in your ransom note.

Note:
You may assume that both strings contain only lowercase letters.

canConstruct("a", "b") -> false
canConstruct("aa", "ab") -> false
canConstruct("aa", "aab") -> true

class Solution {
public:
 bool canConstruct(string ransomNote, string magazine) {
 unordered_map<char, int> mp;
 for (auto& c : magazine) ++mp[c];
 for (auto& c : ransomNote)
 if (--mp[c] < 0) return false;
 return true;
 }
};

https://leetcode.com/problems/ransom-note/

Description

Solution

02/03/2020:

557. Reverse Words in a String III

Given a List of words, return the words that can be typed using letters of
alphabet on only one row's of American keyboard like the image below.

Example:

Input: ["Hello", "Alaska", "Dad", "Peace"]
Output: ["Alaska", "Dad"]

Note:

You may use one character in the keyboard more than once.
You may assume the input string will only contain letters of alphabet.

class Solution {
public:
 vector<int> row{1,2,2,1,0,1,1,1,0,1,1,1,2,2,0,0,0,0,1,0,0,2,0,2,0,2};
 vector<string> findWords(vector<string>& words) {
 vector<string> ret;
 for (auto& word : words) {
 bool valid = true;
 for (int i = 1; i < (int)word.size(); ++i) {
 if (row[tolower(word[i]) - 'a'] != row[tolower(word[i - 1]) - 'a']) {
 valid = false;
 break;
 }
 }
 if (valid) ret.push_back(word);
 }
 return ret;
 }
};

https://leetcode.com/problems/keyboard-row/

Description

Solution

01/31/2020:

599. Minimum Index Sum of Two Lists
Description

Given a string, you need to reverse the order of characters in each word within
a sentence while still preserving whitespace and initial word order.

Example 1:
Input: "Let's take LeetCode contest"
Output: "s'teL ekat edoCteeL tsetnoc"
Note: In the string, each word is separated by single space and there will not
be any extra space in the string.

class Solution {
public:
 string reverseWords(string s) {
 string ret;
 vector<string> t;
 for (int i = 0; i < (int)s.size(); ++i) {
 int j = i;
 for (; j < (int)s.size() && s[j] != ' '; ++j);
 t.push_back(s.substr(i, j - i));
 i = j;
 }
 for (auto& tt : t) {
 reverse(tt.begin(), tt.end());
 ret += tt + " ";
 }
 ret.pop_back();
 return ret;
 }
};

Suppose Andy and Doris want to choose a restaurant for dinner, and they both
have a list of favorite restaurants represented by strings.

You need to help them find out their common interest with the least list index
sum. If there is a choice tie between answers, output all of them with no order
requirement. You could assume there always exists an answer.

https://leetcode.com/problems/reverse-words-in-a-string-iii/
https://leetcode.com/problems/minimum-index-sum-of-two-lists/

Solution

05/20/2020:

Example 1:

Input:
["Shogun", "Tapioca Express", "Burger King", "KFC"]
["Piatti", "The Grill at Torrey Pines", "Hungry Hunter Steakhouse", "Shogun"]
Output: ["Shogun"]
Explanation: The only restaurant they both like is "Shogun".
Example 2:

Input:
["Shogun", "Tapioca Express", "Burger King", "KFC"]
["KFC", "Shogun", "Burger King"]
Output: ["Shogun"]
Explanation: The restaurant they both like and have the least index sum is
"Shogun" with index sum 1 (0+1).
Note:

The length of both lists will be in the range of [1, 1000].
The length of strings in both lists will be in the range of [1, 30].
The index is starting from 0 to the list length minus 1.
No duplicates in both lists.

class Solution {
public:
 vector<string> findRestaurant(vector<string>& list1, vector<string>& list2) {
 if (list1.empty() || list2.empty()) return {};
 unordered_map<string, vector<int>> index;
 for (int i = 0; i < (int)list1.size(); ++i) index[list1[i]].push_back(i);
 for (int i = 0; i < (int)list2.size(); ++i) index[list2[i]].push_back(i);
 int min_index_sum = INT_MAX;
 for (auto& i : index) {
 if ((int)i.second.size() != 2) continue;
 min_index_sum = min(min_index_sum, i.second.front() + i.second.back());
 }
 vector<string> ret;
 for(auto& i : index) {
 if ((int)i.second.size() != 2) continue;
 if (i.second.front() + i.second.back() == min_index_sum) {
 ret.push_back(i.first);
 }
 }
 return ret;
 }

657. Robot Return to Origin
Description

Solution

01/30/2020:

};

There is a robot starting at position (0, 0), the origin, on a 2D plane. Given a
sequence of its moves, judge if this robot ends up at (0, 0) after it completes
its moves.

The move sequence is represented by a string, and the character moves[i]
represents its ith move. Valid moves are R (right), L (left), U (up), and D
(down). If the robot returns to the origin after it finishes all of its moves,
return true. Otherwise, return false.

Note: The way that the robot is "facing" is irrelevant. "R" will always make the
robot move to the right once, "L" will always make it move left, etc. Also,
assume that the magnitude of the robot's movement is the same for each move.

Example 1:

Input: "UD"
Output: true
Explanation: The robot moves up once, and then down once. All moves have the
same magnitude, so it ended up at the origin where it started. Therefore, we
return true.

Example 2:

Input: "LL"
Output: false
Explanation: The robot moves left twice. It ends up two "moves" to the left of
the origin. We return false because it is not at the origin at the end of its
moves.

class Solution {
public:
 bool judgeCircle(string moves) {
 int h = 0, v = 0;
 for (auto& m : moves) {

https://leetcode.com/problems/robot-return-to-origin/

709. To Lower Case
Description

Solution

01/29/2020:

 switch (m) {
 case 'L': --h; break;
 case 'R': ++h; break;
 case 'D': --v; break;
 case 'U': ++v; break;
 }
 }
 return h == 0 && v == 0;
 }
};

Implement function ToLowerCase() that has a string parameter str, and returns
the same string in lowercase.

Example 1:

Input: "Hello"
Output: "hello"
Example 2:

Input: "here"
Output: "here"
Example 3:

Input: "LOVELY"
Output: "lovely"

https://leetcode.com/problems/to-lower-case/

771. Jewels and Stones
Description

Solution

01/29/2020:

class Solution {
public:
 string toLowerCase(string str) {
 for (auto& c : str) {
 c = 'A' <= c && 'Z' >= c ? c + ('a' - 'A') : c;
 }
 return str;
 }
};

You're given strings J representing the types of stones that are jewels, and S
representing the stones you have. Each character in S is a type of stone you
have. You want to know how many of the stones you have are also jewels.

The letters in J are guaranteed distinct, and all characters in J and S are
letters. Letters are case sensitive, so "a" is considered a different type of
stone from "A".

Example 1:

Input: J = "aA", S = "aAAbbbb"
Output: 3
Example 2:

Input: J = "z", S = "ZZ"
Output: 0
Note:

S and J will consist of letters and have length at most 50.
The characters in J are distinct.

https://leetcode.com/problems/jewels-and-stones/

796. Rotate String
Description

Solution

06/16/2020:

class Solution {
public:
 int numJewelsInStones(string J, string S) {
 int ret = 0, chars[128] = {0};
 for (auto& j : J) {
 ++chars[j];
 }
 for (auto& s : S) {
 ret += chars[s];
 }
 return ret;
 }
};

We are given two strings, A and B.

A shift on A consists of taking string A and moving the leftmost character to
the rightmost position. For example, if A = 'abcde', then it will be 'bcdea'
after one shift on A. Return True if and only if A can become B after some
number of shifts on A.

Example 1:
Input: A = 'abcde', B = 'cdeab'
Output: true

Example 2:
Input: A = 'abcde', B = 'abced'
Output: false
Note:

A and B will have length at most 100.

class Solution {
public:
 bool rotateString(string A, string B) {
 if (A.size() != B.size()) return false;
 if (A.empty()) return true;

https://leetcode.com/problems/rotate-string/

804. Unique Morse Code Words
Description

 int n = A.size();
 for (int i = 0; i < n; ++i) {
 bool isShift = true;
 while (i < n && A[0] != B[i]) ++i;
 for (int j = 0; j < n && isShift; ++j)
 if (A[j] != B[(i + j) % n])
 isShift = false;
 if (isShift) return true;
 }
 return false;
 }
};

International Morse Code defines a standard encoding where each letter is mapped
to a series of dots and dashes, as follows: "a" maps to ".-", "b" maps to
"-...", "c" maps to "-.-.", and so on.

For convenience, the full table for the 26 letters of the English alphabet is
given below:

[".-","-...","-.-.","-..",".","..-.","--.","....","..",".---","-.-",".-..","--
","-.","---",".--.","--.-",".-.","...","-","..-","...-",".--","-..-","-.--","-
-.."]
Now, given a list of words, each word can be written as a concatenation of the
Morse code of each letter. For example, "cba" can be written as "-.-..--...",
(which is the concatenation "-.-." + "-..." + ".-"). We'll call such a
concatenation, the transformation of a word.

Return the number of different transformations among all words we have.

Example:
Input: words = ["gin", "zen", "gig", "msg"]
Output: 2
Explanation:
The transformation of each word is:
"gin" -> "--...-."
"zen" -> "--...-."
"gig" -> "--...--."
"msg" -> "--...--."

There are 2 different transformations, "--...-." and "--...--.".
Note:

https://leetcode.com/problems/unique-morse-code-words/

Solution

01/29/2020:

806. Number of Lines To Write String
Description

The length of words will be at most 100.
Each words[i] will have length in range [1, 12].
words[i] will only consist of lowercase letters.

class Solution {
public:
 int uniqueMorseRepresentations(vector<string>& words) {
 unordered_set<string> morse;
 vector<string> dict{".-","-...","-.-.","-..",".","..-.","-
-.","....","..",".---","-.-",".-..","--","-.","---",".--.","--.-",".-.","...","-
","..-","...-",".--","-..-","-.--","--.."};
 for (auto& w : words) {
 string s;
 for (auto& c : w) {
 s += dict[c - 'a'];
 }
 morse.insert(s);
 }
 return morse.size();
 }
};

We are to write the letters of a given string S, from left to right into lines.
Each line has maximum width 100 units, and if writing a letter would cause the
width of the line to exceed 100 units, it is written on the next line. We are
given an array widths, an array where widths[0] is the width of 'a', widths[1]
is the width of 'b', ..., and widths[25] is the width of 'z'.

Now answer two questions: how many lines have at least one character from S, and
what is the width used by the last such line? Return your answer as an integer
list of length 2.

Example :
Input:

https://leetcode.com/problems/number-of-lines-to-write-string/

Solution

02/03/2020:

widths =
[10,10]
S = "abcdefghijklmnopqrstuvwxyz"
Output: [3, 60]
Explanation:
All letters have the same length of 10. To write all 26 letters,
we need two full lines and one line with 60 units.
Example :
Input:
widths =
[4,10]
S = "bbbcccdddaaa"
Output: [2, 4]
Explanation:
All letters except 'a' have the same length of 10, and
"bbbcccdddaa" will cover 9 * 10 + 2 * 4 = 98 units.
For the last 'a', it is written on the second line because
there is only 2 units left in the first line.
So the answer is 2 lines, plus 4 units in the second line.

Note:

The length of S will be in the range [1, 1000].
S will only contain lowercase letters.
widths is an array of length 26.
widths[i] will be in the range of [2, 10].

class Solution {
public:
 vector<int> numberOfLines(vector<int>& widths, string S) {
 int lines = S.size() > 0 ? 1 : 0, cur = 0;
 for (auto& c : S) {
 if (cur + widths[c - 'a'] > 100) {
 ++lines;
 cur = widths[c - 'a'];
 } else {
 cur += widths[c - 'a'];
 }
 }
 return {lines, cur};
 }
};

821. Shortest Distance to a Character
Description

Solution

02/03/2020:

Given a string S and a character C, return an array of integers representing the
shortest distance from the character C in the string.

Example 1:

Input: S = "loveleetcode", C = 'e'
Output: [3, 2, 1, 0, 1, 0, 0, 1, 2, 2, 1, 0]

Note:

S string length is in [1, 10000].
C is a single character, and guaranteed to be in string S.
All letters in S and C are lowercase.

class Solution {
public:
 vector<int> shortestToChar(string S, char C) {
 int n = S.size();
 vector<int> loc, ret(n, INT_MAX);
 for (int i = 0; i < n; ++i) {
 if (S[i] == C) {
 loc.push_back(i);
 }
 }
 for (int j = 0; j < loc.front(); ++j) ret[j] = loc.front() - j;
 for (int j = loc.back(); j < n; ++j) ret[j] = j - loc.back();
 for (int i = 1; i < loc.size(); ++i) {
 for (int j = loc[i - 1]; j <= loc[i]; ++j) {
 ret[j] = min(j - loc[i - 1], loc[i] - j);
 }
 }
 return ret;
 }
};

https://leetcode.com/problems/shortest-distance-to-a-character/

893. Groups of Special-Equivalent Strings
Description

You are given an array A of strings.

A move onto S consists of swapping any two even indexed characters of S, or any
two odd indexed characters of S.

Two strings S and T are special-equivalent if after any number of moves onto S,
S == T.

For example, S = "zzxy" and T = "xyzz" are special-equivalent because we may
make the moves "zzxy" -> "xzzy" -> "xyzz" that swap S[0] and S[2], then S[1] and
S[3].

Now, a group of special-equivalent strings from A is a non-empty subset of A
such that:

Every pair of strings in the group are special equivalent, and;
The group is the largest size possible (ie., there isn't a string S not in the
group such that S is special equivalent to every string in the group)
Return the number of groups of special-equivalent strings from A.

Example 1:

Input: ["abcd","cdab","cbad","xyzz","zzxy","zzyx"]
Output: 3
Explanation:
One group is ["abcd", "cdab", "cbad"], since they are all pairwise special
equivalent, and none of the other strings are all pairwise special equivalent to
these.

The other two groups are ["xyzz", "zzxy"] and ["zzyx"]. Note that in
particular, "zzxy" is not special equivalent to "zzyx".
Example 2:

Input: ["abc","acb","bac","bca","cab","cba"]
Output: 3

Note:

1 <= A.length <= 1000
1 <= A[i].length <= 20
All A[i] have the same length.
All A[i] consist of only lowercase letters.

https://leetcode.com/problems/groups-of-special-equivalent-strings/

Solution

02/03/2020:

929. Unique Email Addresses
Description

class Solution {
public:
 int numSpecialEquivGroups(vector<string>& A) {
 unordered_set<string> us;
 for (auto& s : A) {
 vector<int> cnt(52, 0);
 for (int i = 0; i < (int)s.size(); ++i) {
 if (i % 2 == 0) {
 ++cnt[s[i] - 'a'];
 } else {
 ++cnt[s[i] - 'a' + 26];
 }
 }
 string ss;
 for (auto& n : cnt) {
 if (n < 10) {
 ss += "0" + to_string(n);
 } else {
 ss += to_string(n);
 }
 }
 us.insert(ss);
 }
 return us.size();
 }
};

Every email consists of a local name and a domain name, separated by the @ sign.

For example, in alice@leetcode.com, alice is the local name, and leetcode.com is
the domain name.

Besides lowercase letters, these emails may contain '.'s or '+'s.

https://leetcode.com/problems/unique-email-addresses/

Solution

01/30/2020:

If you add periods ('.') between some characters in the local name part of an
email address, mail sent there will be forwarded to the same address without
dots in the local name. For example, "alice.z@leetcode.com" and
"alicez@leetcode.com" forward to the same email address. (Note that this rule
does not apply for domain names.)

If you add a plus ('+') in the local name, everything after the first plus sign
will be ignored. This allows certain emails to be filtered, for example
m.y+name@email.com will be forwarded to my@email.com. (Again, this rule does
not apply for domain names.)

It is possible to use both of these rules at the same time.

Given a list of emails, we send one email to each address in the list. How many
different addresses actually receive mails?

Example 1:

Input:
["test.email+alex@leetcode.com","test.e.mail+bob.cathy@leetcode.com","testemail+
david@lee.tcode.com"]
Output: 2
Explanation: "testemail@leetcode.com" and "testemail@lee.tcode.com" actually
receive mails

Note:

1 <= emails[i].length <= 100
1 <= emails.length <= 100
Each emails[i] contains exactly one '@' character.
All local and domain names are non-empty.
Local names do not start with a '+' character.

class Solution {
public:
 int numUniqueEmails(vector<string>& emails) {
 unordered_set<string> unique_emails;
 for (auto& email : emails) {
 cout << email << " " << processEmail(email) << endl;
 unique_emails.insert(processEmail(email));
 }

953. Verifying an Alien Dictionary
Description

 return unique_emails.size();
 }

 string processEmail(string& email) {
 string ret;
 bool isLocal = true, doNotIgnore = true;
 for (int i = 0; i < email.size(); ++i) {
 if (isLocal) {
 if (doNotIgnore) {
 if (email[i] == '+') {
 doNotIgnore = false;
 } else if (email[i] == '.') {
 continue;
 } else if (email[i] == '@') {
 ret.push_back(email[i]);
 isLocal = false;
 doNotIgnore = true;
 } else {
 ret.push_back(email[i]);
 }
 } else {
 if (email[i] == '@') {
 ret.push_back(email[i]);
 isLocal = false;
 doNotIgnore = true;
 }
 }
 } else {
 ret.push_back(email[i]);
 }
 }
 return ret;
 }
};

In an alien language, surprisingly they also use english lowercase letters, but
possibly in a different order. The order of the alphabet is some permutation of
lowercase letters.

Given a sequence of words written in the alien language, and the order of the
alphabet, return true if and only if the given words are sorted lexicographicaly
in this alien language.

https://leetcode.com/problems/verifying-an-alien-dictionary/

Solution

05/18/2020:

Example 1:

Input: words = ["hello","leetcode"], order = "hlabcdefgijkmnopqrstuvwxyz"
Output: true
Explanation: As 'h' comes before 'l' in this language, then the sequence is
sorted.
Example 2:

Input: words = ["word","world","row"], order = "worldabcefghijkmnpqstuvxyz"
Output: false
Explanation: As 'd' comes after 'l' in this language, then words[0] > words[1],
hence the sequence is unsorted.
Example 3:

Input: words = ["apple","app"], order = "abcdefghijklmnopqrstuvwxyz"
Output: false
Explanation: The first three characters "app" match, and the second string is
shorter (in size.) According to lexicographical rules "apple" > "app", because
'l' > '∅', where '∅' is defined as the blank character which is less than any
other character (More info).

Constraints:

1 <= words.length <= 100
1 <= words[i].length <= 20
order.length == 26
All characters in words[i] and order are English lowercase letters.

class Solution {
public:
 bool isAlienSorted(vector<string>& words, string order) {
 vector<int> o(26, 0);
 for (int i = 0; i < (int)order.size(); ++i) {
 o[order[i] - 'a'] = i;
 }
 for (int i = 1; i < (int)words.size(); ++i) {
 int n = min(words[i].size(), words[i - 1].size());
 bool all = true;
 for (int j = 0; j < n; ++j) {
 if (o[words[i][j] - 'a'] > o[words[i - 1][j] - 'a']) {

1002. Find Common Characters
Description

Solution

02/03/2020:

 all = false;
 break;
 } else if (o[words[i][j] - 'a'] < o[words[i - 1][j] - 'a']) {
 return false;
 }
 }
 if (all && n == words[i].size() && words[i].size() < words[i - 1].size())
return false;
 }
 return true;
 }
};

Given an array A of strings made only from lowercase letters, return a list of
all characters that show up in all strings within the list (including
duplicates). For example, if a character occurs 3 times in all strings but not
4 times, you need to include that character three times in the final answer.

You may return the answer in any order.

Example 1:

Input: ["bella","label","roller"]
Output: ["e","l","l"]
Example 2:

Input: ["cool","lock","cook"]
Output: ["c","o"]

Note:

1 <= A.length <= 100
1 <= A[i].length <= 100
A[i][j] is a lowercase letter

https://leetcode.com/problems/find-common-characters/

1021. Remove Outermost Parentheses
Description

class Solution {
public:
 vector<string> commonChars(vector<string>& A) {
 int n = A.size();
 vector<vector<int>> cnt(n, vector<int>(26, 0));
 for (int i = 0; i < n; ++i) {
 for (int j = 0; j < (int)A[i].size(); ++j) {
 ++cnt[i][A[i][j] - 'a'];
 }
 }
 vector<string> ret;
 for (int i = 0; i < 26; ++i) {
 int m = INT_MAX;
 for (int j = 0; j < n; ++j) {
 m = min(m, cnt[j][i]);
 }
 for (; m > 0; --m) {
 ret.push_back(string(1, 'a' + i));
 }
 }
 return ret;
 }
};

A valid parentheses string is either empty (""), "(" + A + ")", or A + B, where
A and B are valid parentheses strings, and + represents string concatenation.
For example, "", "()", "(())()", and "(()(()))" are all valid parentheses
strings.

A valid parentheses string S is primitive if it is nonempty, and there does not
exist a way to split it into S = A+B, with A and B nonempty valid parentheses
strings.

Given a valid parentheses string S, consider its primitive decomposition: S =
P_1 + P_2 + ... + P_k, where P_i are primitive valid parentheses strings.

Return S after removing the outermost parentheses of every primitive string in
the primitive decomposition of S.

https://leetcode.com/problems/remove-outermost-parentheses/

Solution

01/29/2020:

Example 1:

Input: "(()())(())"
Output: "()()()"
Explanation:
The input string is "(()())(())", with primitive decomposition "(()())" + "
(())".
After removing outer parentheses of each part, this is "()()" + "()" = "()()()".
Example 2:

Input: "(()())(())(()(()))"
Output: "()()()()(())"
Explanation:
The input string is "(()())(())(()(()))", with primitive decomposition "(()())"
+ "(())" + "(()(()))".
After removing outer parentheses of each part, this is "()()" + "()" + "()(())"
= "()()()()(())".
Example 3:

Input: "()()"
Output: ""
Explanation:
The input string is "()()", with primitive decomposition "()" + "()".
After removing outer parentheses of each part, this is "" + "" = "".

Note:

S.length <= 10000
S[i] is "(" or ")"
S is a valid parentheses string

class Solution {
public:
 string removeOuterParentheses(string S) {
 string ret;
 int status = 0;
 for (auto& c : S) {
 if (c == '(') {
 if (status++ > 0) {
 ret += c;
 }
 } else {
 if (--status > 0) {

1044. Longest Duplicate Substring
Description

Solution

06/19/2020:

 ret += c;
 }
 }
 }
 return ret;
 }
};

Given a string S, consider all duplicated substrings: (contiguous) substrings of
S that occur 2 or more times. (The occurrences may overlap.)

Return any duplicated substring that has the longest possible length. (If S
does not have a duplicated substring, the answer is "".)

Example 1:

Input: "banana"
Output: "ana"
Example 2:

Input: "abcd"
Output: ""

Note:

2 <= S.length <= 10^5
S consists of lowercase English letters.

class Solution {
public:
 string longestDupSubstring(string S) {
 std::string_view ret;
 std::unordered_set<std::string_view> set;
 size_t lo = 1;

https://leetcode.com/problems/longest-duplicate-substring/

TLE:

 size_t hi = S.size() - 1;
 while (lo <= hi) {
 auto mid = lo + (hi - lo) / 2;
 bool ok = false;
 for (size_t i = 0; i != S.size() - mid + 1; ++i) {
 const auto [it, inserted] = set.emplace(S.data() + i, mid);
 if (!inserted) {
 ok = true;
 ret = *it;
 break;
 }
 }
 if (ok)
 lo = mid + 1;
 else
 hi = mid - 1;
 set.clear();
 }
 return {ret.begin(), ret.end()};
 }
};

class Solution {
public:
 string longestDupSubstring(string S) {
 const int MOD = 1e9 + 7;
 const int m = 31;
 int n = S.size();
 vector<long long> p(n + 1, 1);
 vector<long long> h(n + 1, 0);
 for (int i = 0; i < n; ++i) {
 p[i + 1] = (p[i] * m) % MOD;
 h[i + 1] = (h[i] + (S[i] - 'a' + 1) * p[i]) % MOD;
 }
 int lo = 0, hi = n, start = 0;
 while (lo <= hi) {
 int mid = lo + (hi - lo) / 2; // length of the substring
 bool ok = false;
 for (int i = 0; i + mid <= n && !ok; ++i) {
 // pattern: S[i..i + mid]
 long long hp = (h[i + mid] - h[i] + MOD) % MOD;
 for (int j = i + 1; j + mid <= n && !ok; ++j) {
 // substring: S[j..j + mid]
 long long cur_h = (h[j + mid] - h[j] + MOD) % MOD;
 long long new_h = (hp * p[j - i] + MOD) % MOD;
 ok = cur_h == new_h;

1047. Remove All Adjacent Duplicates In String
Description

 if (ok) start = i;
 }
 }
 if (ok)
 lo = mid + 1;
 else
 hi = mid - 1;
 }
 bool exists = false;
 long long hp = (h[start + lo] - h[start] + MOD) % MOD;
 for (int j = start + 1; j + lo <= n && !exists; ++j) {
 long long cur_h = (h[j + lo] - h[j] + MOD) % MOD;
 long long new_h = (hp * p[j - start] + MOD) % MOD;
 exists = cur_h == new_h;
 }
 if (!exists) --lo;
 return S.substr(start, lo);
 }
};

Given a string S of lowercase letters, a duplicate removal consists of choosing
two adjacent and equal letters, and removing them.

We repeatedly make duplicate removals on S until we no longer can.

Return the final string after all such duplicate removals have been made. It is
guaranteed the answer is unique.

Example 1:

Input: "abbaca"
Output: "ca"
Explanation:
For example, in "abbaca" we could remove "bb" since the letters are adjacent and
equal, and this is the only possible move. The result of this move is that the
string is "aaca", of which only "aa" is possible, so the final string is "ca".

Note:

https://leetcode.com/problems/remove-all-adjacent-duplicates-in-string/

Solution

01/31/2020:

1078. Occurrences After Bigram
Description

1 <= S.length <= 20000
S consists only of English lowercase letters.

class Solution {
public:
 string removeDuplicates(string S) {
 string ret;
 for (auto& c : S) {
 if (ret.empty() || ret.back() != c) {
 ret.push_back(c);
 } else {
 ret.pop_back();
 }
 }
 return ret;
 }
};

Given words first and second, consider occurrences in some text of the form
"first second third", where second comes immediately after first, and third
comes immediately after second.

For each such occurrence, add "third" to the answer, and return the answer.

Example 1:

Input: text = "alice is a good girl she is a good student", first = "a", second
= "good"
Output: ["girl","student"]
Example 2:

Input: text = "we will we will rock you", first = "we", second = "will"
Output: ["we","rock"]

https://leetcode.com/problems/occurrences-after-bigram/

Solution

02/03/2020:

1108. Defanging an IP Address
Description

Note:

1 <= text.length <= 1000
text consists of space separated words, where each word consists of lowercase
English letters.
1 <= first.length, second.length <= 10
first and second consist of lowercase English letters.

class Solution {
public:
 vector<string> findOcurrences(string text, string first, string second) {
 vector<string> words, ret;
 istringstream iss(text);
 string word;
 while (iss >> word) {
 words.push_back(word);
 }
 for (int i = 0; i < words.size() - 2; ++i) {
 if (words[i] == first && words[i + 1] == second) {
 ret.push_back(words[i + 2]);
 }
 }
 return ret;
 }
};

Given a valid (IPv4) IP address, return a defanged version of that IP address.

A defanged IP address replaces every period "." with "[.]".

Example 1:

Input: address = "1.1.1.1"
Output: "1[.]1[.]1[.]1"
Example 2:

https://leetcode.com/problems/defanging-an-ip-address/

Solution

01/29/2020:

1119. Remove Vowels from a String
Description

Input: address = "255.100.50.0"
Output: "255[.]100[.]50[.]0"

Constraints:

The given address is a valid IPv4 address.

class Solution {
public:
 string defangIPaddr(string address) {
 string ret;
 for (auto& c : address) {
 if (c == '.') {
 ret += "[.]";
 } else {
 ret += c;
 }
 }
 return ret;
 }
};

Given a string S, remove the vowels 'a', 'e', 'i', 'o', and 'u' from it, and
return the new string.

Example 1:

Input: "leetcodeisacommunityforcoders"
Output: "ltcdscmmntyfrcdrs"
Example 2:

Input: "aeiou"
Output: ""

https://leetcode.com/problems/remove-vowels-from-a-string/

Solution

01/29/2020:

1160. Find Words That Can Be Formed by Characters
Description

Note:

S consists of lowercase English letters only.
1 <= S.length <= 1000

class Solution {
public:
 string removeVowels(string S) {
 string ret;
 for (auto& c : S) {
 if (c != 'a' && c != 'e' && c != 'i' && c != 'o' && c != 'u') {
 ret.push_back(c);
 }
 }
 return ret;
 }
};

You are given an array of strings words and a string chars.

A string is good if it can be formed by characters from chars (each character
can only be used once).

Return the sum of lengths of all good strings in words.

Example 1:

Input: words = ["cat","bt","hat","tree"], chars = "atach"
Output: 6
Explanation:
The strings that can be formed are "cat" and "hat" so the answer is 3 + 3 = 6.
Example 2:

https://leetcode.com/problems/find-words-that-can-be-formed-by-characters/

Solution

01/31/2020:

Input: words = ["hello","world","leetcode"], chars = "welldonehoneyr"
Output: 10
Explanation:
The strings that can be formed are "hello" and "world" so the answer is 5 + 5 =
10.

Note:

1 <= words.length <= 1000
1 <= words[i].length, chars.length <= 100
All strings contain lowercase English letters only.

class Solution {
public:
 int countCharacters(vector<string>& words, string chars) {
 int ret = 0;
 vector<int> cnt(26, 0);
 for (auto& c : chars) {
 ++cnt[c - 'a'];
 }
 for (auto& w : words) {
 vector<int> req(26, 0);
 for (auto& c : w) {
 ++req[c - 'a'];
 }
 bool fit = true;
 for (int i = 0; i < 26; ++i) {
 if (req[i] > cnt[i]) {
 fit = false;
 break;
 }
 }
 if (fit) {
 ret += w.size();
 }
 }
 return ret;
 }
};

1165. Single-Row Keyboard
Description

Solution

01/29/2020:

There is a special keyboard with all keys in a single row.

Given a string keyboard of length 26 indicating the layout of the keyboard
(indexed from 0 to 25), initially your finger is at index 0. To type a
character, you have to move your finger to the index of the desired character.
The time taken to move your finger from index i to index j is |i - j|.

You want to type a string word. Write a function to calculate how much time it
takes to type it with one finger.

Example 1:

Input: keyboard = "abcdefghijklmnopqrstuvwxyz", word = "cba"
Output: 4
Explanation: The index moves from 0 to 2 to write 'c' then to 1 to write 'b'
then to 0 again to write 'a'.
Total time = 2 + 1 + 1 = 4.
Example 2:

Input: keyboard = "pqrstuvwxyzabcdefghijklmno", word = "leetcode"
Output: 73

Constraints:

keyboard.length == 26
keyboard contains each English lowercase letter exactly once in some order.
1 <= word.length <= 10^4
word[i] is an English lowercase letter.

class Solution {
public:
 int calculateTime(string keyboard, string word) {
 unordered_map<char, int> m;
 int last = 0, ret = 0;
 for (auto i = 0; i < (int)keyboard.size(); ++i) {
 m[keyboard[i]] = i;

https://leetcode.com/problems/single-row-keyboard/

1180. Count Substrings with Only One Distinct Letter
Description

Solution

01/30/2020:

 }
 for (auto& c : word) {
 ret += abs(m[c] - last);
 last = m[c];
 }
 return ret;
 }
};

Given a string S, return the number of substrings that have only one distinct
letter.

Example 1:

Input: S = "aaaba"
Output: 8
Explanation: The substrings with one distinct letter are "aaa", "aa", "a", "b".
"aaa" occurs 1 time.
"aa" occurs 2 times.
"a" occurs 4 times.
"b" occurs 1 time.
So the answer is 1 + 2 + 4 + 1 = 8.
Example 2:

Input: S = "aaaaaaaaaa"
Output: 55

Constraints:

1 <= S.length <= 1000
S[i] consists of only lowercase English letters.

class Solution {
public:

https://leetcode.com/problems/count-substrings-with-only-one-distinct-letter/

1221. Split a String in Balanced Strings
Description

 int countLetters(string S) {
 int ret = 0;
 int start = 0;
 for (int i = 0; i < S.size() - 1; ++i) {
 if (S[i] != S[i + 1]) {
 ret += (i - start + 1) * (i - start + 2) / 2;
 start = i + 1;
 }
 }
 ret += (S.size() - start) * (S.size() - start + 1) / 2;
 return ret;
 }
};

Balanced strings are those who have equal quantity of 'L' and 'R' characters.

Given a balanced string s split it in the maximum amount of balanced strings.

Return the maximum amount of splitted balanced strings.

Example 1:

Input: s = "RLRRLLRLRL"
Output: 4
Explanation: s can be split into "RL", "RRLL", "RL", "RL", each substring
contains same number of 'L' and 'R'.
Example 2:

Input: s = "RLLLLRRRLR"
Output: 3
Explanation: s can be split into "RL", "LLLRRR", "LR", each substring contains
same number of 'L' and 'R'.
Example 3:

Input: s = "LLLLRRRR"
Output: 1
Explanation: s can be split into "LLLLRRRR".
Example 4:

Input: s = "RLRRRLLRLL"

https://leetcode.com/problems/split-a-string-in-balanced-strings/

Solution

01/29/2020:

1236. Web Crawler
Description

Output: 2
Explanation: s can be split into "RL", "RRRLLRLL", since each substring contains
an equal number of 'L' and 'R'

Constraints:

1 <= s.length <= 1000
s[i] = 'L' or 'R'

class Solution {
public:
 int balancedStringSplit(string s) {
 int ret = 0, running_sum = 0;
 for (auto& c : s) {
 running_sum += c == 'R' ? 1 : -1;
 ret += running_sum == 0 ? 1 : 0;
 }
 return ret;
 }
};

Given a url startUrl and an interface HtmlParser, implement a web crawler to
crawl all links that are under the same hostname as startUrl.

Return all urls obtained by your web crawler in any order.

Your crawler should:

Start from the page: startUrl
Call HtmlParser.getUrls(url) to get all urls from a webpage of given url.
Do not crawl the same link twice.
Explore only the links that are under the same hostname as startUrl.

https://leetcode.com/problems/web-crawler/

As shown in the example url above, the hostname is example.org. For simplicity
sake, you may assume all urls use http protocol without any port specified. For
example, the urls http://leetcode.com/problems and http://leetcode.com/contest
are under the same hostname, while urls http://example.org/test and
http://example.com/abc are not under the same hostname.

The HtmlParser interface is defined as such:

interface HtmlParser {
 // Return a list of all urls from a webpage of given url.
 public List<String> getUrls(String url);
}
Below are two examples explaining the functionality of the problem, for custom
testing purposes you'll have three variables urls, edges and startUrl. Notice
that you will only have access to startUrl in your code, while urls and edges
are not directly accessible to you in code.

Example 1:

Input:
urls = [
 "http://news.yahoo.com",
 "http://news.yahoo.com/news",
 "http://news.yahoo.com/news/topics/",
 "http://news.google.com",
 "http://news.yahoo.com/us"
]
edges = [[2,0],[2,1],[3,2],[3,1],[0,4]]
startUrl = "http://news.yahoo.com/news/topics/"
Output: [
 "http://news.yahoo.com",
 "http://news.yahoo.com/news",
 "http://news.yahoo.com/news/topics/",
 "http://news.yahoo.com/us"
]
Example 2:

Input:
urls = [
 "http://news.yahoo.com",
 "http://news.yahoo.com/news",
 "http://news.yahoo.com/news/topics/",
 "http://news.google.com"

Solution

05/04/2020:

]
edges = [[0,2],[2,1],[3,2],[3,1],[3,0]]
startUrl = "http://news.google.com"
Output: ["http://news.google.com"]
Explanation: The startUrl links to all other pages that do not share the same
hostname.

Constraints:

1 <= urls.length <= 1000
1 <= urls[i].length <= 300
startUrl is one of the urls.
Hostname label must be from 1 to 63 characters long, including the dots, may
contain only the ASCII letters from 'a' to 'z', digits from '0' to '9' and the
hyphen-minus character ('-').
The hostname may not start or end with the hyphen-minus character ('-').
See: https://en.wikipedia.org/wiki/Hostname#Restrictions_on_valid_hostnames
You may assume there're no duplicates in url library.

/**
 * // This is the HtmlParser's API interface.
 * // You should not implement it, or speculate about its implementation
 * class HtmlParser {
 * public:
 * vector<string> getUrls(string url);
 * };
 */

class Solution {
public:
 vector<string> crawl(string startUrl, HtmlParser htmlParser) {
 string hostname = startUrl.substr(0, startUrl.find('/', 7));
 unordered_set<string> visited;
 vector<string> ret;
 queue<string> q;
 q.push(startUrl);
 while (!q.empty()) {
 string url = q.front(); q.pop();
 if (url.find(hostname) == string::npos || visited.count(url) != 0)
continue;
 visited.insert(url);
 ret.push_back(url);
 vector<string> urls = htmlParser.getUrls(url);

1309. Decrypt String from Alphabet to Integer Mapping
Description

 for (auto& url : urls) q.push(url);
 }
 return ret;
 }
};

Given a string s formed by digits ('0' - '9') and '#' . We want to map s to
English lowercase characters as follows:

Characters ('a' to 'i') are represented by ('1' to '9') respectively.
Characters ('j' to 'z') are represented by ('10#' to '26#') respectively.
Return the string formed after mapping.

It's guaranteed that a unique mapping will always exist.

Example 1:

Input: s = "10#11#12"
Output: "jkab"
Explanation: "j" -> "10#" , "k" -> "11#" , "a" -> "1" , "b" -> "2".
Example 2:

Input: s = "1326#"
Output: "acz"
Example 3:

Input: s = "25#"
Output: "y"
Example 4:

Input: s = "12345678910#11#12#13#14#15#16#17#18#19#20#21#22#23#24#25#26#"
Output: "abcdefghijklmnopqrstuvwxyz"

Constraints:

1 <= s.length <= 1000
s[i] only contains digits letters ('0'-'9') and '#' letter.
s will be valid string such that mapping is always possible.

https://leetcode.com/problems/decrypt-string-from-alphabet-to-integer-mapping/

Solution

01/29/2020:

1324. Print Words Vertically
Description

class Solution {
public:
 string freqAlphabets(string s) {
 string ret;
 for (int i = s.size() - 1; i >= 0;) {
 if (s[i] == '#') {
 ret.push_back(stoi(s.substr(i - 2, 2)) - 1 + 'a');
 i -= 3;
 } else {
 ret.push_back(s[i] - '1' + 'a');
 --i;
 }
 }
 reverse(ret.begin(), ret.end());
 return ret;
 }
};

Given a string s. Return all the words vertically in the same order in which
they appear in s.
Words are returned as a list of strings, complete with spaces when is necessary.
(Trailing spaces are not allowed).
Each word would be put on only one column and that in one column there will be
only one word.

Example 1:

Input: s = "HOW ARE YOU"
Output: ["HAY","ORO","WEU"]
Explanation: Each word is printed vertically.
 "HAY"
 "ORO"
 "WEU"
Example 2:

Input: s = "TO BE OR NOT TO BE"

https://leetcode.com/problems/print-words-vertically/

Solution

01/19/2020:

1332. Remove Palindromic Subsequences

Output: ["TBONTB","OEROOE"," T"]
Explanation: Trailing spaces is not allowed.
"TBONTB"
"OEROOE"
" T"
Example 3:

Input: s = "CONTEST IS COMING"
Output: ["CIC","OSO","N M","T I","E N","S G","T"]

Constraints:

1 <= s.length <= 200
s contains only upper case English letters.
It's guaranteed that there is only one space between 2 words.

class Solution {
public:
 vector<string> printVertically(string s) {
 istringstream is(s);
 string str;
 vector<string> words;
 int max_len = INT_MIN;
 while (is >> str) {
 words.push_back(str);
 max_len = max(max_len, (int)str.size());
 }
 vector<string> ret(max_len, string(words.size(), ' '));
 for (int i = 0; i < words.size(); ++i)
 for (int j = 0; j < ret.size(); ++j)
 if (j < words[i].size())
 ret[j][i] = words[i][j];
 for (auto& r : ret)
 while (r.back() == ' ')
 r.pop_back();
 return ret;
 }
};

Description

Solution

01/25/2020:

Given a string s consisting only of letters 'a' and 'b'. In a single step you
can remove one palindromic subsequence from s.

Return the minimum number of steps to make the given string empty.

A string is a subsequence of a given string, if it is generated by deleting some
characters of a given string without changing its order.

A string is called palindrome if is one that reads the same backward as well as
forward.

Example 1:

Input: s = "ababa"
Output: 1
Explanation: String is already palindrome
Example 2:

Input: s = "abb"
Output: 2
Explanation: "abb" -> "bb" -> "".
Remove palindromic subsequence "a" then "bb".
Example 3:

Input: s = "baabb"
Output: 2
Explanation: "baabb" -> "b" -> "".
Remove palindromic subsequence "baab" then "b".
Example 4:

Input: s = ""
Output: 0

Constraints:

0 <= s.length <= 1000
s only consists of letters 'a' and 'b'

https://leetcode.com/problems/remove-palindromic-subsequences/

1427. Perform String Shifts
Description

class Solution {
public:
 int removePalindromeSub(string s) {
 if (s.size() == 0) return 0;
 for (int l = 0, r = s.size() - 1; l < r; ++l, --r)
 if (s[l] != s[r]) return 2;
 return 1;
 }
};

You are given a string s containing lowercase English letters, and a matrix
shift, where shift[i] = [direction, amount]:

direction can be 0 (for left shift) or 1 (for right shift).
amount is the amount by which string s is to be shifted.
A left shift by 1 means remove the first character of s and append it to the
end.
Similarly, a right shift by 1 means remove the last character of s and add it to
the beginning.
Return the final string after all operations.

Example 1:

Input: s = "abc", shift = [[0,1],[1,2]]
Output: "cab"
Explanation:
[0,1] means shift to left by 1. "abc" -> "bca"
[1,2] means shift to right by 2. "bca" -> "cab"
Example 2:

Input: s = "abcdefg", shift = [[1,1],[1,1],[0,2],[1,3]]
Output: "efgabcd"
Explanation:
[1,1] means shift to right by 1. "abcdefg" -> "gabcdef"
[1,1] means shift to right by 1. "gabcdef" -> "fgabcde"
[0,2] means shift to left by 2. "fgabcde" -> "abcdefg"
[1,3] means shift to right by 3. "abcdefg" -> "efgabcd"

https://leetcode.com/problems/perform-string-shifts/

Solution

05/04/2020:

1432. Max Difference You Can Get From Changing an
Integer

Description

Constraints:

1 <= s.length <= 100
s only contains lower case English letters.
1 <= shift.length <= 100
shift[i].length == 2
0 <= shift[i][0] <= 1
0 <= shift[i][1] <= 100

class Solution {
public:
 string stringShift(string s, vector<vector<int>>& shift) {
 int m = 0, n = s.size();
 for (auto& h : shift) m += h[0] == 0 ? -h[1] : h[1];
 m = (m % n + n) % n;
 return s.substr(n - m, m) + s.substr(0, n - m);
 }
};

You are given an integer num. You will apply the following steps exactly two
times:

Pick a digit x (0 <= x <= 9).
Pick another digit y (0 <= y <= 9). The digit y can be equal to x.
Replace all the occurrences of x in the decimal representation of num by y.
The new integer cannot have any leading zeros, also the new integer cannot be 0.
Let a and b be the results of applying the operations to num the first and
second times, respectively.

Return the max difference between a and b.

Example 1:

https://leetcode.com/problems/max-difference-you-can-get-from-changing-an-integer/

Solution

05/02/2020:

Input: num = 555
Output: 888
Explanation: The first time pick x = 5 and y = 9 and store the new integer in a.
The second time pick x = 5 and y = 1 and store the new integer in b.
We have now a = 999 and b = 111 and max difference = 888
Example 2:

Input: num = 9
Output: 8
Explanation: The first time pick x = 9 and y = 9 and store the new integer in a.
The second time pick x = 9 and y = 1 and store the new integer in b.
We have now a = 9 and b = 1 and max difference = 8
Example 3:

Input: num = 123456
Output: 820000
Example 4:

Input: num = 10000
Output: 80000
Example 5:

Input: num = 9288
Output: 8700

Constraints:

1 <= num <= 10^8

class Solution {
public:
 int maxDiff(int num) {
 string s1 = to_string(num);
 string s2 = to_string(num);
 char c, t;
 bool found = false;
 int n = s1.size();
 for (int i = 0; i < n; ++i) {
 if (!found && s1[i] != '9') {
 c = s1[i];
 s1[i] = '9';
 found = true;
 } else if (found && s1[i] == c) {

1433. Check If a String Can Break Another String
Description

 s1[i] = '9';
 }
 }
 found = false;
 for (int i = 0; i < n; ++i) {
 if (!found) {
 if (s2[0] != '1') {
 c = s2[0];
 t = '1';
 s2[0] = '1';
 found = true;
 } else {
 if (i > 0 && s2[i] != s2[0] && s2[i] != '0') {
 c = s2[i];
 t = '0';
 s2[i] = '0';
 found = true;
 }
 }
 } else {
 if (s2[i] == c) {
 s2[i] = t;
 }
 }
 }
 return stoi(s1) - stoi(s2);
 }
};

Given two strings: s1 and s2 with the same size, check if some permutation of
string s1 can break some permutation of string s2 or vice-versa (in other words
s2 can break s1).

A string x can break string y (both of size n) if x[i] >= y[i] (in alphabetical
order) for all i between 0 and n-1.

Example 1:

Input: s1 = "abc", s2 = "xya"
Output: true

https://leetcode.com/problems/check-if-a-string-can-break-another-string/

Solution

05/02/2020:

Explanation: "ayx" is a permutation of s2="xya" which can break to string "abc"
which is a permutation of s1="abc".
Example 2:

Input: s1 = "abe", s2 = "acd"
Output: false
Explanation: All permutations for s1="abe" are: "abe", "aeb", "bae", "bea",
"eab" and "eba" and all permutation for s2="acd" are: "acd", "adc", "cad",
"cda", "dac" and "dca". However, there is not any permutation from s1 which can
break some permutation from s2 and vice-versa.
Example 3:

Input: s1 = "leetcodee", s2 = "interview"
Output: true

Constraints:

s1.length == n
s2.length == n
1 <= n <= 10^5
All strings consist of lowercase English letters.

class Solution {
public:
 bool checkIfCanBreak(string s1, string s2) {
 sort(s1.begin(), s1.end());
 sort(s2.begin(), s2.end());
 int n = s1.size();
 bool greaterThan = true, lessThan = true;
 for (int i = 0; i < n; ++i) {
 if (s1[i] > s2[i]) {
 lessThan = false;
 }
 if (s1[i] < s2[i]) {
 greaterThan = false;
 }
 }
 return lessThan || greaterThan;
 }
};

1436. Destination City
Description

Solution

You are given the array paths, where paths[i] = [cityAi, cityBi] means there
exists a direct path going from cityAi to cityBi. Return the destination city,
that is, the city without any path outgoing to another city.

It is guaranteed that the graph of paths forms a line without any loop,
therefore, there will be exactly one destination city.

Example 1:

Input: paths = [["London","New York"],["New York","Lima"],["Lima","Sao Paulo"]]
Output: "Sao Paulo"
Explanation: Starting at "London" city you will reach "Sao Paulo" city which is
the destination city. Your trip consist of: "London" -> "New York" -> "Lima" ->
"Sao Paulo".
Example 2:

Input: paths = [["B","C"],["D","B"],["C","A"]]
Output: "A"
Explanation: All possible trips are:
"D" -> "B" -> "C" -> "A".
"B" -> "C" -> "A".
"C" -> "A".
"A".
Clearly the destination city is "A".
Example 3:

Input: paths = [["A","Z"]]
Output: "Z"

Constraints:

1 <= paths.length <= 100
paths[i].length == 2
1 <= cityAi.length, cityBi.length <= 10
cityAi != cityBi
All strings consist of lowercase and uppercase English letters and the space
character.

https://leetcode.com/problems/destination-city/

05/02/2020:

1446. Consecutive Characters
Description

class Solution {
public:
 string destCity(vector<vector<string>>& paths) {
 unordered_set<string> cities;
 unordered_set<string> departs;
 for (auto& p : paths) {
 cities.insert(p[0]);
 cities.insert(p[1]);
 departs.insert(p[0]);
 }
 for (auto& d : departs) {
 cities.erase(d);
 }
 string ret;
 for (auto& c : cities) {
 ret = c;
 }
 return ret;
 }
};

Given a string s, the power of the string is the maximum length of a non-empty
substring that contains only one unique character.

Return the power of the string.

Example 1:

Input: s = "leetcode"
Output: 2
Explanation: The substring "ee" is of length 2 with the character 'e' only.
Example 2:

Input: s = "abbcccddddeeeeedcba"
Output: 5
Explanation: The substring "eeeee" is of length 5 with the character 'e' only.
Example 3:

https://leetcode.com/problems/consecutive-characters/

Solution

05/17/2020:

1451. Rearrange Words in a Sentence
Description

Input: s = "triplepillooooow"
Output: 5
Example 4:

Input: s = "hooraaaaaaaaaaay"
Output: 11
Example 5:

Input: s = "tourist"
Output: 1

Constraints:

1 <= s.length <= 500
s contains only lowercase English letters.

class Solution {
public:
 int maxPower(string s) {
 if (s.empty()) return 0;
 int cnt = 1;
 int ret = 1;
 for (int i = 1; i < (int)s.size(); ++i) {
 if (s[i] == s[i - 1]) {
 ret = max(ret, ++cnt);
 } else {
 cnt = 1;
 }
 }
 return ret;
 }
};

Given a sentence text (A sentence is a string of space-separated words) in the
following format:

https://leetcode.com/problems/rearrange-words-in-a-sentence/

Solution

05/17/2020:

First letter is in upper case.
Each word in text are separated by a single space.
Your task is to rearrange the words in text such that all words are rearranged
in an increasing order of their lengths. If two words have the same length,
arrange them in their original order.

Return the new text following the format shown above.

Example 1:

Input: text = "Leetcode is cool"
Output: "Is cool leetcode"
Explanation: There are 3 words, "Leetcode" of length 8, "is" of length 2 and
"cool" of length 4.
Output is ordered by length and the new first word starts with capital letter.
Example 2:

Input: text = "Keep calm and code on"
Output: "On and keep calm code"
Explanation: Output is ordered as follows:
"On" 2 letters.
"and" 3 letters.
"keep" 4 letters in case of tie order by position in original text.
"calm" 4 letters.
"code" 4 letters.
Example 3:

Input: text = "To be or not to be"
Output: "To be or to be not"

Constraints:

text begins with a capital letter and then contains lowercase letters and single
space between words.
1 <= text.length <= 10^5

class Solution {
public:
 string arrangeWords(string text) {
 if (text.empty()) return "";

1455. Check If a Word Occurs As a Prefix of Any Word in a
Sentence

Description

 text.front() = tolower(text.front());
 istringstream iss(text);
 string ret, s;
 vector<pair<string, int>> words;
 int i = 0;
 while (iss >> s) words.emplace_back(s, ++i);
 sort(words.begin(), words.end(), [](pair<string, int> p1, pair<string, int>
p2) {
 if (p1.first.size() == p2.first.size()) {
 return p1.second < p2.second;
 }
 return p1.first.size() < p2.first.size();
 });
 bool first = true;
 for (auto& w : words) {
 if (first) {
 first = false;
 ret += w.first;
 } else {
 ret += " ";
 ret += w.first;
 }
 }
 ret.front() = toupper(ret.front());
 return ret;
 }
};

Given a sentence that consists of some words separated by a single space, and a
searchWord.

You have to check if searchWord is a prefix of any word in sentence.

Return the index of the word in sentence where searchWord is a prefix of this
word (1-indexed).

If searchWord is a prefix of more than one word, return the index of the first
word (minimum index). If there is no such word return -1.

A prefix of a string S is any leading contiguous substring of S.

https://leetcode.com/problems/check-if-a-word-occurs-as-a-prefix-of-any-word-in-a-sentence/

Solution

05/23/2020:

Example 1:

Input: sentence = "i love eating burger", searchWord = "burg"
Output: 4
Explanation: "burg" is prefix of "burger" which is the 4th word in the sentence.
Example 2:

Input: sentence = "this problem is an easy problem", searchWord = "pro"
Output: 2
Explanation: "pro" is prefix of "problem" which is the 2nd and the 6th word in
the sentence, but we return 2 as it's the minimal index.
Example 3:

Input: sentence = "i am tired", searchWord = "you"
Output: -1
Explanation: "you" is not a prefix of any word in the sentence.
Example 4:

Input: sentence = "i use triple pillow", searchWord = "pill"
Output: 4
Example 5:

Input: sentence = "hello from the other side", searchWord = "they"
Output: -1

Constraints:

1 <= sentence.length <= 100
1 <= searchWord.length <= 10
sentence consists of lowercase English letters and spaces.
searchWord consists of lowercase English letters.

class Trie {
private:
 struct Node {
 bool isWord;
 vector<Node*> children;
 Node() { isWord = false; children.resize(26, nullptr); }
 ~Node() { for(auto& c : children) delete c; }
 };

 Node* root;

 Node* find(const string& word) {
 Node* cur = root;
 for (auto& c : word) {
 cur = cur->children[c - 'a'];
 if (!cur) break;
 }
 return cur;
 }

public:
 Trie() { root = new Node(); }

 void insert(string word) {
 Node* cur = root;
 for (auto& c : word) {
 if (!cur->children[c - 'a'])
 cur->children[c - 'a'] = new Node();
 cur = cur->children[c - 'a'];
 }
 cur->isWord = true;
 }

 bool search(string word) {
 Node* cur = find(word);
 return cur && cur->isWord;
 }

 bool startsWith(string prefix) {
 Node* cur = find(prefix);
 return cur;
 }
};

class Solution {
public:
 int isPrefixOfWord(string sentence, string searchWord) {
 Trie t;
 string s;
 vector<string> words;
 istringstream iss(sentence);
 int i = 0;
 while (iss >> s) {
 t.insert(s);
 ++i;
 if (t.startsWith(searchWord)) return i;
 }

1456. Maximum Number of Vowels in a Substring of Given
Length

Description

 return -1;
 }
};

Given a string s and an integer k.

Return the maximum number of vowel letters in any substring of s with length k.

Vowel letters in English are (a, e, i, o, u).

Example 1:

Input: s = "abciiidef", k = 3
Output: 3
Explanation: The substring "iii" contains 3 vowel letters.
Example 2:

Input: s = "aeiou", k = 2
Output: 2
Explanation: Any substring of length 2 contains 2 vowels.
Example 3:

Input: s = "leetcode", k = 3
Output: 2
Explanation: "lee", "eet" and "ode" contain 2 vowels.
Example 4:

Input: s = "rhythms", k = 4
Output: 0
Explanation: We can see that s doesn't have any vowel letters.
Example 5:

Input: s = "tryhard", k = 4
Output: 1

Constraints:

https://leetcode.com/problems/maximum-number-of-vowels-in-a-substring-of-given-length/

Solution

05/23/2020:

1487. Making File Names Unique
Description

1 <= s.length <= 10^5
s consists of lowercase English letters.
1 <= k <= s.length

class Solution {
public:
 int maxVowels(string s, int k) {
 unordered_set<char> vow{'a', 'e', 'i', 'o', 'u'};
 int ret = 0, cnt = 0, slow = 0;
 for (int fast = 0; fast < (int)s.size(); ++fast) {
 if (fast - slow >= k) cnt += vow.count(s[slow++]) > 0 ? -1 : 0;
 if (vow.count(s[fast]) > 0) ret = max(ret, ++cnt);
 }
 return ret;
 }
};

Given an array of strings names of size n. You will create n folders in your
file system such that, at the ith minute, you will create a folder with the name
names[i].

Since two files cannot have the same name, if you enter a folder name which is
previously used, the system will have a suffix addition to its name in the form
of (k), where, k is the smallest positive integer such that the obtained name
remains unique.

Return an array of strings of length n where ans[i] is the actual name the
system will assign to the ith folder when you create it.

Example 1:

Input: names = ["pes","fifa","gta","pes(2019)"]
Output: ["pes","fifa","gta","pes(2019)"]
Explanation: Let's see how the file system creates folder names:
"pes" --> not assigned before, remains "pes"

https://leetcode.com/problems/making-file-names-unique/

Solution

06/20/2020:

"fifa" --> not assigned before, remains "fifa"
"gta" --> not assigned before, remains "gta"
"pes(2019)" --> not assigned before, remains "pes(2019)"
Example 2:

Input: names = ["gta","gta(1)","gta","avalon"]
Output: ["gta","gta(1)","gta(2)","avalon"]
Explanation: Let's see how the file system creates folder names:
"gta" --> not assigned before, remains "gta"
"gta(1)" --> not assigned before, remains "gta(1)"
"gta" --> the name is reserved, system adds (k), since "gta(1)" is also
reserved, systems put k = 2. it becomes "gta(2)"
"avalon" --> not assigned before, remains "avalon"
Example 3:

Input: names = ["onepiece","onepiece(1)","onepiece(2)","onepiece(3)","onepiece"]
Output: ["onepiece","onepiece(1)","onepiece(2)","onepiece(3)","onepiece(4)"]
Explanation: When the last folder is created, the smallest positive valid k is
4, and it becomes "onepiece(4)".
Example 4:

Input: names = ["wano","wano","wano","wano"]
Output: ["wano","wano(1)","wano(2)","wano(3)"]
Explanation: Just increase the value of k each time you create folder "wano".
Example 5:

Input: names = ["kaido","kaido(1)","kaido","kaido(1)"]
Output: ["kaido","kaido(1)","kaido(2)","kaido(1)(1)"]
Explanation: Please note that system adds the suffix (k) to current name even it
contained the same suffix before.

Constraints:

1 <= names.length <= 5 * 10^4
1 <= names[i].length <= 20
names[i] consists of lower case English letters, digits and/or round brackets.

class Solution {
public:
 vector<string> getFolderNames(vector<string>& names) {
 unordered_set<string> seen;
 unordered_map<string, int> mp;
 vector<string> ret;

Depth-First Search & Breadth-First
Search

200. Number of Islands
Description

 for (auto& name : names) {
 if (seen.count(name) == 0) {
 ret.push_back(name);
 seen.insert(name);
 } else {
 int i = mp.count(name) == 0 ? 1 : mp[name];
 string new_name;
 for (new_name = name + "(" + to_string(i) + ")"; seen.count(new_name) >
0; ++i)
 new_name = name + "(" + to_string(i + 1) + ")";
 ret.push_back(new_name);
 mp[name] = i;
 seen.insert(new_name);
 }
 }
 return ret;
 }
};

Given a 2d grid map of '1's (land) and '0's (water), count the number of
islands. An island is surrounded by water and is formed by connecting adjacent
lands horizontally or vertically. You may assume all four edges of the grid are
all surrounded by water.

Example 1:

Input:
11110
11010
11000
00000

Output: 1

https://leetcode.com/problems/number-of-islands/

Solution

01/25/2020:

695. Max Area of Island
Description

Example 2:

Input:
11000
11000
00100
00011

Output: 3

class Solution {
public:
 int numIslands(vector<vector<char>>& grid) {
 int ret = 0;
 for (int i = 0; i < (int)grid.size(); ++i) {
 for (int j = 0; j < (int)grid[0].size(); ++j) {
 if (grid[i][j] == '1') {
 dfs(grid, i, j);
 ++ret;
 }
 }
 }
 return ret;
 }

 void dfs(vector<vector<char>>& grid, int i, int j) {
 if (i < 0 || j < 0 || i >= grid.size() || j >= grid[0].size() || grid[i][j]
== '0') return;
 if (grid[i][j] == '1') {
 grid[i][j] = '0';
 dfs(grid, i - 1, j);
 dfs(grid, i + 1, j);
 dfs(grid, i, j - 1);
 dfs(grid, i, j + 1);
 }
 }
};

https://leetcode.com/problems/max-area-of-island/

Solution

01/29/2020:

Given a non-empty 2D array grid of 0's and 1's, an island is a group of 1's
(representing land) connected 4-directionally (horizontal or vertical.) You may
assume all four edges of the grid are surrounded by water.

Find the maximum area of an island in the given 2D array. (If there is no
island, the maximum area is 0.)

Example 1:

[[0,0,1,0,0,0,0,1,0,0,0,0,0],
 [0,0,0,0,0,0,0,1,1,1,0,0,0],
 [0,1,1,0,1,0,0,0,0,0,0,0,0],
 [0,1,0,0,1,1,0,0,1,0,1,0,0],
 [0,1,0,0,1,1,0,0,1,1,1,0,0],
 [0,0,0,0,0,0,0,0,0,0,1,0,0],
 [0,0,0,0,0,0,0,1,1,1,0,0,0],
 [0,0,0,0,0,0,0,1,1,0,0,0,0]]
Given the above grid, return 6. Note the answer is not 11, because the island
must be connected 4-directionally.
Example 2:

[[0,0,0,0,0,0,0,0]]
Given the above grid, return 0.
Note: The length of each dimension in the given grid does not exceed 50.

class Solution {
public:
 int maxAreaOfIsland(vector<vector<int>>& grid) {
 int m = grid.size(), n = grid[0].size();
 int ret = 0;
 for (int i = 0; i < m; ++i) {
 for (int j = 0; j < n; ++j) {
 int area = 0;
 if (grid[i][j] == 1) dfs(grid, i, j, area);
 ret = max(ret, area);
 }
 }
 return ret;
 }

 void dfs(vector<vector<int>>& grid, int i, int j, int& area) {
 int m = grid.size(), n = grid[0].size();
 if (grid[i][j] == 1) {
 area += 1;

886. Possible Bipartition
Description

 grid[i][j] = 0;
 if (i > 0) dfs(grid, i - 1, j, area);
 if (j > 0) dfs(grid, i, j - 1, area);
 if (i < m - 1) dfs(grid, i + 1, j, area);
 if (j < n - 1) dfs(grid, i, j + 1, area);
 }
 }
};

Given a set of N people (numbered 1, 2, ..., N), we would like to split everyone
into two groups of any size.

Each person may dislike some other people, and they should not go into the same
group.

Formally, if dislikes[i] = [a, b], it means it is not allowed to put the people
numbered a and b into the same group.

Return true if and only if it is possible to split everyone into two groups in
this way.

Example 1:

Input: N = 4, dislikes = [[1,2],[1,3],[2,4]]
Output: true
Explanation: group1 [1,4], group2 [2,3]
Example 2:

Input: N = 3, dislikes = [[1,2],[1,3],[2,3]]
Output: false
Example 3:

Input: N = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
Output: false

Note:

1 <= N <= 2000
0 <= dislikes.length <= 10000

https://leetcode.com/problems/possible-bipartition/

Solution

05/27/2020: Using BFS:

Using Union-Find Set:

1 <= dislikes[i][j] <= N
dislikes[i][0] < dislikes[i][1]
There does not exist i != j for which dislikes[i] == dislikes[j].

class Solution {
public:
 bool possibleBipartition(int n, vector<vector<int>>& dislikes) {
 if (n == 0 || dislikes.empty() || dislikes[0].empty()) return true;
 vector<vector<int>> adj(n + 1);
 for (auto& d : dislikes) {
 adj[d[0]].push_back(d[1]);
 adj[d[1]].push_back(d[0]);
 }
 unordered_map<int, bool> color;
 bool isRed = true;
 unordered_set<int> visited;
 for (int i = 0; i <= n; ++i) {
 queue<int> q;
 q.push(i);
 if (color.count(i) == 0) color[i] = isRed;
 while (!q.empty()) {
 int sz = q.size();
 for (int k = 0; k < sz; ++k) {
 int cur = q.front(); q.pop();
 if (visited.count(cur)) continue;
 for (auto& j : adj[cur]) {
 if (color.count(j) == 0) {
 color[j] = !color[cur];
 } else {
 if (color[j] == color[cur]) {
 return false;
 }
 }
 q.push(j);
 }
 visited.insert(cur);
 }
 }
 }
 return true;
 }
};

class UnionFind {
private:
 vector<int> id;
 vector<int> sz;

public:
 UnionFind(int n) {
 id.resize(n);
 iota(id.begin(), id.end(), 0);
 sz.resize(n, 1);
 }

 int find(int x) {
 if (x == id[x]) return x;
 return id[x] = find(id[x]);
 }

 bool connected(int x, int y) {
 return find(x) == find(y);
 }

 bool merge(int x, int y) {
 int i = find(x), j = find(y);
 if (i == j) return false;
 if (sz[i] > sz[j]) {
 sz[i] += sz[j];
 id[j] = i;
 } else {
 sz[j] += sz[i];
 id[i] = j;
 }
 return true;
 }
};

class Solution {
public:
 bool possibleBipartition(int n, vector<vector<int>>& dislikes) {
 if (n == 0 || dislikes.empty() || dislikes[0].empty()) return true;
 vector<vector<int>> adj(n);
 for (auto& d : dislikes) {
 adj[d[0] - 1].push_back(d[1] - 1);
 adj[d[1] - 1].push_back(d[0] - 1);
 }
 UnionFind uf(n);
 for (auto& a : adj)
 for (int i = 0; i < (int)a.size() - 1; ++i)
 uf.merge(a[i], a[i + 1]);

1222. Queens That Can Attack the King
Description

 for (auto& d : dislikes)
 if (uf.connected(d[0] - 1, d[1] - 1))
 return false;
 return true;
 }
};

On an 8x8 chessboard, there can be multiple Black Queens and one White King.

Given an array of integer coordinates queens that represents the positions of
the Black Queens, and a pair of coordinates king that represent the position of
the White King, return the coordinates of all the queens (in any order) that can
attack the King.

Example 1:

Input: queens = [[0,1],[1,0],[4,0],[0,4],[3,3],[2,4]], king = [0,0]
Output: [[0,1],[1,0],[3,3]]
Explanation:
The queen at [0,1] can attack the king cause they're in the same row.
The queen at [1,0] can attack the king cause they're in the same column.
The queen at [3,3] can attack the king cause they're in the same diagnal.
The queen at [0,4] can't attack the king cause it's blocked by the queen at
[0,1].
The queen at [4,0] can't attack the king cause it's blocked by the queen at
[1,0].
The queen at [2,4] can't attack the king cause it's not in the same
row/column/diagnal as the king.
Example 2:

Input: queens = [[0,0],[1,1],[2,2],[3,4],[3,5],[4,4],[4,5]], king = [3,3]
Output: [[2,2],[3,4],[4,4]]
Example 3:

https://leetcode.com/problems/queens-that-can-attack-the-king/

Solution

05/27/2020:

Input: queens = [[5,6],[7,7],[2,1],[0,7],[1,6],[5,1],[3,7],[0,3],[4,0],[1,2],
[6,3],[5,0],[0,4],[2,2],[1,1],[6,4],[5,4],[0,0],[2,6],[4,5],[5,2],[1,4],[7,5],
[2,3],[0,5],[4,2],[1,0],[2,7],[0,1],[4,6],[6,1],[0,6],[4,3],[1,7]], king = [3,4]
Output: [[2,3],[1,4],[1,6],[3,7],[4,3],[5,4],[4,5]]

Constraints:

1 <= queens.length <= 63
queens[0].length == 2
0 <= queens[i][j] < 8
king.length == 2
0 <= king[0], king[1] < 8
At most one piece is allowed in a cell.

class Solution {
public:
 vector<vector<int>> queensAttacktheKing(vector<vector<int>>& queens,
vector<int>& king) {
 int dir[8][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1}, {-1, -1}, {-1, 1}, {1,
-1}, {1, 1} };
 int i = king[0], j = king[1], r = 8, c = 8;
 vector<vector<int>> ret;
 unordered_set<string> queenSet;
 for (auto& q : queens) queenSet.insert(to_string(q[0]) + "," +
to_string(q[1]));
 for (int d = 0; d < 8; ++d) {
 for (int ni = i + dir[d][0], nj = j + dir[d][1]; 0 <= ni && ni < r && 0 <=
nj && nj < c; ni += dir[d][0], nj += dir[d][1]) {
 if (queenSet.count(to_string(ni) + "," + to_string(nj)) > 0) {
 ret.push_back({ni, nj});
 break;
 }
 }
 }
 return ret;
 }
};

1489. Find Critical and Pseudo-Critical Edges in Minimum
Spanning Tree

Description

Given a weighted undirected connected graph with n vertices numbered from 0 to
n-1, and an array edges where edges[i] = [fromi, toi, weighti] represents a
bidirectional and weighted edge between nodes fromi and toi. A minimum spanning
tree (MST) is a subset of the edges of the graph that connects all vertices
without cycles and with the minimum possible total edge weight.

Find all the critical and pseudo-critical edges in the minimum spanning tree
(MST) of the given graph. An MST edge whose deletion from the graph would cause
the MST weight to increase is called a critical edge. A pseudo-critical edge, on
the other hand, is that which can appear in some MSTs but not all.

Note that you can return the indices of the edges in any order.

Example 1:

Input: n = 5, edges = [[0,1,1],[1,2,1],[2,3,2],[0,3,2],[0,4,3],[3,4,3],[1,4,6]]
Output: [[0,1],[2,3,4,5]]
Explanation: The figure above describes the graph.
The following figure shows all the possible MSTs:

Notice that the two edges 0 and 1 appear in all MSTs, therefore they are
critical edges, so we return them in the first list of the output.
The edges 2, 3, 4, and 5 are only part of some MSTs, therefore they are
considered pseudo-critical edges. We add them to the second list of the output.
Example 2:

Input: n = 4, edges = [[0,1,1],[1,2,1],[2,3,1],[0,3,1]]
Output: [[],[0,1,2,3]]
Explanation: We can observe that since all 4 edges have equal weight, choosing
any 3 edges from the given 4 will yield an MST. Therefore all 4 edges are
pseudo-critical.

Constraints:

2 <= n <= 100

https://leetcode.com/problems/find-critical-and-pseudo-critical-edges-in-minimum-spanning-tree/

Solution

06/20/2020:

1 <= edges.length <= min(200, n * (n - 1) / 2)
edges[i].length == 3
0 <= fromi < toi < n
1 <= weighti <= 1000
All pairs (fromi, toi) are distinct.

typedef pair<int, int> pii;
typedef pair<pii, int> metadata;
typedef pair<int, metadata> edge;

class UnionFind {
private:
 vector<int> id;
 vector<int> sz;

public:
 UnionFind(int n) {
 init(n);
 }

 void init(int n) {
 id.assign(n, 0);
 iota(id.begin(), id.end(), 0);
 sz.assign(n, 1);
 }

 int find(int x) {
 return x == id[x] ? x : (id[x] = find(id[x]));
 }

 bool merge(int x, int y) {
 x = find(x), y = find(y);
 if (x == y) return false;
 if (sz[x] > sz[y]) {
 sz[x] += sz[y];
 id[y] = x;
 } else {
 sz[y] += sz[x];
 id[x] = y;
 }
 return true;
 }
};

class Solution {
public:
 vector<vector<int>> findCriticalAndPseudoCriticalEdges(int n,
vector<vector<int>>& redges) {
 vector<edge> edges;
 int m = redges.size();
 for (int i = 0; i < m; ++i) {
 auto out = redges[i];
 edges.emplace_back(out[2], metadata(pii(out[0], out[1]), i));
 }
 sort(edges.begin(), edges.end());
 int realweight = 0;
 UnionFind uf(n);
 for (auto out : edges)
 if (uf.merge(out.second.first.first, out.second.first.second))
 realweight += out.first;
 vector<int> lhs, rhs;
 for (int a = 0; a < m; ++a) {
 uf.init(n);
 int nmerge = 0;
 int nowweight = 0;
 for (int i = 0; i < m; ++i) {
 if (i == a) continue;
 if (uf.merge(edges[i].second.first.first, edges[i].second.first.second))
{
 nmerge++;
 nowweight += edges[i].first;
 }
 }
 if (nmerge != n - 1 || nowweight > realweight) {
 lhs.push_back(edges[a].second.second);
 }
 }
 vector<int> canappear;
 uf.init(n);
 for (int i = 0; i < m;) {
 int j = i;
 while (j < m && edges[i].first == edges[j].first) ++j;
 for (int k = i; k < j; ++k)
 if (uf.find(edges[k].second.first.first) !=
uf.find(edges[k].second.first.second))
 canappear.push_back(edges[k].second.second);
 for (int k = i; k < j; ++k) uf.merge(edges[k].second.first.first,
edges[k].second.first.second);
 i = j;
 }
 for (auto& out: canappear) {
 bool in = false;
 for (auto& out2 : lhs) in |= out == out2;

Linked List
21. Merge Two Sorted Lists

Description

Solution

01/25/2020:

 if (!in) rhs.push_back(out);
 }
 vector<vector<int>> ret;
 ret.push_back(lhs);
 ret.push_back(rhs);
 return ret;
 }
};

Merge two sorted linked lists and return it as a new list. The new list should
be made by splicing together the nodes of the first two lists.

Example:

Input: 1->2->4, 1->3->4
Output: 1->1->2->3->4->4

/**
 * Definition for singly-linked list.
 * struct ListNode {
 * int val;
 * ListNode *next;
 * ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
 ListNode* mergeTwoLists(ListNode* l1, ListNode* l2) {
 ListNode *pre = new ListNode(0);
 for (auto cur = pre; l1 || l2; cur = cur->next) {
 if (l2 == nullptr || (l1 != nullptr && l1->val <= l2->val)) {
 cur->next = new ListNode(l1->val);

https://leetcode.com/problems/merge-two-sorted-lists/

61. Rotate List
Description

Solution

05/27/2020:

 l1 = l1->next;
 } else {
 cur->next = new ListNode(l2->val);
 l2 = l2->next;
 }
 }
 return pre->next;
 }
};

Given a linked list, rotate the list to the right by k places, where k is non-
negative.

Example 1:

Input: 1->2->3->4->5->NULL, k = 2
Output: 4->5->1->2->3->NULL
Explanation:
rotate 1 steps to the right: 5->1->2->3->4->NULL
rotate 2 steps to the right: 4->5->1->2->3->NULL
Example 2:

Input: 0->1->2->NULL, k = 4
Output: 2->0->1->NULL
Explanation:
rotate 1 steps to the right: 2->0->1->NULL
rotate 2 steps to the right: 1->2->0->NULL
rotate 3 steps to the right: 0->1->2->NULL
rotate 4 steps to the right: 2->0->1->NULL

/**
 * Definition for singly-linked list.
 * struct ListNode {
 * int val;
 * ListNode *next;
 * ListNode() : val(0), next(nullptr) {}
 * ListNode(int x) : val(x), next(nullptr) {}

https://leetcode.com/problems/rotate-list/

876. Middle of the Linked List
Description

 * ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
 ListNode* rotateRight(ListNode* head, int k) {
 if (head == nullptr || k == 0) return head;
 int n = 1;
 ListNode* cur = head;
 for (ListNode* cur = head; cur->next; cur = cur->next, ++n);
 k %= n;
 if (k == 0) return head;
 ListNode *slow = head, *fast = head;
 while (k-- > 0 && fast->next) fast = fast->next;
 while (fast->next) {
 slow = slow->next;
 fast = fast->next;
 }
 ListNode* ret = slow->next;
 slow->next = fast->next;
 fast->next = head;
 return ret;
 }
};

Given a non-empty, singly linked list with head node head, return a middle node
of linked list.

If there are two middle nodes, return the second middle node.

Example 1:

Input: [1,2,3,4,5]
Output: Node 3 from this list (Serialization: [3,4,5])
The returned node has value 3. (The judge's serialization of this node is
[3,4,5]).
Note that we returned a ListNode object ans, such that:
ans.val = 3, ans.next.val = 4, ans.next.next.val = 5, and ans.next.next.next =
NULL.
Example 2:

https://leetcode.com/problems/middle-of-the-linked-list/

Solution

01/31/2020:

1290. Convert Binary Number in a Linked List to Integer
Description

Input: [1,2,3,4,5,6]
Output: Node 4 from this list (Serialization: [4,5,6])
Since the list has two middle nodes with values 3 and 4, we return the second
one.

Note:

The number of nodes in the given list will be between 1 and 100.

/**
 * Definition for singly-linked list.
 * struct ListNode {
 * int val;
 * ListNode *next;
 * ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
 ListNode* middleNode(ListNode* head) {
 int cnt = 0;
 int target = 0;
 for (ListNode* cur = head; cur != nullptr; ++cnt, cur = cur->next);
 target = cnt / 2 - 1;
 ListNode* cur = head;
 for (; target >= 0; cur = cur->next, --target);
 return cur;
 }
};

Given head which is a reference node to a singly-linked list. The value of each
node in the linked list is either 0 or 1. The linked list holds the binary
representation of a number.

Return the decimal value of the number in the linked list.

https://leetcode.com/problems/convert-binary-number-in-a-linked-list-to-integer/

Solution

01/29/2020:

Example 1:

Input: head = [1,0,1]
Output: 5
Explanation: (101) in base 2 = (5) in base 10
Example 2:

Input: head = [0]
Output: 0
Example 3:

Input: head = [1]
Output: 1
Example 4:

Input: head = [1,0,0,1,0,0,1,1,1,0,0,0,0,0,0]
Output: 18880
Example 5:

Input: head = [0,0]
Output: 0

Constraints:

The Linked List is not empty.
Number of nodes will not exceed 30.
Each node's value is either 0 or 1.

/**
 * Definition for singly-linked list.
 * struct ListNode {
 * int val;
 * ListNode *next;
 * ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
 int getDecimalValue(ListNode* head) {

1474. Delete N Nodes After M Nodes of a Linked List
Description

 int ret = 0;
 for (; head != nullptr; head = head->next) {
 ret <<= 1;
 ret += head->val;
 }
 return ret;
 }
};

Given the head of a linked list and two integers m and n. Traverse the linked
list and remove some nodes in the following way:

Start with the head as the current node.
Keep the first m nodes starting with the current node.
Remove the next n nodes
Keep repeating steps 2 and 3 until you reach the end of the list.
Return the head of the modified list after removing the mentioned nodes.

Follow up question: How can you solve this problem by modifying the list in-
place?

Example 1:

Input: head = [1,2,3,4,5,6,7,8,9,10,11,12,13], m = 2, n = 3
Output: [1,2,6,7,11,12]
Explanation: Keep the first (m = 2) nodes starting from the head of the linked
List (1 ->2) show in black nodes.
Delete the next (n = 3) nodes (3 -> 4 -> 5) show in read nodes.
Continue with the same procedure until reaching the tail of the Linked List.
Head of linked list after removing nodes is returned.
Example 2:

Input: head = [1,2,3,4,5,6,7,8,9,10,11], m = 1, n = 3
Output: [1,5,9]
Explanation: Head of linked list after removing nodes is returned.
Example 3:

https://leetcode.com/problems/delete-n-nodes-after-m-nodes-of-a-linked-list/

Solution

06/11/2020:

Input: head = [1,2,3,4,5,6,7,8,9,10,11], m = 3, n = 1
Output: [1,2,3,5,6,7,9,10,11]
Example 4:

Input: head = [9,3,7,7,9,10,8,2], m = 1, n = 2
Output: [9,7,8]

Constraints:

The given linked list will contain between 1 and 10^4 nodes.
The value of each node in the linked list will be in the range [1, 10^6].
1 <= m,n <= 1000

/**
 * Definition for singly-linked list.
 * struct ListNode {
 * int val;
 * ListNode *next;
 * ListNode() : val(0), next(nullptr) {}
 * ListNode(int x) : val(x), next(nullptr) {}
 * ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
 ListNode* deleteNodes(ListNode* head, int m, int n) {
 ListNode *cur = head, *fast;
 while (cur) {
 for (int skipCount = m; --skipCount > 0 && cur && cur->next; cur = cur-
>next);
 fast = cur->next;
 for (int removeCount = n; --removeCount > 0 && fast && fast->next; fast =
fast->next);
 if (fast) cur->next = fast->next;
 cur = cur->next;
 }
 return head;
 }
};

Bit Manipulation
338. Counting Bits

Description

Solution

05/28/2020:

Given a non negative integer number num. For every numbers i in the range 0 ≤ i
≤ num calculate the number of 1's in their binary representation and return them
as an array.

Example 1:

Input: 2
Output: [0,1,1]
Example 2:

Input: 5
Output: [0,1,1,2,1,2]
Follow up:

It is very easy to come up with a solution with run time O(n*sizeof(integer)).
But can you do it in linear time O(n) /possibly in a single pass?
Space complexity should be O(n).
Can you do it like a boss? Do it without using any builtin function like
__builtin_popcount in c++ or in any other language.

class Solution {
public:
 vector<int> countBits(int num) {
 vector<int> ret(num + 1, 0);
 for (int i = 1; i <= num; ++i) {
 ret[i] = ret[i & (i - 1)] + 1;
 }
 return ret;
 }
};

https://leetcode.com/problems/counting-bits/

342. Power of Four
Description

Solution

06/16/2020:

class Solution {
public:
 vector<int> countBits(int num) {
 vector<int> ret;
 for (int i = 0; i <= num; ++i) {
 ret.push_back(__builtin_popcount(i));
 }
 return ret;
 }
};

class Solution {
public:
 vector<int> countBits(int num) {
 vector<int> dp(num + 1, 0);
 for (int i = 1, m = 1; i <= num; ++i) {
 if (i == m << 1) m <<= 1;
 dp[i] = dp[i % m] + 1;
 }
 return dp;
 }
};

Given an integer (signed 32 bits), write a function to check whether it is a
power of 4.

Example 1:

Input: 16
Output: true
Example 2:

Input: 5
Output: false
Follow up: Could you solve it without loops/recursion?

https://leetcode.com/problems/power-of-four/

461. Hamming Distance
Description

Solution

01/30/2020:

class Solution {
public:
 bool isPowerOfFour(int num) {
 int n = __builtin_popcount(num);
 if (n != 1 || n <= 0) return false;
 while (num != 0 && (num & 1) != 1) num >>= 2;
 return num == 1;
 }
};

The Hamming distance between two integers is the number of positions at which
the corresponding bits are different.

Given two integers x and y, calculate the Hamming distance.

Note:
0 ≤ x, y < 231.

Example:

Input: x = 1, y = 4

Output: 2

Explanation:
1 (0 0 0 1)
4 (0 1 0 0)
 ↑ ↑

The above arrows point to positions where the corresponding bits are different.

https://leetcode.com/problems/hamming-distance/

476. Number Complement
Description

Solution

class Solution {
public:
 int hammingDistance(int x, int y) {
 int ret = 0, m = x ^ y;
 for (int m = x ^ y; m != 0; m /= 2) {
 ret += m % 2;
 }
 return ret;
 }
};

Given a positive integer, output its complement number. The complement strategy
is to flip the bits of its binary representation.

Example 1:

Input: 5
Output: 2
Explanation: The binary representation of 5 is 101 (no leading zero bits), and
its complement is 010. So you need to output 2.

Example 2:

Input: 1
Output: 0
Explanation: The binary representation of 1 is 1 (no leading zero bits), and its
complement is 0. So you need to output 0.

Note:

The given integer is guaranteed to fit within the range of a 32-bit signed
integer.
You could assume no leading zero bit in the integer’s binary representation.
This question is the same as 1009: https://leetcode.com/problems/complement-of-
base-10-integer/

https://leetcode.com/problems/number-complement/

05/04/2020:

1486. XOR Operation in an Array
Description

class Solution {
public:
 int findComplement(int num) {
 int ret = 0, bits = 0;
 for (; num != 0; num /= 2, ++bits) {
 if (num % 2 == 0) {
 ret += 1 << bits;
 }
 }
 return ret;
 }
};

Given an integer n and an integer start.

Define an array nums where nums[i] = start + 2*i (0-indexed) and n ==
nums.length.

Return the bitwise XOR of all elements of nums.

Example 1:

Input: n = 5, start = 0
Output: 8
Explanation: Array nums is equal to [0, 2, 4, 6, 8] where (0 ^ 2 ^ 4 ^ 6 ^ 8) =
8.
Where "^" corresponds to bitwise XOR operator.
Example 2:

Input: n = 4, start = 3
Output: 8
Explanation: Array nums is equal to [3, 5, 7, 9] where (3 ^ 5 ^ 7 ^ 9) = 8.
Example 3:

Input: n = 1, start = 7
Output: 7
Example 4:

https://leetcode.com/problems/xor-operation-in-an-array/

Solution

06/20/2020:

Design Data Structure
359. Logger Rate Limiter

Description

Input: n = 10, start = 5
Output: 2

Constraints:

1 <= n <= 1000
0 <= start <= 1000
n == nums.length

class Solution {
public:
 int xorOperation(int n, int start) {
 int ret = 0;
 for (int i = 0; i < n; ++i) ret ^= start + 2 * i;
 return ret;
 }
};

Design a logger system that receive stream of messages along with its
timestamps, each message should be printed if and only if it is not printed in
the last 10 seconds.

Given a message and a timestamp (in seconds granularity), return true if the
message should be printed in the given timestamp, otherwise returns false.

It is possible that several messages arrive roughly at the same time.

Example:

Logger logger = new Logger();

https://leetcode.com/problems/logger-rate-limiter/

Solution

01/31/2020:

// logging string "foo" at timestamp 1
logger.shouldPrintMessage(1, "foo"); returns true;

// logging string "bar" at timestamp 2
logger.shouldPrintMessage(2,"bar"); returns true;

// logging string "foo" at timestamp 3
logger.shouldPrintMessage(3,"foo"); returns false;

// logging string "bar" at timestamp 8
logger.shouldPrintMessage(8,"bar"); returns false;

// logging string "foo" at timestamp 10
logger.shouldPrintMessage(10,"foo"); returns false;

// logging string "foo" at timestamp 11
logger.shouldPrintMessage(11,"foo"); returns true;

class Logger {
private:
 unordered_map<string, int> logger;
public:
 /** Initialize your data structure here. */
 Logger() {
 }

 /** Returns true if the message should be printed in the given timestamp,
otherwise returns false.
 If this method returns false, the message will not be printed.
 The timestamp is in seconds granularity. */
 bool shouldPrintMessage(int timestamp, string message) {
 if (logger.count(message) == 0) {
 logger[message] = timestamp;
 return true;
 } else if (timestamp - logger[message] >= 10) {
 logger[message] = timestamp;
 return true;
 } else {
 return false;
 }
 }
};

901. Online Stock Span
Description

/**
 * Your Logger object will be instantiated and called as such:
 * Logger* obj = new Logger();
 * bool param_1 = obj->shouldPrintMessage(timestamp,message);
 */

Write a class StockSpanner which collects daily price quotes for some stock, and
returns the span of that stock's price for the current day.

The span of the stock's price today is defined as the maximum number of
consecutive days (starting from today and going backwards) for which the price
of the stock was less than or equal to today's price.

For example, if the price of a stock over the next 7 days were [100, 80, 60, 70,
60, 75, 85], then the stock spans would be [1, 1, 1, 2, 1, 4, 6].

Example 1:

Input: ["StockSpanner","next","next","next","next","next","next","next"], [[],
[100],[80],[60],[70],[60],[75],[85]]
Output: [null,1,1,1,2,1,4,6]
Explanation:
First, S = StockSpanner() is initialized. Then:
S.next(100) is called and returns 1,
S.next(80) is called and returns 1,
S.next(60) is called and returns 1,
S.next(70) is called and returns 2,
S.next(60) is called and returns 1,
S.next(75) is called and returns 4,
S.next(85) is called and returns 6.

Note that (for example) S.next(75) returned 4, because the last 4 prices
(including today's price of 75) were less than or equal to today's price.

Note:

Calls to StockSpanner.next(int price) will have 1 <= price <= 10^5.
There will be at most 10000 calls to StockSpanner.next per test case.
There will be at most 150000 calls to StockSpanner.next across all test cases.

https://leetcode.com/problems/online-stock-span/

Solution

05/20/2020:

The total time limit for this problem has been reduced by 75% for C++, and 50%
for all other languages.

class StockSpanner {
private:
 stack<pair<int, int>> st;

public:
 StockSpanner() {
 }

 int next(int price) {
 int w = 1;
 while (!st.empty() && st.top().first <= price) {
 w += st.top().second;
 st.pop();
 }
 st.emplace(price, w);
 return w;
 }
};

class StockSpanner {
private:
 vector<int> prices;
 vector<int> upper_bounds;
 int i, last;

public:
 StockSpanner() {
 prices.resize(100001);
 upper_bounds.resize(100001, INT_MAX);
 i = 0;
 last = 0;
 }

 int next(int price) {
 prices[price] = i++;
 while (last != INT_MAX && last <= price) last = upper_bounds[last];
 upper_bounds[price] = last == INT_MAX ? min(upper_bounds[price], last) :
last > price ? last : INT_MAX;
 last = price;
 if (upper_bounds[price] == INT_MAX) return prices[price] + 1;

 return prices[price] - prices[upper_bounds[price]];
 }
};

class StockSpanner {
 vector<vector<int>> prices;
 vector<int> upper_bounds;
 int i;
 int last;
 bool first;
public:
 StockSpanner() {
 prices.resize(100001);
 upper_bounds.resize(100001, INT_MAX);
 i = 0;
 last = 0;
 }

 int next(int price) {
 prices[price].push_back(i++);
 while (last != INT_MAX && last <= price) {
 last = upper_bounds[last];
 }
 if (last == INT_MAX) {
 upper_bounds[price] = min(upper_bounds[price], last);
 } else {
 if (last > price) {
 upper_bounds[price] = last;
 }
 }
 // cout << price << " " << upper_bounds[price] << endl;
 last = price;
 if (upper_bounds[price] == INT_MAX) {
 return prices[price].back() + 1;
 } else {
 return prices[price].back() - prices[upper_bounds[price]].back();
 }
 }
};

/**
 * Your StockSpanner object will be instantiated and called as such:
 * StockSpanner* obj = new StockSpanner();
 * int param_1 = obj->next(price);
 */

1429. First Unique Number
Description

You have a queue of integers, you need to retrieve the first unique integer in
the queue.

Implement the FirstUnique class:

FirstUnique(int[] nums) Initializes the object with the numbers in the queue.
int showFirstUnique() returns the value of the first unique integer of the
queue, and returns -1 if there is no such integer.
void add(int value) insert value to the queue.

Example 1:

Input:
["FirstUnique","showFirstUnique","add","showFirstUnique","add","showFirstUnique"
,"add","showFirstUnique"]
[[[2,3,5]],[],[5],[],[2],[],[3],[]]
Output:
[null,2,null,2,null,3,null,-1]

Explanation:
FirstUnique firstUnique = new FirstUnique([2,3,5]);
firstUnique.showFirstUnique(); // return 2
firstUnique.add(5); // the queue is now [2,3,5,5]
firstUnique.showFirstUnique(); // return 2
firstUnique.add(2); // the queue is now [2,3,5,5,2]
firstUnique.showFirstUnique(); // return 3
firstUnique.add(3); // the queue is now [2,3,5,5,2,3]
firstUnique.showFirstUnique(); // return -1

Example 2:

Input:
["FirstUnique","showFirstUnique","add","add","add","add","add","showFirstUnique"
]
[[[7,7,7,7,7,7]],[],[7],[3],[3],[7],[17],[]]
Output:
[null,-1,null,null,null,null,null,17]

Explanation:
FirstUnique firstUnique = new FirstUnique([7,7,7,7,7,7]);
firstUnique.showFirstUnique(); // return -1
firstUnique.add(7); // the queue is now [7,7,7,7,7,7,7]
firstUnique.add(3); // the queue is now [7,7,7,7,7,7,7,3]

https://leetcode.com/problems/first-unique-number/

Solution

Using vector:

firstUnique.add(3); // the queue is now [7,7,7,7,7,7,7,3,3]
firstUnique.add(7); // the queue is now [7,7,7,7,7,7,7,3,3,7]
firstUnique.add(17); // the queue is now [7,7,7,7,7,7,7,3,3,7,17]
firstUnique.showFirstUnique(); // return 17

Example 3:

Input:
["FirstUnique","showFirstUnique","add","showFirstUnique"]
[[[809]],[],[809],[]]
Output:
[null,809,null,-1]

Explanation:
FirstUnique firstUnique = new FirstUnique([809]);
firstUnique.showFirstUnique(); // return 809
firstUnique.add(809); // the queue is now [809,809]
firstUnique.showFirstUnique(); // return -1

Constraints:
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^8
1 <= value <= 10^8
At most 50000 calls will be made to showFirstUnique and add.

* Hide Hint #1: Use doubly Linked list with hashmap of pointers to linked list
nodes. add unique number to the linked list. When add is called check if the
added number is unique then it have to be added to the linked list and if it is
repeated remove it from the linked list if exists. When showFirstUnique is
called retrieve the head of the linked list.
* Hide Hint #2: Use queue and check that first element of the queue is always
unique.
* Hide Hint #3: Use set or heap to make running time of each function O(logn).

class FirstUnique {
 unordered_map<int, int> mp;
 vector<int> unique_nums;
 int i;

public:
 FirstUnique(vector<int>& nums) {
 i = 0;
 for (auto& n : nums) ++mp[n];
 for (auto& n : nums)

Using queue:

 if (mp[n] == 1)
 unique_nums.push_back(n);
 }

 int showFirstUnique() {
 if (i >= unique_nums.size()) return -1;
 return unique_nums[i];
 }

 void add(int value) {
 if (++mp[value] == 1) unique_nums.push_back(value);
 for (; i < unique_nums.size() && mp[unique_nums[i]] > 1; ++i);
 }
};

/**
 * Your FirstUnique object will be instantiated and called as such:
 * FirstUnique* obj = new FirstUnique(nums);
 * int param_1 = obj->showFirstUnique();
 * obj->add(value);
 */

class FirstUnique {
 unordered_map<int, int> mp;
 queue<int> unique_nums;

public:
 FirstUnique(vector<int>& nums) {
 for (auto& n : nums) ++mp[n];
 for (auto& n : nums)
 if (mp[n] == 1)
 unique_nums.push(n);
 }

 int showFirstUnique() {
 if (unique_nums.empty()) return -1;
 return unique_nums.front();
 }

 void add(int value) {
 if (++mp[value] == 1) unique_nums.push(value);
 while (!unique_nums.empty() && mp[unique_nums.front()] > 1)
unique_nums.pop();
 }
};

1472. Design Browser History
Description

/**
 * Your FirstUnique object will be instantiated and called as such:
 * FirstUnique* obj = new FirstUnique(nums);
 * int param_1 = obj->showFirstUnique();
 * obj->add(value);
 */

You have a browser of one tab where you start on the homepage and you can visit
another url, get back in the history number of steps or move forward in the
history number of steps.

Implement the BrowserHistory class:

BrowserHistory(string homepage) Initializes the object with the homepage of the
browser.
void visit(string url) visits url from the current page. It clears up all the
forward history.
string back(int steps) Move steps back in history. If you can only return x
steps in the history and steps > x, you will return only x steps. Return the
current url after moving back in history at most steps.
string forward(int steps) Move steps forward in history. If you can only forward
x steps in the history and steps > x, you will forward only x steps. Return the
current url after forwarding in history at most steps.

Example:

Input:
["BrowserHistory","visit","visit","visit","back","back","forward","visit","forwa
rd","back","back"]
[["leetcode.com"],["google.com"],["facebook.com"],["youtube.com"],[1],[1],[1],
["linkedin.com"],[2],[2],[7]]
Output:
[null,null,null,null,"facebook.com","google.com","facebook.com",null,"linkedin.c
om","google.com","leetcode.com"]

Explanation:
BrowserHistory browserHistory = new BrowserHistory("leetcode.com");
browserHistory.visit("google.com"); // You are in "leetcode.com". Visit
"google.com"
browserHistory.visit("facebook.com"); // You are in "google.com". Visit
"facebook.com"

https://leetcode.com/problems/design-browser-history/

Solution

06/06/2020:

browserHistory.visit("youtube.com"); // You are in "facebook.com". Visit
"youtube.com"
browserHistory.back(1); // You are in "youtube.com", move back
to "facebook.com" return "facebook.com"
browserHistory.back(1); // You are in "facebook.com", move
back to "google.com" return "google.com"
browserHistory.forward(1); // You are in "google.com", move
forward to "facebook.com" return "facebook.com"
browserHistory.visit("linkedin.com"); // You are in "facebook.com". Visit
"linkedin.com"
browserHistory.forward(2); // You are in "linkedin.com", you
cannot move forward any steps.
browserHistory.back(2); // You are in "linkedin.com", move
back two steps to "facebook.com" then to "google.com". return "google.com"
browserHistory.back(7); // You are in "google.com", you can
move back only one step to "leetcode.com". return "leetcode.com"

Constraints:

1 <= homepage.length <= 20
1 <= url.length <= 20
1 <= steps <= 100
homepage and url consist of '.' or lower case English letters.
At most 5000 calls will be made to visit, back, and forward.

class BrowserHistory {
private:
 list<string> history;
 int x;

public:
 BrowserHistory(string homepage) {
 history.push_back(homepage);
 x = 0;
 }

 void visit(string url) {
 history.erase(next(history.begin(), x + 1), history.end());
 history.push_back(url);
 ++x;
 }

 string back(int steps) {

1476. Subrectangle Queries
Description

 x = steps > x ? 0 : x - steps;
 return *next(history.begin(), x);
 }

 string forward(int steps) {
 int n = history.size();
 x = steps > n - 1 - x ? n - 1 : x + steps;
 return *next(history.begin(), x);
 }
};

/**
 * Your BrowserHistory object will be instantiated and called as such:
 * BrowserHistory* obj = new BrowserHistory(homepage);
 * obj->visit(url);
 * string param_2 = obj->back(steps);
 * string param_3 = obj->forward(steps);
 */

Implement the class SubrectangleQueries which receives a rows x cols rectangle
as a matrix of integers in the constructor and supports two methods:

1. updateSubrectangle(int row1, int col1, int row2, int col2, int newValue)

Updates all values with newValue in the subrectangle whose upper left coordinate
is (row1,col1) and bottom right coordinate is (row2,col2).
2. getValue(int row, int col)

Returns the current value of the coordinate (row,col) from the rectangle.

Example 1:

Input
["SubrectangleQueries","getValue","updateSubrectangle","getValue","getValue","up
dateSubrectangle","getValue","getValue"]
[[[[1,2,1],[4,3,4],[3,2,1],[1,1,1]]],[0,2],[0,0,3,2,5],[0,2],[3,1],[3,0,3,2,10],
[3,1],[0,2]]
Output
[null,1,null,5,5,null,10,5]
Explanation

https://leetcode.com/problems/subrectangle-queries/

SubrectangleQueries subrectangleQueries = new SubrectangleQueries([[1,2,1],
[4,3,4],[3,2,1],[1,1,1]]);
// The initial rectangle (4x3) looks like:
// 1 2 1
// 4 3 4
// 3 2 1
// 1 1 1
subrectangleQueries.getValue(0, 2); // return 1
subrectangleQueries.updateSubrectangle(0, 0, 3, 2, 5);
// After this update the rectangle looks like:
// 5 5 5
// 5 5 5
// 5 5 5
// 5 5 5
subrectangleQueries.getValue(0, 2); // return 5
subrectangleQueries.getValue(3, 1); // return 5
subrectangleQueries.updateSubrectangle(3, 0, 3, 2, 10);
// After this update the rectangle looks like:
// 5 5 5
// 5 5 5
// 5 5 5
// 10 10 10
subrectangleQueries.getValue(3, 1); // return 10
subrectangleQueries.getValue(0, 2); // return 5
Example 2:

Input
["SubrectangleQueries","getValue","updateSubrectangle","getValue","getValue","up
dateSubrectangle","getValue"]
[[[[1,1,1],[2,2,2],[3,3,3]]],[0,0],[0,0,2,2,100],[0,0],[2,2],[1,1,2,2,20],[2,2]]
Output
[null,1,null,100,100,null,20]
Explanation
SubrectangleQueries subrectangleQueries = new SubrectangleQueries([[1,1,1],
[2,2,2],[3,3,3]]);
subrectangleQueries.getValue(0, 0); // return 1
subrectangleQueries.updateSubrectangle(0, 0, 2, 2, 100);
subrectangleQueries.getValue(0, 0); // return 100
subrectangleQueries.getValue(2, 2); // return 100
subrectangleQueries.updateSubrectangle(1, 1, 2, 2, 20);
subrectangleQueries.getValue(2, 2); // return 20

Constraints:

There will be at most 500 operations considering both methods:
updateSubrectangle and getValue.
1 <= rows, cols <= 100
rows == rectangle.length

Solution

06/13/2020:

cols == rectangle[i].length
0 <= row1 <= row2 < rows
0 <= col1 <= col2 < cols
1 <= newValue, rectangle[i][j] <= 10^9
0 <= row < rows
0 <= col < cols

class SubrectangleQueries {
private:
 vector<vector<int>> rectangle;
public:
 SubrectangleQueries(vector<vector<int>>& rectangle) {
 this->rectangle = rectangle;
 }

 void updateSubrectangle(int row1, int col1, int row2, int col2, int newValue)
{
 for (int i = row1; i <= row2; ++i) {
 for (int j = col1; j <= col2; ++j) {
 rectangle[i][j] = newValue;
 }
 }
 }

 int getValue(int row, int col) {
 return rectangle[row][col];
 }
};

/**
 * Your SubrectangleQueries object will be instantiated and called as such:
 * SubrectangleQueries* obj = new SubrectangleQueries(rectangle);
 * obj->updateSubrectangle(row1,col1,row2,col2,newValue);
 * int param_2 = obj->getValue(row,col);
 */

	Backtracking
	47. Permutations II
	52. N-Queens II
	90. Subsets II
	1101. The Earliest Moment When Everyone Become Friends
	1319. Number of Operations to Make Network Connected

	Binary Search
	69. Sqrt(x)
	275. H-Index II
	367. Valid Perfect Square
	441. Arranging Coins
	744. Find Smallest Letter Greater Than Target
	892. Surface Area of 3D Shapes
	976. Largest Perimeter Triangle
	1198. Find Smallest Common Element in All Rows

	Array
	1. Two Sum
	73. Set Matrix Zeroes
	167. Two Sum II - Input array is sorted
	170. Two Sum III - Data structure design
	463. Island Perimeter
	509. Fibonacci Number
	561. Array Partition I
	566. Reshape the Matrix
	594. Longest Harmonious Subsequence
	624. Maximum Distance in Arrays
	653. Two Sum IV - Input is a BST
	654. Maximum Binary Tree
	623. Add One Row to Tree
	695. Max Area of Island
	760. Find Anagram Mappings
	766. Toeplitz Matrix
	811. Subdomain Visit Count
	832. Flipping an Image
	852. Peak Index in a Mountain Array
	867. Transpose Matrix
	905. Sort Array By Parity
	918. Maximum Sum Circular Subarray
	922. Sort Array By Parity II
	961. N-Repeated Element in Size 2N Array
	977. Squares of a Sorted Array
	994. Rotting Oranges
	1051. Height Checker
	1064. Fixed Point
	1085. Sum of Digits in the Minimum Number
	1086. High Five
	1099. Two Sum Less Than K
	1122. Relative Sort Array
	1133. Largest Unique Number
	1196. How Many Apples Can You Put into the Basket
	1200. Minimum Absolute Difference
	1207. Unique Number of Occurrences
	1213. Intersection of Three Sorted Arrays
	1217. Play with Chips
	1243. Array Transformation
	1252. Cells with Odd Values in a Matrix
	1266. Minimum Time Visiting All Points
	1299. Replace Elements with Greatest Element on Right Side
	1304. Find N Unique Integers Sum up to Zero
	1305. All Elements in Two Binary Search Trees
	1313. Decompress Run-Length Encoded List
	1337. The K Weakest Rows in a Matrix
	1338. Reduce Array Size to The Half
	1413. Minimum Value to Get Positive Step by Step Sum
	1423. Maximum Points You Can Obtain from Cards
	1425. Constrained Subset Sum
	1428. Leftmost Column with at Least a One
	1431. Kids With the Greatest Number of Candies
	1437. Check If All 1's Are at Least Length K Places Away
	1442. Count Triplets That Can Form Two Arrays of Equal XOR
	1450. Number of Students Doing Homework at a Given Time
	1460. Make Two Arrays Equal by Reversing Sub-arrays
	1464. Maximum Product of Two Elements in an Array
	1465. Maximum Area of a Piece of Cake After Horizontal and Vertical Cuts
	1470. Shuffle the Array
	1475. Final Prices With a Special Discount in a Shop
	1481. Least Number of Unique Integers after K Removals
	1491. Average Salary Excluding the Minimum and Maximum Salary

	Tree
	104. Maximum Depth of Binary Tree
	111. Minimum Depth of Binary Tree
	144. Binary Tree Preorder Traversal
	199. Binary Tree Right Side View
	513. Find Bottom Left Tree Value
	515. Find Largest Value in Each Tree Row
	559. Maximum Depth of N-ary Tree
	563. Binary Tree Tilt
	589. N-ary Tree Preorder Traversal
	590. N-ary Tree Postorder Traversal
	617. Merge Two Binary Trees
	655. Print Binary Tree
	700. Search in a Binary Search Tree
	872. Leaf-Similar Trees
	897. Increasing Order Search Tree
	938. Range Sum of BST
	965. Univalued Binary Tree
	993. Cousins in Binary Tree
	1008. Construct Binary Search Tree from Preorder Traversal
	1022. Sum of Root To Leaf Binary Numbers
	1325. Delete Leaves With a Given Value
	1333. Filter Restaurants by Vegan-Friendly, Price and Distance
	1443. Minimum Time to Collect All Apples in a Tree
	1448. Count Good Nodes in Binary Tree
	1457. Pseudo-Palindromic Paths in a Binary Tree
	1469. Find All The Lonely Nodes
	1490. Clone N-ary Tree

	Math
	2. Add Two Numbers
	7. Reverse Integer
	9. Palindrome Number
	136. Single Number
	172. Factorial Trailing Zeroes
	202. Happy Number
	217. Contains Duplicate
	258. Add Digits
	263. Ugly Number
	476. Number Complement
	645. Set Mismatch
	728. Self Dividing Numbers
	869. Reordered Power of 2
	883. Projection Area of 3D Shapes
	908. Smallest Range I
	970. Powerful Integers
	1103. Distribute Candies to People
	1134. Armstrong Number
	1185. Day of the Week
	1227. Airplane Seat Assignment Probability
	1228. Missing Number In Arithmetic Progression
	1232. Check If It Is a Straight Line
	1237. Find Positive Integer Solution for a Given Equation
	1281. Subtract the Product and Sum of Digits of an Integer
	1295. Find Numbers with Even Number of Digits
	1323. Maximum 69 Number

	String
	20. Valid Parentheses
	58. Length of Last Word
	71. Simplify Path
	344. Reverse String
	383. Ransom Note
	500. Keyboard Row
	557. Reverse Words in a String III
	599. Minimum Index Sum of Two Lists
	657. Robot Return to Origin
	709. To Lower Case
	771. Jewels and Stones
	796. Rotate String
	804. Unique Morse Code Words
	806. Number of Lines To Write String
	821. Shortest Distance to a Character
	893. Groups of Special-Equivalent Strings
	929. Unique Email Addresses
	953. Verifying an Alien Dictionary
	1002. Find Common Characters
	1021. Remove Outermost Parentheses
	1044. Longest Duplicate Substring
	1047. Remove All Adjacent Duplicates In String
	1078. Occurrences After Bigram
	1108. Defanging an IP Address
	1119. Remove Vowels from a String
	1160. Find Words That Can Be Formed by Characters
	1165. Single-Row Keyboard
	1180. Count Substrings with Only One Distinct Letter
	1221. Split a String in Balanced Strings
	1236. Web Crawler
	1309. Decrypt String from Alphabet to Integer Mapping
	1324. Print Words Vertically
	1332. Remove Palindromic Subsequences
	1427. Perform String Shifts
	1432. Max Difference You Can Get From Changing an Integer
	1433. Check If a String Can Break Another String
	1436. Destination City
	1446. Consecutive Characters
	1451. Rearrange Words in a Sentence
	1455. Check If a Word Occurs As a Prefix of Any Word in a Sentence
	1456. Maximum Number of Vowels in a Substring of Given Length
	1487. Making File Names Unique

	Depth-First Search & Breadth-First Search
	200. Number of Islands
	695. Max Area of Island
	886. Possible Bipartition
	1222. Queens That Can Attack the King
	1489. Find Critical and Pseudo-Critical Edges in Minimum Spanning Tree

	Linked List
	21. Merge Two Sorted Lists
	61. Rotate List
	876. Middle of the Linked List
	1290. Convert Binary Number in a Linked List to Integer
	1474. Delete N Nodes After M Nodes of a Linked List

	Bit Manipulation
	338. Counting Bits
	342. Power of Four
	461. Hamming Distance
	476. Number Complement
	1486. XOR Operation in an Array

	Design Data Structure
	359. Logger Rate Limiter
	901. Online Stock Span
	1429. First Unique Number
	1472. Design Browser History
	1476. Subrectangle Queries

